首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The Cdc2-cyclin B complex (named the M-phase-promoting factor, MPF) is well known to be a key regulator of G2-M transition in both mitosis and meiosis. However, MPF may have functions other than the cell cycle regulation, since its activity is detectable in post-mitotic (or post-meiotic) non-dividing cells. Cyclin B comprises several subtypes, but their functional differences are still unknown. Despite the established function of MPF during oocyte maturation, its role during spermatogenesis, where spermatogenic cells undergo drastic morphological changes after meiosis, remains to be elucidated. To address these issues, we have isolated cDNA clones encoding cyclins B1 and B2 from medaka testis and raised polyclonal antibodies against their products. Using these as probes, we examined the expression patterns of cyclins B1 and B2 in medaka testis at both mRNA and protein levels. Cyclin B1 and B2 mRNAs were expressed in all stages of spermatogenic cells except for spermatozoa, although the expression levels varied according to the spermatogenic stages. Cyclin B1 protein was expressed only in spermatogonia and spermatocytes at prophase and metaphase with a transient disappearance at anaphase. On the other hand, cyclin B2 protein was continuously expressed throughout spermatogenesis, even in spermatogonia and spermatocytes at anaphase and in post-meiotic spermatids and spermatozoa. The difference in their expression patterns suggests that cyclins B1 and B2 have distinct roles in medaka spermatogenesis; i.e., cyclin B1 controls the meiotic cell cycle, whereas cyclin B2 is involved in process(es) other than meiosis.  相似文献   

2.
Loss of function of cyclin E1 or E2, important regulators of the mitotic cell cycle, yields viable mice, but E2-deficient males display reduced fertility. To elucidate the role of E-type cyclins during spermatogenesis, we characterized their expression patterns and produced additional deletions of Ccne1 and Ccne2 alleles in the germline, revealing unexpected meiotic functions. While Ccne2 mRNA and protein are abundantly expressed in spermatocytes, Ccne1 mRNA is present but its protein is detected only at low levels. However, abundant levels of cyclin E1 protein are detected in spermatocytes deficient in cyclin E2 protein. Additional depletion of E-type cyclins in the germline resulted in increasingly enhanced spermatogenic abnormalities and corresponding decreased fertility and loss of germ cells by apoptosis. Profound meiotic defects were observed in spermatocytes, including abnormal pairing and synapsis of homologous chromosomes, heterologous chromosome associations, unrepaired double-strand DNA breaks, disruptions in telomeric structure and defects in cyclin-dependent-kinase 2 localization. These results highlight a new role for E-type cyclins as important regulators of male meiosis.  相似文献   

3.
Cell-cycle transition at G2-M is controlled by MPF (M-phase-promoting factor), a complex consisting of the Cdc2 kinase and a B-type cyclin. We have shown that in mice, targeted disruption of an A-type cyclin gene, cyclin A1, results in a block of spermatogenesis prior to the entry into metaphase I. The meiotic arrest is accompanied by a defect in Cdc2 kinase activation at the G2--M transition, raising the possibility that a cyclin A1-dependent process dictates the activation of MPF. Here we show that like Cdc2, the expression of B-type cyclins is retained in cyclin A1-deficient spermatocytes, while their associated kinases are kept at inactive states. Treatment of arrested germ cells with the protein phosphatase type-1 and -2A inhibitor okadaic acid restores the MPF activity and induces entry into M phase and the formation of normally condensed chromosome bivalents, concomitant with hyperphosphorylation of Cdc25 proteins. Conversely, inhibition of tyrosine phosphatases, including Cdc25s, by vanadate suppresses the okadaic acid-induced metaphase induction. The highest levels of Cdc25A and Cdc25C expression and their subcellular localization during meiotic prophase coincide with that of cyclin A1, and when overexpressed in HeLa cells, cyclin A1 coimmunoprecipitates with Cdc25A. Furthermore, the protein kinase complexes consisting of cyclin A1 and either Cdc2 or Cdk2 phosphorylate both Cdc25A and Cdc25C in vitro. These results suggest that in normal meiotic male germ cells, cyclin A1 participates in the regulation of other protein kinases or phosphatases critical for the G2-M transition. In particular, it may be directly involved in the initial amplification of MPF through the activating phosphorylation on Cdc25 phosphatases.  相似文献   

4.
5.
In response to induced DNA damage, proliferating cells arrest in their cell cycle or go into apoptosis. Ionizing radiation is known to induce degeneration of mammalian male germ cells. The effects on cell-cycle progression, however, have not been thoroughly studied due to lack of methods for identifying effects on a particular cell-cycle phase of a specific germ cell type. In this study, we have utilized the technique for isolation of defined segments of seminiferous tubules to examine the cell-cycle progression of irradiated rat mitotic (type B spermatogonia) and meiotic (preleptotene spermatocytes) G1/S cells. Cells irradiated as type B spermatogonia in mitotic S phase showed a small delay in progression through meiosis. Thus, it seems that transient arrest in the progression can occur in the otherwise strictly regulated progression of germ cells in the seminiferous epithelium. Contrary to the arrest observed in type B spermatogonia and in previous studies on somatic cells, X-irradiation did not result in a G1 delay in meiotic cells. This lack of arrest occurred despite the presence of unrepaired DNA damage that was measured when the cells had progressed through the two meiotic divisions.  相似文献   

6.
Meiosis is a highly specialized cell division that requires significant reorganization of the canonical cell-cycle machinery and the use of meiosis-specific cell-cycle regulators. The anaphase-promoting complex (APC) and a conserved APC adaptor, Cdc20 (also known as Fzy), are required for anaphase progression in mitotic cells. The APC has also been implicated in meiosis, although it is not yet understood how it mediates these non-canonical divisions. Cortex (Cort) is a diverged Fzy homologue that is expressed in the female germline of Drosophila, where it functions with the Cdk1-interacting protein Cks30A to drive anaphase in meiosis II. Here, we show that Cort functions together with the canonical mitotic APC adaptor Fzy to target the three mitotic cyclins (A, B and B3) for destruction in the egg and drive anaphase progression in both meiotic divisions. In addition to controlling cyclin destruction globally in the egg, Cort and Fzy appear to both be required for the local destruction of cyclin B on spindles. We find that cyclin B associates with spindle microtubules throughout meiosis I and meiosis II, and dissociates from the meiotic spindle in anaphase II. Fzy and Cort are required for this loss of cyclin B from the meiotic spindle. Our results lead to a model in which the germline-specific APC(Cort) cooperates with the more general APC(Fzy), both locally on the meiotic spindle and globally in the egg cytoplasm, to target cyclins for destruction and drive progression through the two meiotic divisions.  相似文献   

7.
8.
The unique cell cycles that characterize various aspects of the differentiation of germ cells provide a unique opportunity to understand heretofore elusive aspects of the in vivo function of cell cycle regulators. Key components of the cell cycle machinery are the regulatory sub-units, the cyclins, and their catalytic partners, the cyclin-dependent kinases. Some of the cyclins exhibit unique patterns of expression of germ cells that suggest possible concomitant distinct functions, predictions that are being explored by targeted mutagenesis in mouse models. A novel, meiosis-specific function has been shown for one of the A-type cyclins, cyclin A1. Embryonic lethality has obviated understanding of the germline functions of cyclin A2 and cyclin B1, while yet other cyclins, although expressed at specific stages of germ cell development, may have less essential function in the male germline.  相似文献   

9.
Using immunohistochemistry, the expression of the D-type cyclin proteins was studied in the developing and adult mouse testis. Both during testicular development and in adult testis, cyclin D(1) is expressed only in proliferating gonocytes and spermatogonia, indicating a role for cyclin D(1) in spermatogonial proliferation, in particular during the G(1)/S phase transition. Cyclin D(2) is first expressed at the start of spermatogenesis when gonocytes produce A(1) spermatogonia. In the adult testis, cyclin D(2) is expressed in spermatogonia around stage VIII of the seminiferous epithelium when A(al) spermatogonia differentiate into A(1) spermatogonia and also in spermatocytes and spermatids. To further elucidate the role of cyclin D(2) during spermatogenesis, cyclin D(2) expression was studied in vitamin A-deficient testis. Cyclin D(2) was not expressed in the undifferentiated A spermatogonia in vitamin A-deficient testis but was strongly induced in these cells after the induction of differentiation of most of these cells into A(1) spermatogonia by administration of retinoic acid. Overall, cyclin D(2) seems to play a role at the crucial differentiation step of undifferentiated spermatogonia into A(1) spermatogonia. Cyclin D(3) is expressed in both proliferating and quiescent gonocytes during testis development. Cyclin D(3) expression was found in terminally differentiated Sertoli cells, in Leydig cells, and in spermatogonia in adult testis. Hence, although cyclin D(3) may control G(1)/S transition in spermatogonia, it probably has a different role in Sertoli and Leydig cells. In conclusion, the three D-type cyclins are differentially expressed during spermatogenesis. In spermatogonia, cyclins D(1) and D(3) seem to be involved in cell cycle regulation, whereas cyclin D(2) likely has a role in spermatogonial differentiation.  相似文献   

10.
Progression of germ cells through meiosis is regulated by phosphorylation events. We previously showed the key role of cyclin dependent kinases in meiotic divisions of rat spermatocytes co-cultured with Sertoli cells (SC). In the present study, we used the same culture system to address the role of mitogen-activated protein kinases (MAPKs) in meiotic progression. Phosphorylated ERK1/2 were detected in vivo and in freshly isolated SC and in pachytene spermatocytes (PS) as early as 3 h after seeding on SC. The yield of the two meiotic divisions and the percentage of highly MPM-2-labeled pachytene and secondary spermatocytes (SII) were decreased in co-cultures treated with U0126, an inhibitor of the ERK-activating kinases, MEK1/2. Pre-incubation of PS with U0126 resulted in a reduced number of in vitro formed round spermatids without modifying the number of SII or the MPM-2 labeling of PS or SII. Conversely, pre-treatment of SC with U0126 led to a decrease in the percentage of highly MPM-2-labeled PS associated with a decreased number of SII and round spermatids. These results show that meiotic progression of spermatocytes is dependent on SC-activated MAPKs. In addition, high MPM-2 labeling was not acquired by PS cultured alone in Sertoli cell conditioned media, indicating a specific need for cell-cell contact between germ cells and SC.  相似文献   

11.
Vas (a Drosophila vasa homologue) gene expression pattern in germ cells during oogenesis and spermatogenesis was examined using all genetic females and males of a teleost fish, tilapia. Primordial germ cells (PGC) reach the gonadal anlagen 3 days after hatching (7 days after fertilization), the time when the gonadal anlagen was first formed. Prior to meiosis, no differences in vas RNA are observed in male and female germ cells. In the ovary, vas is expressed strongly in oogonia to diplotene oocytes and becomes localized as patches in auxocytes and then strong signals are uniformly distributed in the cytoplasm of previtellogenic oocytes, followed by a decrease from vitellogenic to postvitellogenic oocytes. In the testis, vas signals are strong in spermatogonia and decrease in early primary spermatocytes. No vas RNA expression is evident in either diplotene primary spermatocytes, secondary spermatocytes, spermatids or spermatozoa. The observed differences in vas RNA expression suggest a differential function of vas in the regulation of meiotic progression of female and male germ cells.  相似文献   

12.
We cloned cyclin B1, B2, and B3 cDNAs from the eel testis. Northern blot analysis indicated that these cyclin B mRNAs were expressed and increased from day 3 onward after the hormonal induction of spermatogenesis, and that cyclin B3 was most dominantly expressed during spermatogenesis. In situ hybridization showed that cyclin B1 and B2 were present from the spermatogonium stage to the spermatocyte stage. On the other hand, cyclin B3 mRNA was present only in spermatogonia. Although mouse cyclin B3 is expressed specifically in the early meiotic prophase, these results indicate that eel cyclin B3 expression is limited during spermatogenesis to spermatogonia, but is not present in spermatocytes. These facts together suggest that eel cyclin B3 is specifically involved in spermatogonial proliferation (mitosis), but not in meiosis.  相似文献   

13.
Spermatogenesis is a highly ordered process which requires mitotic and meiotic divisions. In this work, we studied the relative changes in the levels of the two components of the M-phase promoting factor (MPF): the regulatory subunit cyclin B1 (CycB1) and its catalytic subunit cdk1, in spermatogenic cells of rats between 16 and 90 days of life. A multivariate flow cytometry analysis of forward scatter (FSC), side scatter (SSC) and DNA content was used to identify six populations of rat germ cells: spermatogonia with preleptotene spermatocytes, young pachytene spermatocytes, middle to late pachytene spermatocytes, secondary spermatocytes with doublets of round spermatids, round spermatids, and elongated spermatids. For any population studied no significant difference in the relative cellular content of CycB1 or cdk1 proteins between animals of different ages was observed. By contrast, CycB1 and cdk1 levels were different between the different populations of germ cells. CycB1 and cdk1 were rather high in young pachytene spermatocytes and culminated in late spermatocytes, i.e. just before the first meiotic division. The relative levels of the two proteins remained high in secondary spermatocytes then decreased in round spermatids at the exit of meiosis. Similar results were obtained by Western-blot analysis of total proteins obtained from lysates of elutriated fractions of spermatocytes and spermatids. MPF activity was assessed in lysates of germ cells from 32-day-old rats or adult animals using p13suc1 agarose and histone H1 as an exogenous substrate. H1 kinase activity was higher in pachytene spermatocytes than in round spermatid fractions from both adult and young rats. These results indicate that the meiotic G2/M transition is associated to high levels of CycB1 and cdk1 leading to high MPF activity irrespective of the age of the animals.  相似文献   

14.
Monopolar spindle 1 (MPS1), which plays a critical role in somatic mitosis, has also been revealed to be essential for meiosis I in oocytes. Spermatogenesis is an important process involving successive mitosis and meiosis, but the function of MPS1 in spermatogenesis remains unclear. Here, we generated Mps1 conditional knockout mice and found that Ddx4-cre-driven loss of Mps1 in male mice resulted in depletion of undifferentiated spermatogonial cells and subsequently of differentiated spermatogonia and spermatocytes. In addition, Stra8-cre-driven ablation of Mps1 in male mice led to germ cell loss and fertility reduction. Spermatocytes lacking Mps1 have blocked at the zygotene-to-pachytene transition in the prophase of meiosis I, which may be due to decreased H2B ubiquitination level mediated by MDM2. And the expression of many meiotic genes was decreased, while that of apoptotic genes was increased. Moreover, we also detected increased apoptosis in spermatocytes with Mps1 knockout, which may have been the reason why germ cells were lost. Taken together, our findings indicate that MPS1 is required for mitosis of gonocytes and spermatogonia, differentiation of undifferentiated spermatogonia, and progression of meiosis I in spermatocytes.Subject terms: Cell division, Spermatogenesis  相似文献   

15.
The cyclin A1-CDK2 complex regulates DNA double-strand break repair   总被引:6,自引:0,他引:6       下载免费PDF全文
Vertebrates express two A-type cyclins; both associate with and activate the CDK2 protein kinase. Cyclin A1 is required in the male germ line, but its molecular functions are incompletely understood. We observed specific induction of cyclin A1 expression and promoter activity after UV and gamma-irradiation which was mediated by p53. cyclin A1-/- cells showed increased radiosensitivity. To unravel a potential role of cyclin A1 in DNA repair, we performed a yeast triple hybrid screen and identified the Ku70 DNA repair protein as a binding partner and substrate of the cyclin A1-CDK2 complex. DNA double-strand break (DSB) repair was deficient in cyclin A1-/- cells. Further experiments indicated that A-type cyclins activate DNA DSB repair by mechanisms that depend on CDK2 activity and Ku proteins. Both cyclin A1 and cyclin A2 enhanced DSB repair by homologous recombination, but only cyclin A1 significantly activated nonhomologous end joining. DNA DSB repair was specific for A-type cyclins because cyclin E was ineffective. These findings establish a novel function for cyclin A1 and CDK2 in DNA DSB repair following radiation damage.  相似文献   

16.
17.
18.
精子发生过程中的相关基因   总被引:4,自引:1,他引:3  
在哺乳动物精子发生过程中, 原生殖细胞发育成为精原细胞, 再发育为精母细胞, 精母细胞经过两次减数分裂成为圆形精细胞, 这些圆形精细胞经过细胞变态形成精子。精子发生过程经历了复杂的细胞分化阶段, 这一阶段受许多因素的调控作用, 其中生精细胞内的基因调节起着决定作用。精子发生中的重要基因与一系列精子发生过程中阶段性的细胞事件密切相关, 例如减数分裂重组、联会丝复合物的形成、姊妹染色体的结合、减数分裂后精子的变态以及减数分裂周期中的关键点和必需因子等。生精细胞许多特异基因的阶段特异性表达, 参与了精子发生这一特殊的细胞分化过程。近年来随着基因克隆、表达和功能研究技术的发展和应用, 发现了许多与精子发生相关的基因, 而且有的被证明在精子发生过程中具有重要作用。文章较全面综述了这一研究领域的一些进展, 着重讨论了与精子发生相关的周期蛋白基因、原癌基因、无精子因子基因、细胞骨架基因、热休克基因、核蛋白转型基因、中心体蛋白基因和细胞凋亡相关基因等。  相似文献   

19.
20.
Expression and phosphorylation of TOPK during spermatogenesis   总被引:1,自引:0,他引:1  
Among normal organs and tissues, the MAPKK-like mitotic protein kinase TOPK is expressed exclusively in the testis. We analyzed the expression and phosphorylation of TOPK to address the functional role of this kinase during spermatogenesis. TOPK protein is expressed mainly in the cytosol of spermatocytes and spermatids, but not in spermatids and spermatogonia in situ. TOPK-Thr-9, a cdk1/cyclin B target residue, was specifically phosphorylated during mitotic and meiotic phases, while TOPK-Thr-198, a key amino acid for the ATP pocket, was constantly phosphorylated irrespective of the cell cycle. These data indicate that spermatogenic germ cells with vital proliferation activity express TOPK. As TOPK-Thr-9 was phosphorylated during both mitosis and meiosis, TOPK was indicted to play a role in cytokinesis and/or chromosomal segregation but not in DNA replication.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号