首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The developmental fate of primordial germ cells in the mammalian gonad depends on their environment. In the XY gonad, Sry induces a cascade of molecular and cellular events leading to the organization of testis cords. Germ cells are sequestered inside testis cords by 12.5 dpc where they arrest in mitosis. If the testis pathway is not initiated, germ cells spontaneously enter meiosis by 13.5 dpc, and the gonad follows the ovarian fate. We have previously shown that some testis-specific events, such as mesonephric cell migration, can be experimentally induced into XX gonads prior to 12.5 dpc. However, after that time, XX gonads are resistant to the induction of cell migration. In current experiments, we provide evidence that this effect is dependent on XX germ cells rather than on XX somatic cells. We show that, although mesonephric cell migration cannot be induced into normal XX gonads at 14.5 dpc, it can be induced into XX gonads depleted of germ cells. We also show that when 14.5 dpc XX somatic cells are recombined with XY somatic cells, testis cord structures form normally; however, when XX germ cells are recombined with XY somatic cells, cord structures are disrupted. Sandwich culture experiments suggest that the inhibitory effect of XX germ cells is mediated through short-range interactions rather than through a long-range diffusible factor. The developmental stage at which XX germ cells show a disruptive effect on the male pathway is the stage at which meiosis is normally initiated, based on the immunodetection of meiotic markers. We suggest that at the stage when germ cells commit to meiosis, they reinforce ovarian fate by antagonizing the testis pathway.  相似文献   

2.
3.
In mammals a single gene on the Y chromosome, Sry, controls testis formation. One of the earliest effects of Sry expression is the induction of somatic cell migration from the mesonephros into the XY gonad. Here we show that mesonephric cells are required for cord formation and male-specific gene expression in XY gonads in a stage-specific manner. Culturing XX gonads with an XY gonad at their surface, as a 'sandwich', resulted in cell migration into the XX tissue. Analysis of sandwich gonads revealed that in the presence of migrating cells, XX gonads organized cord structures and acquired male-specific gene expression patterns. From these results, we conclude that mesonephric cell migration plays a critical role in the formation of testis cords and the differentiation of XY versus XX cell types.  相似文献   

4.
Sry induces cell proliferation in the mouse gonad   总被引:11,自引:0,他引:11  
Sry is the only gene on the Y chromosome that is required for testis formation in mammals. One of the earliest morphological changes that occurs as a result of Sry expression is a size increase of the rudimentary XY gonad relative to the XX gonad. Using 5'-bromo-2'-deoxyuridine (BrdU) incorporation to label dividing cells, we found that the size increase corresponds with a dramatic increase in somatic cell proliferation in XY gonads, which is not detected in XX gonads. This male-specific proliferation was observed initially in the cells of the coelomic epithelium and occurred in two distinct stages. During the first stage, proliferation in the XY gonad was observed largely in SF1-positive cells and contributed to the Sertoli cell population. During the second stage, proliferation was observed in SF1-negative cells at and below the coelomic epithelium and did not give rise to Sertoli cells. Both stages of proliferation were dependent on Sry and independent of any other genetic differences between male and female gonads, such as X chromosome dosage or other genes on the Y chromosome. The increase in cell proliferation began less than 24 hours after the onset of Sry expression, before the establishment of male-specific gene expression patterns, and before the appearance of any other known male-specific morphological changes in the XY gonad. Therefore, an increase in cell proliferation in the male coelomic epithelium is the earliest identified effect of Sry expression.  相似文献   

5.
In the mouse, the sex determining gene Sry, on the Y chromosome, controls testis differentiation during embryogenesis. Following Sry expression, indifferent XY gonads increase their size relative to XX gonads and form cord-like structures with the adjacent mesonephros, providing XY gonad somatic cells. This mesonephric cell migration is known to depend on Sry, but the molecular mechanism of mesonephric cell migration remains unknown. In this study, it was shown that cells expressing Sry induced proliferation of mesonephric cells migrating into male gonads, and inhibited expression of the tissue inhibitor of metalloproteinases (TIMP)-3 gene, which is the endogenous inhibitor of matrix metalloproteinases (MMP). In addition, the mesonephric cell migration was blocked by a chemically synthesized inhibitor of MMP in a gonad/mesonephros organ co-culture system with enhanced green fluorescent protein transgenic embryos. The findings indicate that MMP may play a critical role in mesonephric cell migration, and the function of MMP may be regulated by a Sry-TIMP-3 cascade. These findings are an important clue for the elucidation of testicular formation in developing gonads.  相似文献   

6.
One of the earliest morphological changes during testicular differentiation is the establishment of an XY specific vasculature. The testis vascular system is derived from mesonephric endothelial cells that migrate into the gonad. In the XX gonad, mesonephric cell migration and testis vascular development are inhibited by WNT4 signaling. In Wnt4 mutant XX gonads, endothelial cells migrate from the mesonephros and form a male-like coelomic vessel. Interestingly, this process occurs in the absence of other obvious features of testis differentiation, suggesting that Wnt4 specifically inhibits XY vascular development. Consequently, the XX Wnt4 mutant mice presented an opportunity to focus a gene expression screen on the processes of mesonephric cell migration and testicular vascular development. We compared differences in gene expression between XY Wnt4+/+ and XX Wnt4+/+ gonads and between XX Wnt4+/+ and XX Wnt4+/+ gonads to identify sets of genes similarly upregulated in wildtype XY gonads and XX mutant gonads or upregulated in XX gonads as compared to XY gonads and XX mutant gonads. We show that several genes identified in the first set are expressed in vascular domains, and have predicted functions related to cell migration or vascular development. However, the expression patterns and known functions of other genes are not consistent with roles in these processes. This screen has identified candidates for regulation of sex specific vascular development, and has implicated a role for WNT4 signaling in the development of Sertoli and germ cell lineages not immediately obvious from previous phenotypic analyses.  相似文献   

7.
One of the earliest morphological changes during testicular differentiation is the establishment of an XY specific vasculature. The testis vascular system is derived from mesonephric endothelial cells that migrate into the gonad. In the XX gonad, mesonephric cell migration and testis vascular development are inhibited by WNT4 signaling. In Wnt4 mutant XX gonads, endothelial cells migrate from the mesonephros and form a male-like coelomic vessel. Interestingly, this process occurs in the absence of other obvious features of testis differentiation, suggesting that Wnt4 specifically inhibits XY vascular development. Consequently, the XX Wnt4 mutant mice presented an opportunity to focus a gene expression screen on the processes of mesonephric cell migration and testicular vascular development. We compared differences in gene expression between XY Wnt4+/+ and XX Wnt4+/+ gonads and between XX Wnt4-/- and XX Wnt4+/+ gonads to identify sets of genes similarly upregulated in wildtype XY gonads and XX mutant gonads or upregulated in XX gonads as compared to XY gonads and XX mutant gonads. We show that several genes identified in the first set are expressed in vascular domains, and have predicted functions related to cell migration or vascular development. However, the expression patterns and known functions of other genes are not consistent with roles in these processes. This screen has identified candidates for regulation of sex specific vascular development, and has implicated a role for WNT4 signaling in the development of Sertoli and germ cell lineages not immediately obvious from previous phenotypic analyses.  相似文献   

8.
In addition to its role in somatic cell development in the testis, our data have revealed a role for Fgf9 in XY germ cell survival. In Fgf9-null mice, germ cells in the XY gonad decline in numbers after 11.5 days post coitum (dpc), while germ cell numbers in XX gonads are unaffected. We present evidence that germ cells resident in the XY gonad become dependent on FGF9 signaling between 10.5 dpc and 11.5 dpc, and that FGF9 directly promotes XY gonocyte survival after 11.5 dpc, independently from Sertoli cell differentiation. Furthermore, XY Fgf9-null gonads undergo true male-to-female sex reversal as they initiate but fail to maintain the male pathway and subsequently express markers of ovarian differentiation (Fst and Bmp2). By 14.5 dpc, these gonads contain germ cells that enter meiosis synchronously with ovarian gonocytes. FGF9 is necessary for 11.5 dpc XY gonocyte survival and is the earliest reported factor with a sex-specific role in regulating germ cell survival.  相似文献   

9.
10.
Sexually dimorphic differentiation of gonads is accomplished through balanced interactions between positive and negative regulators. One of the earliest features of gonadal differentiation is the divergent patterning of the vasculature. A male-specific coelomic vessel develops on the anterior to posterior of the XY gonad, whereas this vessel is absent in XX gonads. It is postulated that the testis-determining gene Sry controls formation of the coelomic vessel, but the exact molecular mechanism remains unknown. Here we reveal a novel role for inhibin beta B in establishing sex-specific gonad vasculature. In the testis, inhibin beta B contributes to proper formation of the coelomic vessel, a male-specific artery critical for testis development and, later in development, hormone transportation. On the other hand, in the ovary, inhibin beta B is repressed by WNT4 and its downstream target follistatin, leading to the absence of the coelomic vessel. When either Wnt4 or follistatin was inactivated, the coelomic vessel appeared ectopically in the XX ovary. However, when inhibin beta B was also removed in either the Wnt4-null or follistatin-null background, normal ovarian development was restored and no coelomic vessel was found. Our results indicate that the sex-specific formation of the coelomic vessel is established by positive components in the testis as well as an antagonizing pathway from the ovary. Inhibin beta B is strategically positioned at the intersection of these opposing pathways.  相似文献   

11.
12.
Cell proliferation has been shown to have multiple functions in development and pattern formation, including roles in growth, morphogenesis, and gene expression. Previously, we determined that the earliest known morphological event downstream of the male sex determining gene, Sry, is the induction of proliferation. In this study, we used proliferation inhibitors to block cell division during early gonad development, at stages before the XY gonad has committed to the testis pathway. Using the expression of sex-specific genes and the formation of testis morphology as markers of testis determination, we found that proliferation within a specific 8-h window was critical for the establishment of the male pathway and the formation of the testis. Inhibition of proliferation before or after this critical period led to smaller gonads, but did not block testis formation. The critical period of proliferation coincides with the initiation of Sry expression and is essential for the differentiation of Sertoli cells, suggesting that proliferation is a vital component of the initiation of the male pathway by Sry. We believe these studies suggest that proliferation is involved not only in the elaboration of organ pattern, but also in the choice between patterns (male and female) in the bipotential gonad.  相似文献   

13.
Sex-specific differences are apparent in the methylation patterns of H19 and Igf2 imprinted genes in embryonic germ cells (EGCs) derived from 11.5 or 12.5 days post coitum (dpc) primordial germ cells (PGCs). Here we studied whether these differences are associated either with the sex chromosome constitution of the EGCs or with the sex of the genital ridge (testis versus ovary) from which the PGCs were isolated. For this purpose we derived pluripotent EGC lines from sex-reversed embryos, either XY embryos deleted for Sry (XY(Tdym1)) or XX embryos carrying an Sry transgene. Southern blotting of the EGC DNA was used to analyze the differentially methylated regions of Igf2 and H19. The analysis revealed that both genes were more methylated in EGCs with an XY sex chromosome constitution than in those with an XX sex chromosome constitution, irrespective of the phenotypic sex of the genital ridge from which the EGCs had been derived. We conclude that the sex-specific methylation is intrinsic and cell-autonomous, and is not due to any influence of the genital ridge somatic cells upon the PGCs.  相似文献   

14.
15.
16.
In mouse fetal gonads, sex differentiation begins at 10.5-11.5 days postcoitum (dpc). With XY gonads of 12.5 dpc, cord-like structures are visible and stromal cells migrate from adjacent mesonephros, unlike in XX gonads. However, the migrated mesonephric cells, except for the endothelial cells, have not been specifically identified because they have not expressed differentiation markers over the course of organ coculture in previous experiments. In this study, we have for the first time succeeded in isolating only the mesonephric cells that migrate into the XY gonad from the mesonephros with alive and then cultured these cells in vitro through the use of an organ coculture system using EGFP-transgenic mice and a FACS Vantage. The migrated and isolated cells were used for morphological and molecular characterization. The migrated mesonephric cells contained three cell forms; a sharp cell form, a round cell form, and a cluster-forming cell. The sharp cells have the characters of peritubular myoid cells. The round cells and cluster-forming cells have the potential to differentiate into Leydig cells, as some of them are 3beta-HSD-positive. In in vitro culture of migrated mesonephric cells, the cluster-forming cells proliferated well and then differentiated into round cells, suggesting that the cluster-forming cells may be stem or precursor cells for the round cells. Thus, our findings provide important information related to the migration and differentiation of migrated mesonephric cells in the XY gonad.  相似文献   

17.
DMY is the second vertebrate sex-determining gene identified from the fish, Oryzias latipes. In this study, we used two different ways of sex reversal, DMY knock-down and estradiol-17beta (E2) treatment, to determine the possible function of DMY during early gonadal sex differentiation in XY medaka. Our findings revealed that the mitotic and meiotic activities of the germ cells in the 0 day after hatching (dah) DMY knock-down XY larvae were identical to those of the normal XX larvae, suggesting the microenvironment of these XY gonads to be similar to that of the normal XX gonad, where DMY is naturally absent. Conversely, E2 treatment failed to initiate mitosis in the XY gonad, possibly due to an active DMY, even though it could initiate meiosis. Present study is the first to prove that the germ cells in the XY gonad can resume the mitotic activity, if DMY was knocked down.  相似文献   

18.
Sry (sex-determining region on the Y chromosome) is a master gene that initiates testis differentiation of the bipotential indifferent gonad in mammals. In mice, Sry expression is transiently activated in a center-to-pole wave along the anteroposterior (AP) axis of developing XY gonads. Shortly after the onset of Sry activation, Sox9 (Sry-related HMG box-9), a fundamental testis-differentiation gene common to all vertebrates, is also activated in a center-to-pole pattern similar to the initial Sry expression profile. Several male-specific cellular events, such as glycogenesis, coelomic epithelium proliferation, mesonephric migration and vasculogenesis, are induced in XY gonads following the onset of Sry and Sox9 expression. This paper mainly focuses on recent advances in elucidating the regulatory mechanisms of Sry and Sox9 expression and male-specific cellular events immediately downstream of SRY action during the initial phases of testis differentiation.  相似文献   

19.
Homozygous inactivation of Sox9 causes complete XY sex reversal in mice   总被引:10,自引:0,他引:10  
In the presence of the Y-chromosomal gene Sry, the bipotential mouse gonads develop as testes rather than as ovaries. The autosomal gene Sox9, a likely and possibly direct Sry target, can induce testis development in the absence of Sry. Sox9 is thus sufficient but not necessarily essential for testis induction. Mutational inactivation of one allele of SOX9/Sox9 causes sex reversal in humans but not in mice. Because Sox9(-/-) embryos die around Embryonic Day 11.5 (E11.5) at the onset of testicular morphogenesis, differentiation of the mutant XY gonad can be analyzed only ex vivo in organ culture. We have therefore conditionally inactivated both Sox9 alleles in the gonadal anlagen using the CRE/loxP recombination system, whereby CRE recombinase is under control of the cytokeratin 19 promoter. Analysis of resulting Sox9(-/-) XY gonads up to E15.5 reveals immediate, complete sex reversal, as shown by expression of the early ovary-specific markers Wnt4 and Foxl2 and by lack of testis cord and Leydig cell formation. Sry expression in mutant XY gonads indicates that downregulation of Wnt4 and Foxl2 is dependent on Sox9 rather than on Sry. Our results provide in vivo proof that, in contrast to the situation in humans, complete XY sex reversal in mice requires inactivation of both Sox9 alleles and that Sox9 is essential for testogenesis in mice.  相似文献   

20.
The rabbit is an attractive species for the study of gonad differentiation because of its 31-day long gestation, the timing of female meiosis around birth and the 15-day delay between gonadal switch and the onset of meiosis in the female. The expression of a series of genes was thus determined by qPCR during foetal life until adulthood, completed by a histological analysis and whenever possible by an immunohistological one. Interesting gene expression profiles were recorded. Firstly, the peak of SRY gene expression that is observed in early differentiated XY gonads in numerous mammals was also seen in the rabbit, but this expression was maintained at a high level until the end of puberty. Secondly, a peak of aromatase gene expression was observed at two-thirds of the gestation in XX gonads as in many other species except in the mouse. Thirdly, the expression of STRA8 and DMC1 genes (which are known to be specifically expressed in germ cells during meiosis) was enhanced in XX gonads around birth but also slightly and significantly in XY gonads at the same time, even though no meiosis occurs in XY gonad at this stage. This was probably a consequence of the synchronous strong NANOS2 gene expression in XY gonad. In conclusion, our data highlighted some rabbit-specific findings with respect to the gonad differentiation process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号