首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
2.
金属硫蛋白α和 β结构域的结构功能比较研究   总被引:3,自引:2,他引:3  
金属硫蛋白具有α和β两个独立的结构域,它们结构不同,并能独立的行使功能。为了进一步研究这两个结构域之间的区别,分别采用镉和铜重组金属硫蛋白并继以枯草杆菌蛋白酶水解的方法制备α和β结构域,以及利用pGEX-4T-1这种融合表达载体表达α和β结构域。所得产物经凝胶过滤层析分离纯化后,进行了氨基酸组成,巯基和金属含量以及分子量测定,以上性质均与天然的金属硫蛋白α和β结构域相同。然后利用紫外吸收光谱和圆二色吸收光谱来研究它们的巯基金属簇结构,从UV和CD图谱可以看出,通过蛋白水解和基因表达制备的α和β结构域都具有独立的镉硫金属簇结构,但β结构域的镉硫金属簇不如α结构域紧密,其在254nm的吸收峰不象α结构域那么明显。利用DTNB的竞争反应测定了α和β结构域对镉和锌的结合力,实验结果表明,α结构域倾向于结合Cd2+,β结构域倾向于结合Zn2+。以上研究对于进一步了解α和β结构域的生理功能和分子进化提供了有利的证据。  相似文献   

3.
Plant metallothioneins (MTs) differ from animal MTs by a peculiar sequence organization consisting of two short cysteine-rich terminal domains linked by a long cysteine-devoid spacer. The role of the plant MT domains in the protein structure and functionality is largely unknown. Here, we investigate the separate domain contribution to the in vivo binding of Zn and Cu and to confer metal tolerance to CUP1-null yeast cells of a plant type 2 MT (QsMT). For this purpose, we obtained three recombinant peptides that, respectively, correspond to the single N-terminal (N25) and C-terminal (C18) cysteine-rich domains of QsMT, and a chimera in which the spacer is replaced with a four-glycine bridge (N25-C18). The metal-peptide preparations recovered from Zn- or Cu-enriched cultures were characterized by ESI-MS, ICP-OES and CD and UV-vis spectroscopy and data compared to full length QsMT. Results are consistent with QsMT giving rise to homometallic Zn- or Cu-MT complexes according to a hairpin model in which the two Cys-rich domains interact to form a cluster. In this model the spacer region does not contribute to the metal coordination. However, our data from Zn-QsMT (but not from Cu-QsMT) support a fold of the spacer involving some interaction with the metal core. On the other hand, results from functional complementation assays in endogenous MT-defective yeast cells suggest that the spacer region may play a role in Cu-QsMT stability or subcellular localization. As a whole, our results provide the first insight into the structure/function relationship of plant MTs using the analysis of the separate domain abilities to bind physiological metals.  相似文献   

4.
Earthworms have been shown to accumulate trace elements in general, and particularly high amounts of metal ions such as cadmium, copper and zinc. The earthworm's response to metal contamination has been linked to the induction and expression of metallothionein (MT) proteins, a detoxification strategy analogous to that found in other biological systems. The present study focuses on an inducible Cd-MT isolated from the compost-dwelling brandling worm Eisenia foetida (Savigny). A full characterization of the protein (including protein induction, MT cDNA, amino-acid sequence and metal stoichiometry) revealed a new dimension of knowledge to the molecular genetic information available to date. Whereas the elucidated cDNA codes for a putative protein which possesses 80 amino-acid residues, the characterized protein bears only 41 amino acids. The isolated product has evidently attained its size and shape by cleavage near the N-terminal site and at the linker region between the two putative metal-binding domains of the translated product, yielding a small MT moiety which contains 12 Cys residues (including one triple Cys-motif) binding four cadmium ions. It can be shown that the isolated MT molecule represents a self-sufficient one-domain MT which is stable in vitro. The isolation of the single-domain MT peptide raises the question about the method of formation and significance in vivo of such small MT moieties from tissues of E. foetida and possibly other terrestrial invertebrates. In this respect, two hypotheses are discussed: firstly, the possibility of formation of small MT peptides due to enzymatic cleavage of the intact protein during the process of preparation and isolation; and secondly, the possibility of deliberate post-translational processing of the translated gene product to yield functional one-domain MT moieties.  相似文献   

5.
6.
7.
The Hah1 metallochaperone protein is implicated in copper delivery to the Menkes and Wilson disease proteins. Hah1 and the N-termini of its target proteins belong to a family of metal binding domains characterized by a conserved MT/HCXXC sequence motif. The crystal structure of Hah1 has been determined in the presence of Cu(I), Hg(II), and Cd(II). The 1.8 A resolution structure of CuHah1 reveals a copper ion coordinated by Cys residues from two adjacent Hah1 molecules. The CuHah1 crystal structure is the first of a copper chaperone bound to copper and provides structural support for direct metal ion exchange between conserved MT/HCXXC motifs in two domains. The structures of HgHah1 and CdHah1, determined to 1.75 A resolution, also reveal metal ion coordination by two MT/HCXXC motifs. An extended hydrogen bonding network, unique to the complex of two Hah1 molecules, stabilizes the metal binding sites and suggests specific roles for several conserved residues. Taken together, the structures provide models for intermediates in metal ion transfer and suggest a detailed molecular mechanism for protein recognition and metal ion exchange between MT/HCXXC containing domains.  相似文献   

8.
Mutations in the ATP-binding cassette transporter A1 (ABCA1) transporter are associated with Tangier disease and a defect in cellular cholesterol efflux. The amino terminus of the ABCA1 transporter has two putative in-frame translation initiation sites, 60 amino acids apart. A cluster of hydrophobic amino acids form a potentially cleavable signal sequence in this 60-residue extension. We investigated the functional role of this extension and found that it was required for stable protein expression of transporter constructs containing any downstream transmembrane domains. The extension directed transporter translocation across the ER membrane with an orientation that resulted in glycosylation of amino acids immediately distal to the signal sequence. Neither the native signal sequence nor a green fluorescent protein tag, fused at the amino terminus, was cleaved from ABCA1. The green fluorescent protein fusion protein had efflux activity comparable with wild type ABCA1 and demonstrated a predominantly plasma membrane distribution in transfected cells. These data establish a requirement for the upstream 60 amino acids of ABCA1. This region contains an uncleaved signal anchor sequence that positions the amino terminus in a type II orientation leading to the extracellular presentation of an approximately 600-amino acid loop in which loss-of-function mutations cluster in Tangier disease patients.  相似文献   

9.
10.
Metallothioneins (MTs) are noncatalytic peptides involved in storage of essential ions, detoxification of nonessential metals, and scavenging of oxyradicals. They exhibit an unusual primary sequence and unique 3D arrangement. Whereas vertebrate MTs are characterized by the well-known dumbbell shape, with a beta domain that binds three bivalent metal ions and an alpha domain that binds four ions, molluscan MT structure is still poorly understood. For this reason we compared two MTs from aquatic organisms that differ markedly in primary structure: MT 10 from the invertebrate Mytilus galloprovincialis and MT A from Oncorhyncus mykiss. Both proteins were overexpressed in Escherichia coli as glutathione S-transferase fusion proteins, and the MT moiety was recovered after protease cleavage. The MTs were analyzed by gel electrophoresis and tested for their differential reactivity with alkylating and reducing agents. Although they show an identical cadmium content and a similar metal-binding ability, spectropolarimetric analysis disclosed significant differences in the Cd7-MT secondary conformation. These structural differences reflect the thermal stability and metal transport of the two proteins. When metal transfer from Cd7-MT to 4-(2-pyridylazo)resorcinol was measured, the mussel MT was more reactive than the fish protein. This confirms that the differences in the primary sequence of MT 10 give rise to peculiar secondary conformation, which in turn reflects its reactivity and stability. The functional differences between the two MTs are due to specific structural properties and may be related to the different lifestyles of the two organisms.  相似文献   

11.
Monoclonal antibodies (mAbs) against Toxoplasma gondii, Tg378 and Tg556 clones, are specifically observed to localize to the dense granules of tachyzoites by immunofluorescence microscopy. mAb Tg556 is directed against GRA3, a previously described 30kDa dense granular protein. mAb Tg378 is directed against a novel 36kDa dense granular protein, which we refer to as GRA10. These are major proteins in the excretory/secretory proteins from T. gondii before the parasite's entry into host cells, and they are released into the parasitophorous vacuole (PV) during or shortly after invasion to be associated with the PV membrane. GRA10 binds to the membrane of the host cells regardless of its anchorage-dependence or -independence. The cDNA sequence encoding GRA10 was determined by screening a T. gondii cDNA expression library with mAb Tg378. The deduced amino acid sequence of GRA10 consists of a polypeptide of 364 amino acids, and it has no significant homology to any other known proteins. The sequence contains amino terminal signal peptides and two potential transmembrane domains in the middle of sequence that are not near the carboxy terminus. GRA10 has a RGD motif between the two potential transmembrane domains.  相似文献   

12.
Harman A  Browne H  Minson T 《Journal of virology》2002,76(21):10708-10716
Herpes simplex virus glycoprotein H (gH) is one of the four virion envelope proteins which are required for virus entry and for cell-cell fusion in a transient system. In this report, the role of the transmembrane and cytoplasmic tail domains of gH in membrane fusion was investigated by generating chimeric constructs in which these regions were replaced with analogous domains from other molecules and by introducing amino acid substitutions within the membrane-spanning sequence. gH molecules which lack the authentic transmembrane domain or cytoplasmic tail were unable to mediate cell-cell fusion when coexpressed with gB, gD, and gL and were unable to rescue the infectivity of a gH-null virus as efficiently as a wild-type gH molecule. Many amino acid substitutions of specific amino acid residues within the transmembrane domain also affected cell-cell fusion, in particular, those introduced at a conserved glycine residue. Some gH mutants that were impaired in cell-cell fusion were nevertheless able to rescue the infectivity of a gH-negative virus, but these pseudotyped virions entered cells more slowly than wild-type virions. These results indicate that the fusion event mediated by the coexpression of gHL, gB, and gD in cells shares common features with the fusion of the virus envelope with the plasma membrane, they point to a likely role for the membrane-spanning and cytoplasmic tail domains of gH in both processes, and they suggest that a conserved glycine residue in the membrane-spanning sequence is crucial for efficient fusion.  相似文献   

13.
14.
The protist Tetrahymena pigmentosa accumulates large amounts of metal ions, particularly cadmium and copper. This capability is linked to the induction of metallothioneins (MTs), cysteine-rich metal-binding proteins found in protists, plants and animals. The present study focuses on a novel inducible MT-isoform isolated from Tetrahymena after exposure to a non-toxic dose of copper. The cDNA sequence was determined utilising the partial peptide sequence of purified protein. The Cu-MT cDNA encodes 96 amino acids containing 28 cysteine residues (29%) arranged in motifs characteristic of the metal-binding regions of vertebrate and invertebrate MTs. Both the amino acid and nucleotide sequences differ, not only from other animal MTs, but also from the previously characterised Tetrahymena Cd-MT. Both MTs contain the structural pattern GTXXXCKCXXCKC, which may be proposed as a conservative sequence of Tetrahymena MTs. Cu-dependent regulation of MT expression was also investigated by measuring MT-mRNA and MT levels. MT synthesis occurs very quickly and MT contents increase with Cu accumulation. The induction of Cu-MT mRNA is very rapid, with no observable lag period, and is characterised by transient fluctuation, similar to that described for Cd-MT mRNA. The data reported here indicate that, also in the unicellular organism Tetrahymena, two very different MT isoforms, which perform different biological functions, are expressed according to the inducing metal, Cu or Cd.  相似文献   

15.
16.
《The Journal of cell biology》1989,109(6):3367-3376
We report the complete sequence of the microtubule-associated protein MAP1B, deduced from a series of overlapping genomic and cDNA clones. The encoded protein has a predicted molecular mass of 255,534 D and contains two unusual sequences. The first is a highly basic region that includes multiple copies of a short motif of the form KKEE or KKEVI that are repeated, but not at exact intervals. The second is a set of 12 imperfect repeats, each of 15 amino acids and each spaced by two amino acids. Subcloned fragments spanning these two distinctive regions were expressed as labeled polypeptides by translation in a cell-free system in vitro. These polypeptides were tested for their ability to copurify with unlabeled brain microtubules through successive cycles of polymerization and depolymerization. The peptide corresponding to the region containing the KKEE and KKEVI motifs cycled with brain microtubules, whereas the peptide corresponding to the set of 12 imperfect repeats did not. To define the microtubule binding domain in vivo, full-length and deletion constructs encoding MAP1B were assembled and introduced into cultured cells by transfection. The expression of transfected polypeptides was monitored by indirect immunofluorescence using anti-MAP1B-specific antisera. These experiments showed that the basic region containing the KKEE and KKEVI motifs is responsible for the interaction between MAP1B and microtubules in vivo. This region bears no sequence relationship to the microtubule binding domains of kinesin, MAP2, or tau.  相似文献   

17.
Metallothionein (MT) is a group of proteins with low molecular masses and high cysteine contents, and is classified into different types, which in general contains two domains (domain 1 and domain 2) with typical amino acid sequences (Rauser 1999). In this report two full-length cDNAs (Y459 and G14) encoding MT-like proteins were isolated from leaves of sweet potato (Ipomoea batatas). Their open reading frames contained 249 and 195 nucleotides (82 and 64 amino acids) for Y459 and G14, respectively, and exhibited a relatively low amino acid sequence similarity (ca. 25.8%). Gene structure studies showed that Y459 had the conserved domain 1 region of type 2 MT; however, the domain 2 region was not conserved and contained additional amino acids between the CxC and CxC spacing. G14 had conserved domains 1 and 2 of type 4 MT except that the last CxC of domain 2 was changed to RxC. Semi-quantitative RT-PCR showed that Y459 was expressed in significant quantity in roots and stems, but was much less in green leaves. During natural and induced (with dark and ethephon, an ethylene-releasing compound, treatments) leaf senescence, Y459 gene expression was significantly enhanced. In contrast, relatively constant gene expression levels were found for G14 in all tissues or treatments analyzed. In conclusion, the two MT-like protein genes of sweet potato display differential gene structures and gene expression patterns, which may be associated with the diverse roles and functions they play in plant physiology in order to cope with particular developmental and environmental cues.  相似文献   

18.
The metallothionein (MT) superfamily combines a large variety of small cysteine-rich proteins from nearly all phyla of life that have the ability to coordinate various transition metal ions, including ZnII, CdII, and CuI. The members of the plant MT family are characterized by great sequence diversity, requiring further subdivision into four subfamilies. Very peculiar and not well understood is the presence of rather long cysteine-free amino acid linkers between the cysteine-rich regions. In light of the distinct differences in sequence to MTs from other families, it seems obvious to assume that these differences will also be manifested on the structural level. This was already impressively demonstrated with the elucidation of the three-dimensional structure of the wheat Ec-1 MT, which revealed two metal cluster arrangements previously unprecedented for any MT. However, as this structure is so far the only one available for the plant MT family, other sources of information are in high demand. In this review the focus is thus set on any structural features known, deduced, or assumed for the plant MT proteins. This includes the determination of secondary structural elements by circular dichroism, IR, and Raman spectroscopy, the analysis of the influence of the long linker regions, and the evaluation of the spatial arrangement of the sequence separated cysteine-rich regions with the aid of, e.g., limited proteolytic digestion. In addition, special attention is paid to the contents of divalent metal ions as the metal ion to cysteine ratios are important for predicting and understanding possible metal–thiolate cluster structures.  相似文献   

19.
Most species of the protozoan phylum Apicomplexa harbor an endosymbiotic organelle--the apicoplast--acquired when an ancestral parasite engulfed a eukaryotic plastid-containing alga. Several hundred proteins are encoded in the parasite nucleus and are posttranslationally targeted to the apicoplast by a distinctive bipartite signal. The N-terminal 20 to 30 amino acids of nucleus-encoded apicoplast targeted proteins function as a classical signal sequence, mediating entry into the secretory pathway. Cleavage of the signal sequence exposes a transit peptide of variable length (50 to 200 amino acids) that is required for directing proteins to the apicoplast. Although these peptides are enriched in basic amino acids, their structural and functional characteristics are not well understood, which hampers the identification of apicoplast proteins that may constitute novel chemotherapeutic targets. To identify functional domains for a model apicoplast transit peptide, we generated more than 80 deletions and mutations throughout the transit peptide of Toxoplasma gondii ferredoxin NADP+ reductase (TgFNR) and examined the ability of these altered transit peptides to mediate proper targeting and processing of a fluorescent protein reporter. These studies revealed the presence of numerous functional domains. Processing can take place at multiple sites in the protein sequence and may occur outside of the apicoplast lumen. The TgFNR transit peptide contains at least two independent and functionally redundant targeting signals, each of which contains a subdomain that is required for release from or proper sorting within the endoplasmic reticulum. Certain deletion constructs traffic to multiple locations, including the apicoplast periphery, the rhoptries, and the parasitophorous vacuole, suggesting a common thread for targeting to these specialized compartments.  相似文献   

20.
The propeptide domain of secreted matrix metalloproteinases (MMPs) is responsible for maintaining the latency of these proteinases. Recently, the propeptide domain of the prototype membrane type matrix metalloproteinase (MT1-MMP) was demonstrated to act as an intramolecular chaperone (Cao, J., Hymowitz, M., Conner, C., Bahou, W. F., and Zucker, S. (2000) J. Biol. Chem. 275, 29648-29653). In the current study, the role of an unique four-amino acid sequence in the propeptide domain of MT1-MMP was examined. The sequence (42)YGYL(45) is conserved in the propeptide domain of all six members of the MT-MMP subfamily, but not in secreted MMPs. Mutant MT1-MMP cDNAs coding for alanine substitutions (single and double amino acid sequences) in this conserved propeptide region were transfected into COS-1 cells deficient in endogenous MT1-MMP. As demonstrated by immunofluorescence, mutant MT1-MMP protein was synthesized and displayed on the plasma membrane of transfected cells. Alanine substitutions within the (42)YGYL(45) sequence proved to be detrimental for enzyme function in terms of activation of proMMP-2 and binding TIMP-2 to the cell surface (MT1-MMP serves as a cell surface receptor for TIMP-2). In contrast to wild-type MT1-MMP-transfected cells, mutant MT1-MMP-transfected cells were incapable of degrading and migrating on a fibronectin substrate. These data indicate that the conserved (42)YGYL(45) sequence within the propeptide domain of MT-MMPs is required for intramolecular chaperone function of these intrinsic membrane proteinases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号