首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The nonspecific suppression of immunological responses that is generated within host popliteal lymph nodes upon exposure to syngeneic normal spleen cells has been examined. The suppression, which had previously been described as being capable of preventing initiation of cytotoxic T lymphocytes (CTLs) to hapten-altered self antigens, arises within 3 to 7 days after injecting the spleen cells. Suppression was shown to be attributable to an induced T cell that was functional when transferred intravenously. Although the cell surface marker(s) on both splenic B and T cells that stimulates appearance of Ts has not yet been identified, the cells possessing the marker were not required to be viable to cause the induction. We have shown here that the Ts is fully functional when it is put in the antigenic site used for CTL immunization. The induced Ts has been identified as bearing the Lyt 2.1 cell surface marker. Furthermore, it has been shown to be insensitive to cyclophosphamide (CY), thus differentiating it from the naturally occurring Ts cell (TS0) that is known to be CY sensitive. In addition to preventing induction of CTLs toward hapten-altered self antigens, exposing popliteal lymph nodes to syngeneic spleen cells induced Ts capable of suppressing the primary IgM antibody response to sheep red blood cells. The Ts cells that suppressed the primary antibody response possessed the same Lyt cell surface markers and CY insensitivity as the Ts that mediated suppression of the CTL response. Thus, evidence that two dissimilar immunological reactions may be down-regulated by the same suppressor mechanism has been provided. Results of a kinetic study showed that the Ts prevented development of both the humoral and the cell-mediated immune responses by affecting their inductive phases. Possible targets for suppression that more than likely would have to be common to the two widely different immune responses have been indicated.  相似文献   

2.
The immunological tolerance that is induced in lymph nodes that have been exposed to syngeneic spleen cells has been examined. Development of cytotoxic T lymphocytes was used to assess the immunological status of the lymph node cells. The tolerance was studied from the viewpoint of its induction, its activation, and its specificity. We had already reported that injecting either T or B cells of splenic origin into a regional lymph node environment a week prior to immunization for CTL to hapten-altered self antigens prevents development of the CTL. Here, we confirm that syngeneic splenic cells but not lymph node cells will induce the suppression provided that spleen cells are not coupled with hapten. We now report that splenic cells that cannot replicate or synthesize and secrete protein are capable of inducing the suppression. The data suggest a preformed surface marker peculiar to spleen cells and perhaps on cells that traverse the thymus induces local tolerance that is mediated by suppressor cells. Triggering the induced suppressor T cells (previously identified as CD8-) was achieved by syngeneic spleen cells as well as by H-2-compatible, Mls-disparate spleen cells but not by syngeneic lymph node cells or apparently by allogeneic spleen cells. Furthermore, triggering suppression was achieved by hapten-coupled syngeneic spleen cells whereas such cells would not induce the suppression. Thus, activating the suppressor cells requires reexposure to splenic cells of the proper MHC haplotype, unaltered or coupled with either TNP or FITC. Once triggered, the suppression was manifested toward CTL generation against hapten-coupled syngeneic antigens on either spleen or lymph node cells but not against allogeneic antigens. Thus, the specificity of the tolerance was directed to altered self antigens despite its induction by unaltered spleen antigen. Furthermore, for suppression to be seen the spleen antigen was not required to be on the hapten-coupled syngeneic cells used for the CTL immunization. The relationship of the splenic cell "antigen" to hapten-altered self antigens and to other surface markers and its site of acquisition within the body and its significance for cell homing have become intriguing questions of importance. This information has been discussed from the viewpoint of its applicability to autoimmune diseases as well as to cessation of inflammatory reactions that may be mediated by lymph node cells.  相似文献   

3.
We have been examining the mechanisms that control in vivo development and down regulation of cytolytic T lymphocytes (CTL) to trinitrophenyl (TNP)-altered self antigens. In vivo generation of hapten-specific CTL requires an auxiliary antigenic stimulus, which can be provided by H-2 compatible but Mls-disparate cells. These experiments were designed to study the effect of tolerization with such Mls-disparate cells on CTL development. C3H/HeN (H-2k, Mlsc ) mice sensitized in the footpads with C3H-TNP spleen cells plus CBA/J (H-2k, Mlsd ) spleen cells develop CTL in the draining lymph nodes that will lyse 51Cr-labeled TNP-modified C3H targets. However, we have found that if C3H/HeN mice are given tolerizing doses of CBA/J spleen cells 5 to 7 days before sensitization, a splenic suppressor T cell (Ts) appears. This Ts will suppress CTL development in its tolerant host, and can be transferred adoptively to function in naive mice. Ts and its precursor are cyclophosphamide insensitive and therefore different from the naturally existing suppressor cell present in mice. When triggered by cells with Mlsd , the Ts produces a factor (TsF) that hinders helper factors from functioning in an in vitro CTL assay. Furthermore, TsF acts to prevent utilization of IL 2 by an IL 2-dependent cell line. Thus, evidence has been provided that the in vivo generation of CTL toward hapten-altered self can be down regulated at the level of helper signals by a Ts. The latter is inducible by the Mls-disparate cells that are needed at a different site to trigger the helper factors in this CTL system.  相似文献   

4.
Considerable information concerning the serology and biochemistry of antigen-specific, T cell-derived suppressor factors has been obtained with the use of T cell hybridomas as a source of homogeneous material. Similarly, knowledge of helper T cell products and receptors is accumulating from studies of helper T cell clones and hybridomas. Our strategy for studying the mechanisms by which suppressor factors inhibit responses was to determine whether monoclonal suppressor factors could inhibit antibody responses specific for L-glutamic acid60-L-alanine30-L-tyrosine10 (GAT) in cultures containing unprimed splenic B cells, macrophages, and GAT-specific T cell clones as a source of helper activity. The MHC-restricted, two chain suppressor factors, GAT-TsF2, inhibited these responses if the helper T cell clones and suppressor factor were derived from H-2-compatible mice. Furthermore, responses were inhibited by briefly pulsing T cell clones with GAT-TsF2 in the presence of GAT, indicating that suppressor factors need not be present continuously. In addition, helper T cell clones adsorbed syngeneic, but not allogeneic, GAT-TsF2 in the presence of GAT. Adsorption also requires a shared antigenic specificity between the H-2b-derived helper T cells and TsF2 factor. Thus, helper T cells can serve as the cellular target of antigen-specific, MHC-restricted GAT-TsF2, and cloned helper T cells can be used as a homogeneous target population for analysis of the molecular mechanisms of T cell suppression.  相似文献   

5.
The in vitro induction of an ovalbumin-specific human T cell suppressor factor is described (TsF120-OA). The antigen-specific suppressive component can be purified by affinity chromatography from supernatants derived from Marbrook-Diener type cultures of peripheral blood T cells stimulated with a high dose of ovalbumin. TsF120-OA suppresses the antigen-induced PFC formation of human blood B cells in vitro in an antigen-specific way. The target of TsF120-OA activity is shown to be the T helper cell. No genetic restriction in the action of the factor is observed.  相似文献   

6.
In this report we examine the influence of splenic helper cells in the primary cytotoxic T lymphocyte (CTL) response against syngeneic murine leukemia virus-(MuLV) induced tumor cells. We identify an Lyt-1+ 800 R radiation-resistant helper T cell that will amplify the in vitro generation of CTL against syngeneic tumor cells from nonimmune spleen cells.  相似文献   

7.
Cyclophosphamide and abrogation of tumor-induced suppressor T cell activity   总被引:3,自引:0,他引:3  
Summary Previously we have demonstrated that the in vitro generation of P815-specific anti-tumor cytotoxic T lymphocytes (CTL) was suppressed by splenic suppressor T cells from late tumor-bearing hosts (TBH). Suppression is not caused by in vitro growth of P815 from splenic metastases, since suppression was also seen with spleen cells from late TBH mice bearing a hypoxanthine/aminopterin/thymidine-sensitive subline (PHS-5) of P815 in the presence of HAT. Cyclophosphamide has been shown to inhibit theinduction of suppressor cells selectively in a number of immune responses, but evidence that it can inhibit active tumor-induced suppressor T cells is limited. We have found that suppressor T cells already induced by P815 in syngeneic late TBH are sensitive to low doses of cyclophosphamide (50 mg/kg) given 1 day before spleen harvest, but the in vitro CTL response of late TBH spleen cells could not be restored by pretreating the mice with cyclophosphamide, even when exogenous interleukin-2 was added to the cultures. Although 50 mg/kg cyclophosphamide did not inhibit the CTL response of spleen cells from mice immunized with P815 +Corynebacterium parvum, the same dose of cyclophosphamide eliminated the CTL response of spleen cells from early TBH. Interleukin-2 (IL-2) did not overcome this effect of cyclophosphamide, suggesting a direct effect on CTL. Ultra-low-dose cyclophosphamide (10 mg/kg) did not adversely effect early TBH CTL but was still able to eliminate suppressor T cell activity from late TBH. Nevertheless, late TBH CTL remained unresponsive after pretreatment of mice with ultra-low-dose cyclophosphamide, even when exogenous IL-2 was added in vitro. CTL precursor frequency analyses demonstrated that cyclophosphamide pretreatment had little or no effect on the numbers of CTL precursors from early TBH. Late TBH CTL precursor cells were not detectable in these studies, with or without suppressor T cell inhibition by cyclophosphamide pretreatment. Thus, it appears that most CTL precursor cells may be lost or irretrievably inactivated in the spleens of late TBH mice.This work was supported by grants CA42443, CA48075 and T32-CA09210 from the National Cancer Institute, Department of Health and Human Services, and an American Cancer Society Clinical Oncology Career Development Award (H. D. Bear)  相似文献   

8.
We have examined the underlying mechanisms accounting for the enhanced in vitro TNP-specific cytotoxic T-lymphocyte (CTL) response following the parenteral injection of syngeneic hapten-modified lymphoid cells. Augmented CTL activity noted following parenteral injection (iv vs sc) of 2,4,6-trinitrophenol-modified syngeneic spleen cells (TNP-SC) is most apparent when limiting numbers of TNP-modified stimulator cells are used in the in vitro sensitization phase. Enhanced CTL responses seen following sc and iv priming is due to distinct mechanisms. Spleen and lymph node (LN) cells from sc primed mice were found to contain significant levels of radioresistant helper activity upon coculture with either viable normal spleen cells in bulk culture or with thymocytes as the source of precursor CTLs in a limiting dilution assay. The helper activity was found to be mediated by a Lyt 1+2- T cells. In addition, Lyt 2-depleted spleen and LN cells from sc primed BALB/c mice could restore the ability of tolerant spleen cells from 2,4,6-trinitrobenzenesulfonic acid (TNBS)-injected BALB/c mice to generate TNP-specific CTLs. Conversely, Lyt 2-depleted spleen and LN cells from iv primed mice provided no measurable helper activity either in bulk culture or in the limiting dilution assay and did not restore the ability of TNBS-tolerant BALB/c spleen cells to generate TNP-specific CTLs. CTL priming via the iv route was found to be completely antigen specific as iv injection of either 2,4-dinitrophenol (DNP)- or fluorescein isothiocyanatel (FITC)-modified cells caused no enhanced CTL activity. Priming via the sc route exhibited a unique specificity pattern as it was shown that sc injection of both TNP-SC and DNP-SC, but not FITC-SC, resulted in enhanced TNP-specific CTL responses. CTL T-helper (Th)-cell induction via the sc route was correlated with (1) the presence of H-2 I region determinants on the inducer cells as the sc injection of TNP-modified erythrocytes led to no enhanced CTL responses or CTL Th activity (while iv injection of TNP-erythrocytes did lead to enhanced CTL responses without detectable helper activity) and (2) the detection of both hapten-specific T-cell proliferation and Interleukin 2 (IL-2) production upon restimulation in culture. We conclude that the sc injection of TNP-SC leads preferentially to an increase of specific Lyt 1+ helper activity, while iv injection leads preferentially to an apparent expansion of Lyt 2+ prelytic effector CTLs.  相似文献   

9.
Down-regulation of the development of CTL has been studied in mice both in vivo and in vitro. To generate CTL to hapten-altered self Ag in vivo, an immunization protocol has been used in which the host's Th cells are stimulated by a minor locus histocompatibility Ag (Mlsd) and its precursor CTL are activated by trinitrophenylated syngeneic spleen cells. Injecting the H-2 compatible Mls-disparate spleen cells along with the TNP-coupled self cells into the hind paws causes TNP-self specific CTL to appear in popliteal lymph nodes within 5 days. We have previously reported that inducing Ts cells by i.v. injecting Mlsd-bearing cells prevents in vivo generation of TNP-self specific CTL after immunization in this way. Here the induced Ts cell as well as the mechanism by which it functions have been further examined. The suppression was seen to extend to allogeneic as well as TNP-self Ag, provided the Mlsd-tolerized animal was reexposed to Mlsd-bearing cells at the time of immunization for CTL. By transferring the Mlsd-induced suppression adoptively we have learned that the splenic suppressor cell bears Thy-1.2 as well as Lyt-1.1 Ag and inhibits the generation of CTL at the afferent limb. In addition, Mlsd-induced PEC of Mlsd-tolerized mice, but not of normal mice, mediated suppression of development of CTL in vivo. The active cells within the tolerized PEC have been identified as T cells and macrophages (M phi). Furthermore, PEC from mice tolerized to Mlsd suppressed generation of CTL directed toward TNP-self targets in vitro. T cells and M phi separated from PEC of Mlsd-tolerized mice achieved suppression best in culture when present together. In addition, Lyt-1+ splenic cells from tolerized but not normal mice cooperated to down-regulate CTL generation in vitro with peritoneal M phi from either tolerized or normal mice. Supernatants of 24- to 72-h cultures of PEC from tolerized mice were suppressive of CTL generation when incorporated at 40 to 50% of culture volume. Supernatants of T cells from tolerized PEC or spleen were suppressive in culture only when M phi from normal mice were also present. To achieve suppression dialyzed supernatants of M phi from tolerized mice could replace the M phi.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

10.
Murine antibody responses to heterologous insulins are controlled by MHC-linked immune response genes. Although nonresponder mice fail to make antibody when injected with nonimmunogenic variants of insulin, we have recently shown that nonimmunogenic variants stimulate radioresistant, Lyt- 1+2- helper T cells that support secondary antibody responses. However, the helper activity can not be detected unless dominant, radiosensitive Lyt-1-2+, I-J+ suppressor T cells are removed. In this paper we report that extracts of primed Lyt-2+ suppressor T cells contain insulin-specific suppressor factors (TsF) that are capable of replacing the activity of suppressor T cells in vitro. The activity of these factors is restricted by MHC-linked genes that map to the I-J region, and immunoadsorption studies indicated that they bind antigen and bear I-J-encoded determinants. Insulin-specific TsF consists of at least two chains, one-bearing I-J and the other the antigen-binding site. Furthermore, mixing of isolated chains from different strains of mice indicates that the antigenic specificity is determined by the antigen-binding chain and the MHC restriction by the H-2 haplotype of the source of the non-antigen-binding, I-J+ chain. Moreover, mixtures containing antigen-binding chain from allogeneic cell donors and I-J+ chain from responder cell donors have activity in cultures containing responder lymphocytes. This suggests that preferential activation of suppressor T cells, rather than differential sensitivity to suppression, results in the nonresponder phenotype to insulin.  相似文献   

11.
This study establishes assay systems for helper T cell activities assisting cytotoxic T lymphocyte (CTL) and antibody responses to tumor-associated antigens (TAA) and demonstrates the existence of TAA that induce preferentially anti-TAA CTL helper and B cell helper T cell activities in two syngeneic tumor models. C3H/HeN mice were immunized to the syngeneic X5563 plasmacytoma or MH134 hepatoma. Spleen cells from these mice were tested for anti-TAA helper T cell activity capable of augmenting anti-trinitrophenyl(TNP) CTL and anti-TNP antibody responses from anti-TNP CTL and B cell precursors (responding cells) by stimulation with TNP-modified X5563 or MH134 tumor cells. The results demonstrate that cultures of responding cells plus 85OR X-irradiated tumor-immunized spleen cells (helper cells) failed to enhance anti-TNP CTL or antibody responses when in vitro stimulation was provided by either unmodified tumor cells or TNP-modified syngeneic spleen cells (TNP-self). In contrast, these cultures resulted in appreciable augmentation of anti-TNP CTL or antibody response when stimulated by TNP-modified tumor cells. Such anti-TAA helper activities were revealed to be Lyt-1+2- T cell mediated and TAA specific. Most interestingly, immunization with X5563 tumor cells resulted in anti-TAA helper T cell activity involved in CTL, but not in antibody responses. Conversely, TAA of MH134 tumor cells induced selective generation of anti-TAA helper T cell activity responsible for antibody response. These results indicate that there exists the qualitative TAA-heterogeneity as evidenced by the preferential induction of anti-TAA CTL- and B cell-helper T cell activities. The results are discussed in the light of cellular mechanisms underlying the preferential anti-TAA immune responses, and the interrelationship between various types of cell functions including CTL- and B cell-help.  相似文献   

12.
Inability to develop CTL in vivo to hapten-altered self can be attributed in part to an inhibitor of interleukin 2 (IL 2) that is present in the serum of normal mice. We have shown earlier that hapten-specific CTL can be generated in C3H mice (H-2k, MIsc) provided CBA/J (H-2k MIsd) spleen cells are injected simultaneously with hapten-modified syngeneic spleen cells into the hind foot paws. In efforts to determine whether serum levels of the inhibitor of IL 2 are altered as a consequence of this successful immunization method, we have compared the activity of the inhibitor in serum at intervals after the injection of syngeneic spleen cells, CBA spleen cells, or TNP-C3H spleen cells alone or together with CBA spleen cells, by using a murine IL 2-dependent, cloned cytotoxic T cell line, CT-6. The results indicate that inhibitor was neutralized optimally 48 to 72 hr after injection of TNP-C3H spleen cells mixed with CBA/J spleen cells. The order in which neutralization occurred was as follows: TNP-C3H cells + CBA/J cells greater than CBA cells greater than TNP-C3H cells greater than normal C3H spleen cells. Furthermore, supernatants from cultures of C3H lymph node cells stimulated in vivo with CBA/J cells also contained IL 2 activity. Thus, injection of CBA/J cells with TNP-modified syngeneic spleen cells produces IL 2 in vivo in sufficient quantity to neutralize the activity of the inhibitor as well as to facilitate the maturation of pre-CTL into hapten-altered self-specific CTL.  相似文献   

13.
Cyclosporine A (CsA) inhibits T lymphocyte activation in vitro by blocking at a pretranslational level the production of IL-2 and other cytokines. It is widely assumed that the effectiveness of CsA as an immunosuppressive drug is secondary to a similar mechanism of action in vivo. We have previously demonstrated that certain parameters of T cell activation in the draining popliteal lymph node in response to the injection of alloantigen in the footpad were either completely resistant or enhanced by the administration of CsA. In the present study, we have shown that the mechanism of action of CsA in vivo is identical to that seen in vitro as CsA completely suppressed the induction of IL-2 mRNA as detected in a nuclease protection assay in lymph node cells from alloantigen-primed animals. Nevertheless, T cells from CsA-treated animals appeared to have undergone both priming and differentiation. Thus, upon culture in vitro in the presence of CsA, cells from CsA-treated animals manifested a vigorous proliferative response that could not be inhibited by the addition of a large panel of anti-cytokine mAb. Furthermore, cells from CsA-treated animals demonstrated an enhanced secondary response to the priming alloantigen, which suggests that they had undergone clonal expansion in vivo. Although CTL activity was markedly suppressed in cells from CsA-treated animals, after a 36-h culture in the absence of CsA, CTL activity equivalent to that detected in cells from nontreated animals was present. Collectively, these data support the existence of an alternative IL-2-independent, CsA-resistant pathway of T cell activation/differentiation that may play a prominent role in the generation of certain T effector functions in vivo.  相似文献   

14.
I have compared the requirements for T helper (Th) cell function during the generation of virus-specific and alloreactive cytotoxic thymus (T)-derived lymphocyte (CTL) responses. Restimulation of vesicular stomatitis virus (VSV)-immune T cells (VSV memory CTLs) with VSV-infected stimulators resulted in the generation of class I-restricted, VSV-specific CTLs. Progression of VSV memory CTLs (Lyt-1-2+) into VSV-specific CTLs required inductive signals derived from VSV-induced, Lyt-1+2- Th cells because: (i) cultures depleted by negative selection of Lyt-1+ T cells failed to generate CTLs; (ii) titration of VSV memory CTLs into a limiting dilution (LD) microculture system depleted of Th cells generated curves which were not consistent with a single limiting cell type; (iii) LD analysis of VSV memory CTLs did produce single-hit curves in the presence of Lyt-1+2- T cells sensitized against VSV; and (iv) monoclonal anti-L3T4 antibody completely abrogated CTL generation against VSV. Similar results were also obtained with Sendai virus (SV), a member of the paramyxovirus family. The notion that a class II-restricted, L3T4+ Th cell plays an obligatory role in the generation of CTLs against these viruses is also supported by the observation that purified T cell lymphoblasts (class II antigen negative) failed to function as antigen-presenting cells for CTL responses against VSV and SV. T cell lymphoblasts were efficiently lysed by class I-restricted, anti-VSV and -SV CTLs, indicating that activated T cells expressed the appropriate viral peptides for CTL recognition. Furthermore, heterogeneity in the VSV-induced Th cell population was detected by LD analysis, suggesting that at least two types of Th cells were required for the generation of an anti-VSV CTL response. VSV-induced Th cell function could not simply be replaced by exogenous IL-2 because this lymphokine induced cytotoxic cells that had the characteristics of lymphokine-activated killer (LAK) cells and not anti-viral CTLs. In contrast, CTL responses against allogeneic determinants could not be completely blocked with antibodies against L3T4 and depletion of L3T4+ cells did not prevent the generation of alloreactive CTLs in cultures stimulated with allogeneic spleen cells or activated T cell lymphoblasts. Thus, these studies demonstrate an obligatory requirement for an L3T4-dependent Th cell pathway for CTL responses against viruses such as VSV and SV; whereas, CTL responses against allogeneic determinants can utilize an L3T4-independent pathway.  相似文献   

15.
This report defines a methodology for the production and characterization of an antigen-specific, monoclonal T cell hybrid-derived suppressor T cell factor (TsF) that suppresses the passive transfer of 2,4-dinitrofluorobenzene (DNFB) contact hypersensitivity. Fusion of T cells from BALB/c (H-2d) mice tolerized with syngeneic DNP-spleen cells to BW 5147 thymoma cells resulted in several hybrids that constitutively produce a soluble regulatory molecule. One of these hybrids, 26.10.2, was subsequently cloned, and its soluble factor was characterized with respect to its antigen specificity, biochemical nature, MHC restriction pattern, and identity of its target cell. 26.10.2 TsF suppresses the passive transfer of delayed-type hypersensitivity (DTH) mediated by DNP- but not trinitrochlorobenzene- or oxazalone-primed DTH T cells (TDH) after a 1 hr incubation at 37 degrees C. In contrast, 26.10.2 TsF had no suppressive effect on secondary in vitro DNP-specific T cell proliferative responses. 26.10.2 TsF therefore represents an antigen-specific factor with effector (efferent-acting) function. The monoclonal TsF was shown to consist of a two-chain, disulfide-bonded molecule, and to bear a receptor(s) specific for DNP and determinants encoded by the I region of the H-2 complex. Effector suppressive activity of 26.10.2 TsF was restricted by Class I H-2Dd determinants. One cellular target of this monoclonal factor was shown to be the DNP-specific TDH cell, because DNFB-primed lymph node cells from cyclophosphamide-pretreated donors (lacking Ts-auxiliary (Ts-aux) cells) were efficiently suppressed. The TsF appears to focus on passively bound, TDH receptor-associated, DNP-Class I determinants, as suggested by the observation that freshly prepared, but not overnight cultured, DNP-specific TDH cells were susceptible to suppression.  相似文献   

16.
We report the isolation and characterization of a T cell hybridoma (A29) which secretes a factor that exhibits anti-idiotypic and immune-modulating characteristics. The A29 cell line is thought to represent the hybrid analog of the Ts2 suppressor cell population in the cascade regulating the immune response to the P815 tumor in DBA/2 mice. The putative TsF2 molecule is reactive with the monoclonal antibody B16G, shown previously by us to bind a public specificity of T suppressor factors (TsF). A29 TsF also exhibits specific binding to a TsF1 secreted by another T cell hybridoma, A10, which shows specificity for antigen from the P815 tumor (this has been described previously). A29 itself does not exhibit binding to P815 antigens. Affinity-purified material from A29 appears to share characteristics with A10 molecules in that the predominant material has an apparent m.w. of 70,000. Studies with calcium flux of A29 cells showed that they respond significantly and specifically on exposure to A10 TsF stimulus. We showed further that affinity-purified A29 TsF molecules can specifically suppress the in vitro generation of syngeneic CTL to the P815 tumor, and that panning of DBA/2 splenocytes over A29-TsF-coated plates renders cell populations capable of generating a higher in vitro CTL response to P815 than appropriately treated controls.  相似文献   

17.
Responder cells from primary syngeneic and allogeneic one-way mixed-lymphocyte cultures (MLC) specifically inhibit the development of cytotoxic T lymphocytes (CTL) directed against the major histocompatibility complex (MHC) antigens of the MLC responder cells. This special kind of suppressor activity is known as veto suppression. Ia+ cells with veto activity obtained from H-2 recombinant mouse strains were shown to downregulate alloantigen (class II)-specific helper activity for class I-specific CTL development in a primary MLC provided that the veto cells expressed the same I-E alpha subregion as the MLC stimulator cells. The veto-induced suppression of allo-help was prevented by the addition of supernatant from concanavalin A-stimulated spleen cells (Con A-SN) and was inhibited considerably by very high amounts of recombinant interleukin-2 (IL-2). In the presence of Con A-SN, CTL precursors recognizing either the K end or the D end of the veto cell MHC were found to be inactivated. Thus, our results indicate that MLC responder cells include active veto cells expressing Ia region-encoded restriction elements for allospecific T helper cells, as well as K- or D-encoded restriction elements for allospecific T cytotoxic cells.  相似文献   

18.
We investigate the production and biological activity of soluble helper factors produced by peritoneal T cells and macrophage derived from mice primed in vivo with Listeria monocytogenes. Supernatant fluids from co-cultures of these immune T cells and activated macrophages contained Interleukin 1 (IL 1) and Interleukin 2 (IL 2), and had the ability to assist the generation of cytotoxic T lymphocytes (CTL) from a population of nylon wool nonadherent spleen cells sensitized to allogeneic heat-treated thymocytes. The ability to assist CTL development involved T cell and macrophage factors in addition to IL 1 and IL 2. Immune T cells cultured alone produced a factor, devoid of significant IL 2 activity, that assisted CTL development only if adherent cells were present in the responding population. Activated macrophage produced a 38,000 dalton component, distinct from IL 1 on the basis of m.w., that assisted the development of CTL from nylon wool nonadherent splenic cells. Supernatants fluids from co-cultures of immune T cells and allogeneic, nonactivated macrophage contained a CTL helper factor but did not contain IL 1 or IL 2 activities. In contrast, supernatant fluids from co-cultures of immune T cells and syngeneic, nonactivated macrophage contained all 3 activities. This suggests a genetic restriction for the production of IL 1 and IL 2 that does not restrict the production of a CTL helper factor. These results demonstrate that T cell- and macrophage-derived helper factors distinct from IL 1 and IL 2 participate in the development of CTL.  相似文献   

19.
The mode of action of T-cell-suppressor factor (TsF) induced by ultraviolet B (UVB) preirradiation in terms of interaction with several cytokines was studied. Suppression of murine contact photosensitivity (CPS) to 3,3',4',5-tetrachlorosalicylanilide (TCSA) by preirradiation of the sensitizing site to low doses of UVB was caused by antigen-specific suppressor T cells (Ts) and was not associated with the generation of efferent limb-acting suppressor cells. TsF released by Ts inhibited the proliferation of immune lymph node (LN) cells in vitro and reduced interleukin (IL)-2 production of these cells in an antigen-specific fashion without affecting the IL-2 receptor (IL-2R) expression. Both rIL-2 and rGM-CSF have the ability to restore CPS responses in the UVB-preirradiated mice when administered after but not before photosensitization. However, rIL-2 but not rGM-CSF counteracted the in vivo inhibitory effect of TsF. rGM-CSF did not affect the density of I-A+ epidermal Langerhans cells (LCs). It was suggested that TsF inhibited IL-2-mediated immune T-cell proliferation, while rGM-CSF reconstituted the CPS by enhancing the function of photodamaged LCs. These results indicate multiple steps of the UVB-induced immunosuppression circuit, each of which seems to be controlled by different immunomodulators.  相似文献   

20.
Resident T lymphocytes have been found to exert helper and suppressor regulatory influences with regard to polyclonal activation of murine splenic B lymphocytes elicited by lipopolysaccharide. In the normal adult spleen, only T cell helper influences are exercised over polyclonal B cell activation. This activity is a property of Lyt 1+2- T cells and does not appear to be subject to MHC restriction. Suppressive influence evidently is either latent or it exists at such a low level that its effects are difficult to detect. No regulatory activity can be recovered from the supernatants of T cells, cultured either with or without LPS. However, suppressor T cell function may be evoked by activating splenic T cells with Concanavalin A or by sonicating unstimulated splenic T cells in order to liberate a suppressive potential which is not expressed by these unstimulated cells when intact. The soluble fraction of resident splenic T cell sonicates exerts both helper and suppressor regulatory influences. The soluble helper activity is derived from Lyt l+2- T cells, whereas suppressor activity is generated from Lyt 1-2+ T cells. The suppressive activity of T cell sonicates is not restricted by the MHC gene complex. Helper and suppressor activities contained in splenic T cell sonicates were separated by gel chromatography; the suppressive activity was found to elute with a molecular weight between 68,000 and 84,000 daltons, and the helper activity eluted with a molecular weight between 15,000 and 23,000 daltons. The data indicate that helper and suppressor activities are distinct molecular entities derived from distinct splenic T lymphocyte subpopulations. The possibility that these molecules are precursors to or components of antigen-specific or nonspecific helper and suppressor factors described in the literature is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号