首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
To define the actin-binding site within the NH2-terminal domain (residues 1-245) of chick smooth muscle alpha-actinin, we expressed a series of alpha-actinin deletion mutants in monkey Cos cells. Mutant alpha-actinins in which residues 2-19, 217-242, and 196-242 were deleted still retained the ability to target to actin filaments and filament ends, suggesting that the actin-binding site is located within residues 20-195. When a truncated alpha-actinin (residues 1-290) was expressed in Cos cells, the protein localized exclusively to filament ends. This activity was retained by a deletion mutant lacking residues 196-242, confirming that these are not essential for actin binding. The actin-binding site in alpha-actinin was further defined by expressing both wild-type and mutant actin-binding domains as fusion proteins in E. coli. Analysis of the ability of such proteins to bind to F-actin in vitro showed that the binding site was located between residues 108 and 189. Using both in vivo and in vitro assays, we have also shown that the sequence KTFT, which is conserved in several members of the alpha-actinin family of actin-binding proteins (residues 36-39 in the chick smooth muscle protein) is not essential for actin binding. Finally, we have established that the NH2-terminal domain of dystrophin is functionally as well as structurally homologous to that in alpha-actinin. Thus, a chimeric protein containing the NH2-terminal region of dystrophin (residues 1-233) fused to alpha-actinin residues 244-888 localized to actin-containing structures when expressed in Cos cells. Furthermore, an E. coli-expressed fusion protein containing dystrophin residues 1-233 was able to bind to F-actin in vitro.  相似文献   

2.
A mAb (1E5) that binds the COOH-terminal region of the beta subunit of chicken CapZ inhibits the ability of CapZ to bind the barbed ends of actin filaments and nucleate actin polymerization. CapZ prepared as fusion proteins in bacteria or nonfusion proteins by in vitro translation has activity similar to that of CapZ purified from muscle. Deletion of the COOH-terminus of the beta subunit of CapZ leads to a loss of CapZ's ability to bind the barbed ends of actin filaments. A peptide corresponding to the COOH-terminal region of CapZ beta, expressed as a fusion protein, binds actin monomers. The mAb 1E5 also inhibits the binding of this peptide to actin. These results suggest that the COOH-terminal region of the beta subunit of CapZ is an actin-binding site. The primary structure of this region is not similar to that of potential actin-binding sites identified in other proteins. In addition, the primary structure of this region is not conserved across species.  相似文献   

3.
Alpha-actinin belongs to the spectrin family of actin crosslinking and bundling proteins that function as key regulators of cell motility, morphology and adhesion. The actin-binding domain (ABD) of these proteins consists of two consecutive calponin homology (CH) domains. Electron microscopy studies on ABDs appear to support two competing actin-binding models, extended and compact, whereas the crystal structures typically display a compact conformation. We have determined the 1.7A resolution structure of the ABD of alpha-actinin 1, a ubiquitously expressed isoform. The structure displays the classical compact conformation. We evaluated the two binding models by surface conservation analysis. The results show a conserved surface that spans both domains and corresponds to two previously identified actin-binding sites (ABS2 and ABS3). A third, and probably less important site, ABS1, is mostly buried in the compact conformation. However, a thorough examination of existing structures suggests a weak and semi-polar binding interface between the two CHs, leaving open the possibility of domain reorientation or opening. Our results are consistent with a two-step binding mechanism in which the ABD interacts first in the compact form observed in the structures, and then transitions toward a higher affinity state, possibly through minor rearrangement of the domains.  相似文献   

4.
5.
Cofilin stimulates actin filament turnover in vivo. The phenotypes of twenty yeast cofilin mutants generated by systematic mutagenesis were determined. Ten grew as well as the wild type and showed no cytoskeleton defects, seven were recessive-lethal and three were conditional-lethal and caused severe actin organization defects. Biochemical characterization of interactions between nine mutant yeast cofilins and yeast actin provided evidence that F-actin binding and depolymerization are essential cofilin functions. Locating the mutated residues on the yeast cofilin molecular structure allowed several important conclusions to be drawn. First, residues required for actin monomer binding are proximal to each other. Secondly, additional residues are required for interactions with actin filaments; these residues might bind an adjacent subunit in the actin filament. Thirdly, despite striking structural similarity, cofilin interacts with actin in a different manner from gelsolin segment-1. Fourthly, a previously unrecognized cofilin function or interaction is suggested by identification of spatially proximal residues important for cofilin function in vivo, but not for actin interactions in vitro. Finally, mutation of the cofilin N-terminus suggests that its sequence is conserved because of its critical role in actin interactions, not because it is sometimes a target for protein kinases.  相似文献   

6.
To contribute to the understanding of glutamate synthase and of beta subunit-like proteins, which have been detected by sequence analyses, we identified the NADPH-binding site out of the two potential ADP-binding regions found in the beta subunit. The substitution of an alanyl residue for G298 of the beta subunit of Azospirillum brasilense glutamate synthase (the second glycine in the GXGXXA fingerprint of the postulated NADPH-binding site) yielded a protein species in which the flavin environment and properties are unaltered. On the contrary, the binding of the pyridine nucleotide substrate is significantly perturbed demonstrating that the C-terminal potential ADP-binding fold of the beta subunit is indeed the NADPH-binding site of the enzyme. The major effect of the G298A substitution in the GltS beta subunit consists of an approximately 10-fold decrease of the affinity of the enzyme for pyridine nucleotides with little or no effect on the rate of the enzyme reduction by NADPH. By combining kinetic measurements and absorbance-monitored equilibrium titrations of the G298A-beta subunit mutant, we conclude that also the positioning of its nicotinamide portion into the active site is altered thus preventing the formation of a stable charge-transfer complex between reduced FAD and NADP(+). During the course of this work, the Azospirillum DNA regions flanking the gltD and gltB genes, the genes encoding the GltS beta and alpha subunits, respectively, were sequenced and analyzed. Although the Azospirillum GltS is similar to the enzyme of other bacteria, it appears that the corresponding genes differ with respect to their arrangement in the chromosome and to the composition of the glt operon: no genes corresponding to E. coli and Klebsiella aerogenes gltF or to Bacillus subtilis gltC, encoding regulatory proteins, are found in the DNA regions adjacent to that containing gltD and gltB genes in Azospirillum. Further studies are needed to determine if these findings also imply differences in the regulation of the glt genes expression in Azospirillum (a nitrogen-fixing bacterium) with respect to enteric bacteria.  相似文献   

7.
Recently, evidence has emerged that heptaspanning membrane or G protein-coupled receptors may be linked to intracellular proteins identified as regulators of receptor anchoring and signaling. Using a yeast two-hybrid screen, we identified alpha-actinin, a major F-actin-cross-linking protein, as a binding partner for the C-terminal domain of the adenosine A2A receptor (A2AR). Colocalization, co-immunoprecipitation, and pull-down experiments showed a close and specific interaction between A2AR and alpha-actinin in transfected HEK-293 cells and also in rat striatal tissue. A2AR activation by agonist induced the internalization of the receptor by a process that involved rapid beta-arrestin translocation from the cytoplasm to the cell surface. In the subsequent receptor traffic from the cell surface, the role of actin organization was shown to be crucial in transiently transfected HEK-293 cells, as actin depolymerization by cytochalasin D prevented its agonist-induced internalization. A2ADeltaCTR, a mutant version of A2AR that lacks the C-terminal domain and does not interact with alpha-actinin, was not able to internalize when activated by agonist. Interestingly, A2ADeltaCTR did not show aggregation or clustering after agonist stimulation, a process readily occurring with the wild-type receptor. These findings suggest an alpha-actinin-dependent association between the actin cytoskeleton and A2AR trafficking.  相似文献   

8.
Isogawa Y  Kon T  Inoue T  Ohkura R  Yamakawa H  Ohara O  Sutoh K 《Biochemistry》2005,44(16):6190-6196
Myosin XVIII is the recently identified 18th class of myosins, and its members are composed of a unique N-terminal domain, a motor domain with an unusual sequence around the ATPase site, one IQ motif, a segmented coiled-coil region for dimerization, and a C-terminal globular tail. To gain insight into the functions of this unique myosin, we characterized its human homologue, MYO18A, focusing on the functional roles of the characteristic N-terminal domain that contains a PDZ module known to mediate protein-protein interaction. GFP-tagged full-length and C-terminally truncated MYO18A molecules that were expressed in HeLa cells exhibited colocalization with actin filaments. Chemical cross-linking of these molecules showed that they form stable dimers as expected from their putative coiled-coil tails. Cosedimentation of the various types of truncated MYO18A constructs with actin filaments indicated the presence of an ATP-insensitive actin-binding site in the N-terminal domain. Further studies on truncated constructs of the N-terminal domain indicated that this actin-binding site is located outside the PDZ module, but within the middle region of this domain, which does not show any homology with the known actin-binding motifs. These results imply that this dimeric myosin might stably cross-link actin filaments by two ATP-insensitive actin-binding sites at the N-terminal domains for higher-order organization of the actin cytoskeleton.  相似文献   

9.
In the acrosomal process of Limulus sperm, the beta-propeller protein scruin cross-links actin into a crystalline bundle. To confirm that scruin has the topology of a beta-propeller protein and to understand how scruin binds actin, we compared the solvent accessibility of cysteine residues in scruin and the acrosomal process by chemical modification with (1,5-IAEDANS). In soluble scruin, the two most reactive cysteines of soluble scruin are C837 and C900, whereas C146, C333, and C683 are moderately reactive. This pattern of reactivity is consistent with the topology of a typical beta-propeller protein; all of the reactive cysteines map to putative loops and turns whereas the unreactive cysteines lie within the predicted interior of the protein. The chemical reactivities of cysteine in the acrosomal process implicate C837 at an actin-binding site. In contrast to soluble scruin, in the acrosomal process, C837 is completely unreactive while the other cysteines become less reactive. Binding studies of chemically modified scruin correlate the extent of modification at C837 with the extent of inhibition of actin binding. Furthermore, peptides corresponding to residues flanking C837 bind actin and narrow a possible actin-binding region to a KQK sequence. On the basis of these studies, our results suggest that an actin-binding site lies in the C-terminal domain of scruin and involves a putative loop defined by C837.  相似文献   

10.
Talin is a large cytoskeletal protein that couples integrins to F-actin. Three actin-binding sites (ABS1-3) have been reported: one in the N-terminal head, and two in the C-terminal rod domain. Although the C-terminal ABS3 has been partially characterized, the presence and properties of ABS1 within the talin head are less well defined. We show here that the talin head binds F-actin in vitro and in vivo at a specific site within the actin filament. Thus, purified talin head liberated from gizzard talin by calpain cleavage cosediments with F-actin in a low salt buffer at pH 6.4 (conditions that are optimal for binding intact talin), and using recombinant polypeptides, we have mapped ABS1 to the FERM domain within the talin head. Both the F2 and F3 FERM subdomains contribute to binding, and EGFP-tagged FERM subdomains colocalize with actin stress fibers when expressed in COS cells. High-resolution electron microscopy of actin filaments decorated with F2F3 localizes binding to a site that is distinct from that recognized by members of the calponin-homology superfamily. Finally, we show that the FERM domain can couple F-actin to PIPkin, and by inference to integrins, since they bind to the same pocket in the F3 subdomain. This suggests that the talin FERM domain functions as a linker between PIPkin or integrins and F-actin at sites of cell-matrix adhesions.  相似文献   

11.
12.
Utrophin is a large ubiquitously expressed cytoskeletal protein that is important for maturation of vertebrate neuromuscular junctions. It is highly homologous to dystrophin, the protein defective in Duchenne and Becker muscular dystrophies. Utrophin binds to the actin cytoskeleton via an N-terminal actin-binding domain, which is related to the actin-binding domains of members of the spectrin superfamily of proteins. We have determined the actin-binding properties of this utrophin domain and investigated its binding site on F-actin. An F-actin cosedimentation assay confirmed that the domain binds more tightly to beta-F-actin than to alpha-F-actin and that the full-length utrophin domain binds more tightly to both actin isoforms than a truncated construct, lacking a characteristic utrophin N-terminal extension. Both domain constructs exist in solution as compact monomers and bind to actin as 1:1 complexes. Analysis of the products of partial proteolysis of the domain in the presence of F-actin showed that the N-terminal extension was protected by binding to actin. The actin isoform dependence of utrophin binding could reflect differences at the N-termini of the actin isoforms, thus localising the utrophin-binding site on actin. The involvement of the actin N-terminus in utrophin binding was also supported by competition binding assays using myosin subfragment S1, which also binds F-actin near its N-terminus. Cross-linking studies suggested that utrophin contacts two actin monomers in the actin filament as does myosin S1. These biochemical approaches complement our structural studies and facilitate characterisation of the actin-binding properties of the utrophin actin-binding domain.  相似文献   

13.
The identification of a new actin-binding region in p57   总被引:2,自引:0,他引:2  
Liu CZ  Chen Y  Sui SF 《Cell research》2006,16(1):106-112
The actin-binding protein p57 is a member of mammalian coronin-like proteins. The roles of this protein in phagocytic processes conceivably depend on its interactions with F-actin. Two regions, p57^1-34 and p57^111-204, were previously reported to be actin-binding sites. In this study, we found that the C-terminal region of p57 ,p57^297-461 , also possessed F-actin binding activity. Furthermore, the leucine zipper domain at the C-terminus of p57^297-461 was essential for this actin-binding activity. The F-actin cross-linking assay revealed that the region contained in p57^297-461 was sufficient to cross-link actin filaments. Our results strongly suggested that there was a new actin-binding region at the C-terminus of p57.  相似文献   

14.
Tamura M  Itoh K  Akita H  Takano K  Oku S 《FEBS letters》2006,580(1):261-267
Actin has been reported to enhance the superoxide-generating activity of neutrophil NADPH oxidase in a cell-free system and to interact with p47phox, a regulatory subunit of the oxidase. In the present study, we searched for an actin-binding site in p47phox by far-western blotting and blot-binding assays using truncated forms of p47phox. The amino-acid sequence 319-337 was identified as an actin-binding site, and a synthetic peptide of this sequence bound to actin. The sequence shows no homology to other known actin-binding motifs. It is located in the autoinhibitory region of p47phox and includes Ser-328, a phosphorylation site essential for unmasking. Although a phosphorylation-mimetic p47phox mutant bound to actin with a lower affinity than the wild type, the same mutant interacted with filamentous actin more efficiently than the wild type. A mutant peptide p47phox (319-337, Ser328Glu) bound to filamentous actin more tightly than to monomer actin. These results suggest that p47phox moves to cortical actin when it becomes unmasked in the cells.  相似文献   

15.
Bromophenol red (BPR) binds to lysozyme and inhibits its activity against bacterial cell walls, but not against the polysaccharide component of peptidoglycan. The binding site of BPR in the enzyme has been characterised by X-ray analysis of the complex at 5.5A resolution. The new binding site, which is outside the cleft close to subsite F, is presumably involved in interactions with the peptide component of peptidoglycan, in the action of lysozyme against bacterial cell walls.  相似文献   

16.
The invasion of the erythrocyte by Plasmodium falciparum depends on the ability of the merozoite to move through the membrane invagination. This ability is probably mediated by actin dependent motors. Using affinity columns with G-actin and F-actin we isolated actin binding proteins from the parasite. By immunoblotting and immunoprecipitation with specific antibodies we identified the presence of tropomyosin, myosin, a-actinin, and two different actins in the eluate corresponding to F-actin binding proteins. In addition to these, a 240-260 kDa doublet, different in size from the erythrocyte spectrin, reacted with an antibody against human spectrin. All the above mentioned proteins were metabolically radiolabeled when the parasite was cultured with 35S-methionine. The presence of these proteins in P. falciparum is indicative of a complex cytoskeleton and supports the proposed role for an actin-myosin motor during invasion.  相似文献   

17.
Alpha-actinin 4 (ACTN4) belongs to actin binding proteins of the spectrin superfamily. Structural organisation of actin fibres and focal contacts is considered to be its primary function in a cell. Besides that, nucleocytoplasmic shuffling of ACTN4 and its involvement in nuclear processes were demonstrated. Lately, additional isoforms of ACTN4 resulted from an alternative splicing has been described in various cell types and malignant tumours. In this study, we present investigation of a novel ACTN4 isoform of 80 kDa. The isoform was found in human epidermoid carcinoma cells A431, and it was not detected in human skin fibroblasts, normal human keratinocytes and transformed human embryonic cells HEK293T. Analysis of ACTN4 mRNA in A431 cells showed the presence of a splice variant that lacked the exons 2-8. The deleted exons code two calponin homology domains responsible for ACTN4 binding to F-actin. Intracellular distribution of the described ACTN4 isoform (ACTN4ISO) overexpressed in HEK293T cells differed from that of the full size protein. In the cytoplasm, ACTN4ISO was allocated diffusively with no colocalisation with actin cytoskeleton structures. Intranuclear distribution of ACTN4ISO also differed from that of the full size ACTN4. Nevertheless, immunochemical analysis demonstrated possibility of ACTN4ISO to form heterodimers with the full size protein. Additional investigations of novel isoform interactions with ACTN4 protein partners might clarify its functional features in A431 cells.  相似文献   

18.
19.
The LIM domain protein zyxin is a component of adherens type junctions, stress fibers, and highly dynamic membrane areas and appears to be involved in microfilament organization. Chicken zyxin and its human counterpart display less than 60% sequence identity, raising concern about their functional identity. Here, we demonstrate that human zyxin, like the avian protein, specifically interacts with alpha-actinin. Furthermore, we map the interaction site to a motif of approximately 22 amino acids, present in the N-terminal domain of human zyxin. This motif is both necessary and sufficient for alpha-actinin binding, whereas a downstream region, which is related in sequence, appears to be dispensable. A synthetic peptide comprising human zyxin residues 21-42 specifically binds to alpha-actinin in solid phase binding assays. In contrast to full-length zyxin, constructs lacking this motif do not interact with alpha-actinin in blot overlays and fail to recruit alpha-actinin in living cells. When zyxin lacking the alpha-actinin binding site is expressed as a fusion protein with green fluorescent protein, association of the recombinant protein with stress fibers is abolished, and targeting to focal adhesions is grossly impaired. Our results suggest a crucial role for the alpha-actinin-zyxin interaction in subcellular zyxin localization and microfilament organization.  相似文献   

20.
Polygalacturonases specifically hydrolyze polygalacturonate, a major constituent of plant cell wall pectin. To understand the catalytic mechanism and substrate and product specificity of these enzymes, we have solved the x-ray structure of endopolygalacturonase II of Aspergillus niger and we have carried out site-directed mutagenesis studies. The enzyme folds into a right-handed parallel beta-helix with 10 complete turns. The beta-helix is composed of four parallel beta-sheets, and has one very small alpha-helix near the N terminus, which shields the enzyme's hydrophobic core. Loop regions form a cleft on the exterior of the beta-helix. Site-directed mutagenesis of Asp(180), Asp(201), Asp(202), His(223), Arg(256), and Lys(258), which are located in this cleft, results in a severe reduction of activity, demonstrating that these residues are important for substrate binding and/or catalysis. The juxtaposition of the catalytic residues differs from that normally encountered in inverting glycosyl hydrolases. A comparison of the endopolygalacturonase II active site with that of the P22 tailspike rhamnosidase suggests that Asp(180) and Asp(202) activate the attacking nucleophilic water molecule, while Asp(201) protonates the glycosidic oxygen of the scissile bond.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号