共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Removal of the pituitary 3 days before lentectomy retards Wolffian lens regeneration in the adult newt, Notophthalmus viridescens, by two stages over a 21-day period. Hypophysectomy 5 or 10 days after lentectomy does not alter the progress of regeneration during the subsequent 10-day period. Hypophysectomy 3 days before lentectomy also significantly decreases the incorporation of [3H]thymidine by iris epithelial nuclei 5 days after lentectomy but has no statistically significant effect on the incorporation 7 days after lentectomy.Pituitary tissue from newts or frogs enhances the regenerative activity of newt iris epithelial cells in vitro and in many cases promotes lens fiber formation. To a lesser extent, other tissues, such as nerve ganglion, also enhance the production of lens fiber cells from iris epithelium in vitro, whereas muscle tissue does not; and under certain conditions iris epithelial cells were found to depigment and redifferentiate into lens cells in the absence of other tissues in vitro. 相似文献
3.
Tyrosinase activity in the Wolffian lens regenerating system 总被引:1,自引:0,他引:1
4.
5.
Macrophage invasion and phagocytic activity during lens regeneration from the iris epithelium in newts 总被引:1,自引:0,他引:1
R W Reyer 《The American journal of anatomy》1990,188(4):329-344
Following removal of the lens through the cornea, early stages of lens regeneration from the dorsal iris of the adult newt, Notophthalmus viridescens, were studied using light and electron microscopic observations on sectioned, plastic-embedded irises. Specimens were fixed in Karnovsky's fixative every 2 days from 0 to 12 and 15 days after lentectomy. Infiltration of the iris epithelium by macrophages and their phagocytosis of melanosomes and small fragments of iris epithelial cells were observed. These macrophages were characterized by coarse nuclear chromatin, numerous mitochondria, free ribosomes, granular endoplasmic reticulum, Golgi complexes, vesicles, lysosomes, and phagosomes containing ingested melanosomes. Lamellipodia of varying length projected from their surface. Most of the cells lying on or close to the posterior surface of the iris could be identified as macrophages by these criteria. During this period, there was enlargement of the intercellular spaces within the iris epithelium. The iris epithelial cells near the margin of the pupil elongated, lost their melanin pigment and some associated cytoplasm, and acquired abundant free polyribosomes to form a lens vesicle of depigmented cells. 相似文献
6.
7.
The newt is one of the few organisms that is able to undergo lens regeneration as an adult. This review will examine the signaling pathways that are involved in this amazing phenomenon. In addition to outlining the current research involved in elucidating the key signaling molecules in lens regeneration, we will also highlight some of the similarities and differences between lens regeneration and development. 相似文献
8.
白内障摘除联合人工晶状体植入术是目前治疗白内障的唯一有效措施。然而,人工晶状体作为替代材料,仍然存在一些如屈光调节力差以及术后眩光等未能克服的缺陷。寻找更理想的晶状体替代物及低等两栖类动物(如蝾螈)强大的晶状体再生能力,为晶状体再生的研究提供了原动力和依据。近年来,人们已探索出将胚胎干细胞/诱导的多能干细胞在体外诱导分化为类晶状体样结构的培养方法,为白内障的治疗开辟了新的思路。晶状体再生的研究为探索晶状体正常发育机制及晶状体疾病的发生和防治提供了新的平台。晶状体再生的成功也将为白内障的防治带来里程碑性的突破。本文拟总结晶状体正常发育过程及其调控机制,回顾国内外对晶状体体内再生能力的研究成果,并对目前人们探索利用胚胎干细胞和诱导的多能干细胞再造晶状体的研究进展作一概述,希望对干细胞与晶状体再生的后续相关研究提供一定的借鉴。 相似文献
9.
Sergio Filoni 《Seminars in cell & developmental biology》2009,20(5):528-534
Anuran amphibians can regenerate the retina through differentiation of stem cells in the ciliary marginal zone and through transdifferentiation of the retinal pigmented epithelium. By contrast, the regeneration of the lens has been demonstrated only in larvae of species belonging to the Xenopus genus, where the lens regenerates through transdifferentiation of the outer cornea. Retinal pigmented epithelium to neural retina and outer cornea to lens transdifferentiation processes are triggered and sustained by signaling molecules belonging to the family of the fibroblast growth factor. Both during retina and lens regeneration there is a re-activation of many of the genes which are activated during development of the eye, even though the spatial and temporal pattern of gene expression is not a simple repetition of that found in development. 相似文献
10.
R W Reyer 《The American journal of anatomy》1990,188(4):345-365
The lens was removed from both eyes of adult newts (Notophthalmus viridescens), and the eyes were fixed in Karnovsky's fixative every 2 days 0-20 days after operation. Anterior half-eyes were prepared by standard procedures for scanning electron microscopy of the surface. Before fixation, the posterior iris surface was cleaned of adhering vitreous mechanically with forceps or by treatment with bovine testicular hyaluronidase or with hyaluronidase and collagenase. Some specimens were cryofractured in buffer or ethanol transverse to the mid-dorsal iris, and the fractured surface viewed with scanning electron microscopy (SEM). Cells with various combinations of ridges, blebs, filopodia, and lamellipodia were observed adhering to the posterior surface of the iris by 6 days after lentectomy. These cells, which exhibited the surface characteristics of macrophages, became more numerous in specimens fixed after longer intervals. Invasion of the iris epithelium was observed in a cryofractured specimen. After observations with SEM, selected specimens were embedded in plastic and sectioned for study with transmission electron microscopy (TEM). The cells on the iris surface had the cytological characteristics of macrophages, and other macrophages were located within the iris epithelium. In specimens fixed 16 or more days after lentectomy, a bulging lens vesicle was regenerating from the dorsal pupillary margin of the iris. Macrophages were absent or few on the surface of this developing lens but remained scattered over the adjoining iris. Roles that might be played by these macrophages during the transdifferentiation of iris epithelium into lens are discussed. 相似文献
11.
12.
Tsonis PA Madhavan M Tancous EE Del Rio-Tsonis K 《The International journal of developmental biology》2004,48(8-9):975-980
In this paper we describe the basic process of lens regeneration in adult newt and we pinpoint several issues in order to obtain a comprehensive understanding of this ability, which is restricted to only a few salamanders. The process is characterized by dynamic changes in the organization of the extracellular matrix in the eye, re-entering of the cell cycle and dedifferentiation of the dorsal iris pigment epithelial cells. The ability of the dorsal iris to contribute to lens regeneration is discussed in light of iris-specific gene expression as well as in relation to factors present in the eye. 相似文献
13.
14.
A critical role for thrombin in vertebrate lens regeneration 总被引:5,自引:0,他引:5
Imokawa Y Simon A Brockes JP 《Philosophical transactions of the Royal Society of London. Series B, Biological sciences》2004,359(1445):765-776
Lens regeneration in urodele amphibians such as the newt proceeds from the dorsal margin of the iris where pigment epithelial cells (PEC) re-enter the cell cycle and transdifferentiate into lens. A general problem in regeneration research is to understand how the events of tissue injury or removal are coupled to the activation of plasticity in residual differentiated cells or stem cells. Thrombin, a pivotal regulator of the injury response, has been implicated as a regulator of cell cycle re-entry in newt myotubes, and also in newt iris PEC. After removal of the lens, thrombin was activated on the dorsal margin for 5-7 days. Inactivation of thrombin by either of two different inhibitors essentially blocked S-phase re-entry by PEC at this location. The axolotl, a related species which can regenerate its limb but not its lens, can activate thrombin after amputation but not after lens removal. These data support the hypothesis that thrombin is a critical signal linking injury to regeneration, and offer a new perspective on the evolutionary and phylogenetic questions about regeneration. 相似文献
15.
Intraperitoneal injections of vitamin A (0.5 ml of 1500 IU/ml) to lentectomized pigs on alternate days up to 60 th day after lentectomy induced lens regeneration in not only 10 days old young ones but also in 40 and 100 days old pigs. Lens regeneration did not occur even in a single case of control groups. In shape, size, transparency and histological features regenerated lenses were similar to normal intact lenses. The experimental model is the first to show that mitogenic and dedifferentiate activity of vitamin A can induce iris pigmented epithelial cells to trans-differentiate into new lens in pigs. 相似文献
16.
Roddy M Fox TP McFadden JP Nakamura K Del Rio-Tsonis K Tsonis PA 《Biochemical and biophysical research communications》2008,377(1):275-279
To examine underlying mechanisms of urodele lens regeneration we have employed a proteomic analysis of 650 proteins involved in several signaling pathways. We compared expression of these proteins between the regeneration-competent dorsal iris and the regeneration-incompetent ventral iris in the newt. After a series of screenings we selected several proteins to evaluate their expression quantitatively on immunoblots. We then used these selected proteins to compare their expression between the dorsal iris of the newt and the iris of the axolotl, another urodele, which does not regenerate the lens. In the newt we find that most proteins are expressed in both dorsal and ventral iris, even though there is differential regulation. Moreover, several of these proteins are expressed in the axolotl iris as well and for some of them their expression is consistent with the regeneration potential. 相似文献
17.
18.
A novel role of the hedgehog pathway in lens regeneration 总被引:4,自引:0,他引:4
Tsonis PA Vergara MN Spence JR Madhavan M Kramer EL Call MK Santiago WG Vallance JE Robbins DJ Del Rio-Tsonis K 《Developmental biology》2004,267(2):450-461
Lens regeneration in the adult newt is a classic example of replacing a lost organ by the process of transdifferentiation. After lens removal, the pigmented epithelial cells of the dorsal iris proliferate and dedifferentiate to form a lens vesicle, which subsequently differentiates to form a new lens. In searching for factors that control this remarkable process, we investigated the expression and role of hedgehog pathway members. These molecules are known to affect retina and pigment epithelium morphogenesis and have been recently shown to be involved in repair processes. Here we show that Shh, Ihh, ptc-1, and ptc-2 are expressed during lens regeneration. The expression of Shh and Ihh is quite unique since these genes have never been detected in lens. Interestingly, both Shh and Ihh are only expressed in the regenerating and developing lens, but not in the intact lens. Interfering with the hedgehog pathway results in considerable inhibition of the process of lens regeneration, including decreased cell proliferation as well as interference with lens fiber differentiation in the regenerating lens vesicle. Down-regulation of ptc-1 was also observed when inhibiting the pathway. These results provide the first evidence of a novel role for the hedgehog pathway in specific regulation of the regenerating lens. 相似文献
19.
Xenopus laevis is among the few species that are capable of fully regenerating a lost lens de novo. This occurs upon removal of the lens, when secreted factors from the retina are permitted to reach the cornea epithelium and trigger it to form a new lens. Although many studies have investigated the retinal factors that initiate lens regeneration, relatively little is known about what factors support this process and make the cornea competent to form a lens. We presently investigate the role of Retinoic acid (RA) signaling in lens regeneration in Xenopus. RA is a highly important morphogen during vertebrate development, including the development of various eye tissues, and has been previously implicated in several regenerative processes as well. For instance, Wolffian lens regeneration in the newt requires active RA signaling. In contrast, we provide evidence here that lens regeneration in Xenopus actually depends on the attenuation of RA signaling, which is regulated by the RA-degrading enzyme CYP26. Using RT-PCR we examined the expression of RA synthesis and metabolism related genes within ocular tissues. We found expression of aldh1a1, aldh1a2, and aldh1a3, as well as cyp26a1 and cyp26b1 in both normal and regenerating corneal tissue. On the other hand, cyp26c1 does not appear to be expressed in either control or regenerating corneas, but it is expressed in the lens. Additionally in the lens, we found expression of aldh1a1 and aldh1a2, but not aldh1a3. Using an inhibitor of CYP26, and separately using exogenous retinoids, as well as RA signaling inhibitors, we demonstrate that CYP26 activity is necessary for lens regeneration to occur. We also find using phosphorylated Histone H3 labeling that CYP26 antagonism reduces cell proliferation in the cornea, and using qPCR we find that exogenous retinoids alter the expression of putative corneal stem cell markers. Furthermore, the Xenopus cornea is composed of an outer layer and inner basal epithelium, as well as a deeper fibrillar layer sparsely populated with cells. We employed antibody staining to visualize the localization of CYP26A, CYP26B, and RALDH1 within these corneal layers. Immunohistochemical staining of these enzymes revealed that all 3 proteins are expressed in both the outer and basal layers. CYP26A appears to be unique in also being present in the deeper fibrillar layer, which may contain cornea stem cells. This study reveals a clear molecular difference between newt and Xenopus lens regeneration, and it implicates CYP26 in the latter regenerative process. 相似文献