首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Lysosomes are membrane-bound organelles responsible for the transport and degradation of intracellular and extracellular cargo. The intracellular motion of lysosomes is both diffusive and active, mediated by motor proteins moving lysosomes along microtubules. We sought to determine how lysosome diameter influences lysosome transport. We used osmotic swelling to double the diameter of lysosomes, creating a population of enlarged lysosomes. This allowed us to directly examine the intracellular transport of the same organelle as a function of diameter. Lysosome transport was measured using live cell fluorescence microscopy and single particle tracking. We find, as expected, the diffusive component of intracellular transport is decreased proportional to the increased lysosome diameter. Active transport of the enlarged lysosomes is not affected by the increased lysosome diameter.  相似文献   

2.
The organization of the cytoplasm is regulated by molecular motors, which transport organelles and other cargoes along cytoskeleton tracks. In this work, we use single particle tracking to study the in vivo regulation of the transport driven by myosin-V along actin filaments in Xenopus laevis melanophores. Melanophores have pigment organelles or melanosomes, which, in response to hormones, disperse in the cytoplasm or aggregate in the perinuclear region. We followed the motion of melanosomes in cells treated to depolymerize microtubules during aggregation and dispersion, focusing the analysis on the dynamics of these organelles in a time window not explored before to our knowledge. These data could not be explained by previous models that only consider active transport. We proposed a transport-diffusion model in which melanosomes may detach from actin tracks and reattach to nearby filaments to resume the active motion after a given time of diffusion. This model predicts that organelles spend ∼70% and 10% of the total time in active transport during dispersion and aggregation, respectively. Our results suggest that the transport along actin filaments and the switching from actin to microtubule networks are regulated by changes in the diffusion time between periods of active motion driven by myosin-V.  相似文献   

3.
The reticulopodial networks of the foraminiferan protozoans Allogromia sp., strain NF, and A. laticollaris display rapid (up to 11 microns/second) and bidirectional saltatory transport of membrane surface markers (polystyrene microspheres). Electron microscopy shows that microspheres adhere directly to the reticulopodial surface glycocalyx. A videomicroscopic analysis of this phenomenon reveals that microsphere movement is typically independent of pseudopod extension/withdrawal and that particles of different sizes and surface properties display similar motile characteristics. The motile properties of surface-associated microspheres appear identical to those of saltating intracellular organelles. Indeed, in some instances the surface-attached microspheres appear transiently linked in motion to these underlying organelles. Our observations suggest that, in reticulopodia, surface transport of microspheres and intracellular transport of organelles are driven by a common mechanism.  相似文献   

4.
The metabolic and signaling functions of lysosomes depend on their intracellular positioning and trafficking, but the underlying mechanisms are little understood. Here, we have discovered a novel septin GTPase–based mechanism for retrograde lysosome transport. We found that septin 9 (SEPT9) associates with lysosomes, promoting the perinuclear localization of lysosomes in a Rab7-independent manner. SEPT9 targeting to mitochondria and peroxisomes is sufficient to recruit dynein and cause perinuclear clustering. We show that SEPT9 interacts with both dynein and dynactin through its GTPase domain and N-terminal extension, respectively. Strikingly, SEPT9 associates preferentially with the dynein intermediate chain (DIC) in its GDP-bound state, which favors dimerization and assembly into septin multimers. In response to oxidative cell stress induced by arsenite, SEPT9 localization to lysosomes is enhanced, promoting the perinuclear clustering of lysosomes. We posit that septins function as GDP-activated scaffolds for the cooperative assembly of dynein–dynactin, providing an alternative mechanism of retrograde lysosome transport at steady state and during cellular adaptation to stress.  相似文献   

5.
Early endosomes (EEs) are known to be a sorting station for internalized molecules destined for degradation, recycling, or other intracellular organelles. Segregation is an essential step in such sorting, but the molecular mechanism of this process remains to be elucidated. Here, we show that actin is required for efficient recycling and endosomal maturation by producing a motile force. Perturbation of actin dynamics by drugs induced a few enlarged EEs containing several degradative vacuoles and also interfered with their transporting ability. Actin repolymerization induced by washout of the drug caused the vacuoles to dissociate and individually translocate toward the perinuclear region. We further elucidated that cortactin, an actin-nucleating factor, was required for transporting contents from within EEs. Actin filaments regulated by cortactin may provide a motile force for efficient sorting within early endosomes. These data suggest that actin filaments coordinate with microtubules to mediate segregation in EEs.  相似文献   

6.
Cells release exosomes to transfer various molecules to other cells. Exosomes are involved in a number of physiological and pathological processes. They are emerging great potential utility for diseases diagnosis and treatment recently. However, the internalization and intracellular trafficking of exosomes have not been described clearly. In this work, exosomes were isolated from the culture medium of PC12 cells, labeled by lipophilic dye and amino‐reactive fluorophore, incubated with resting PC12 cells. The results of live‐cell microscopy indicated that exosomes were internalized through endocytosis pathway, trapped in vesicles, and transported to perinuclear region. Particle tracking fluorescent vesicles suggested that the active transport of exosomes may be mediated by cytoskeleton. The proteins on exosome membrane were found to be released from exosomes and trapped in lysosome. The inverted transport of lipophilic dye from perinuclear region to cell peripheries was revealed, possibly caused by recycling of the exosome lipids. This study provides new sight into the mechanisms of exosome uptake and intracellular fate. J. Cell. Biochem. 111: 488–496, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

7.
Rab7: a key to lysosome biogenesis   总被引:1,自引:0,他引:1       下载免费PDF全文
The molecular machinery behind lysosome biogenesis and the maintenance of the perinuclear aggregate of late endocytic structures is not well understood. A likely candidate for being part of this machinery is the small GTPase Rab7, but it is unclear whether this protein is associated with lysosomes or plays any role in the regulation of the perinuclear lysosome compartment. Previously, Rab7 has mainly been implicated in transport from early to late endosomes. We have now used a new approach to analyze the role of Rab7: transient expression of Enhanced Green Fluorescent Protein (EGFP)-tagged Rab7 wt and mutant proteins in HeLa cells. EGFP-Rab7 wt was associated with late endocytic structures, mainly lysosomes, which aggregated and fused in the perinuclear region. The size of the individual lysosomes as well as the degree of perinuclear aggregation increased with the expression levels of EGFP-Rab7 wt and, more dramatically, the active EGFP-Rab7Q67L mutant. In contrast, upon expression of the dominant-negative mutants EGFP-Rab7T22N and EGFP-Rab7N125I, which localized mainly to the cytosol, the perinuclear lysosome aggregate disappeared and lysosomes, identified by colocalization of cathepsin D and lysosome-associated membrane protein-1, became dispersed throughout the cytoplasm, they were inaccessible to endocytosed molecules such as low-density lipoprotein, and their acidity was strongly reduced, as determined by decreased accumulation of the acidotropic probe LysoTracker Red. In contrast, early endosomes associated with Rab5 and the transferrin receptor, late endosomes enriched in the cation-independent mannose 6-phosphate receptor, and the trans-Golgi network, identified by its enrichment in TGN-38, were unchanged. These data demonstrate for the first time that Rab7, controlling aggregation and fusion of late endocytic structures/lysosomes, is essential for maintenance of the perinuclear lysosome compartment.  相似文献   

8.
People homozygous for mutations in the Niemann-Pick type C1 (NPC1) gene have physiological defects, including excess accumulation of intracellular cholesterol and other lipids, that lead to drastic neural and liver degeneration. The NPC1 multipass transmembrane protein is resident in late endosomes and lysosomes, but its functions are unknown. We find that organelles containing functional NPC1-fluorescent protein fusions undergo dramatic movements, some in association with extending strands of endoplasmic reticulum. In NPC1 mutant cells the NPC1-bearing organelles that normally move at high speed between perinuclear regions and the periphery of the cell are largely absent. Pulse-chase experiments with dialkylindocarbocyanine low-density lipoprotein showed that NPC1 organelles function late in the endocytic pathway; NPC1 protein may aid the partitioning of endocytic and lysosomal compartments. The close connection between NPC1 and the drug U18666A, which causes NPC1-like organelle defects, was established by rescuing drug-treated cells with overproduced NPC1. U18666A inhibits outward movements of NPC1 organelles, trapping membranes and cholesterol in perinuclear organelles similar to those in NPC1 mutant cells, even when cells are grown in lipoprotein-depleted serum. We conclude that NPC1 protein promotes the creation and/or movement of particular late endosomes, which rapidly transport materials to and from the cell periphery.  相似文献   

9.
The number of microtubule motors attached to vesicles, organelles, and other subcellular commodities is widely believed to influence their motile properties. There is also evidence that cells regulate intracellular transport by tuning the number and/or ratio of motor types on cargos. Yet, the number of motors responsible for cargo motion is not easily characterized, and the extent to which motor copy number affects intracellular transport remains controversial. Here, we examined the load-dependent properties of structurally defined motor assemblies composed of two kinesin-1 molecules. We found that a group of kinesins can produce forces and move with velocities beyond the abilities of single kinesin molecules. However, such capabilities are not typically harnessed by the system. Instead, two-kinesin assemblies adopt a range of microtubule-bound configurations while transporting cargos against an applied load. The binding arrangement of motors on their filament dictates how loads are distributed within the two-motor system, which in turn influences motor-microtubule affinities. Most configurations promote microtubule detachment and prevent both kinesins from contributing to force production. These results imply that cargos will tend to be carried by only a fraction of the total number of kinesins that are available for transport at any given time, and provide an alternative explanation for observations that intracellular transport depends weakly on kinesin number in vivo.  相似文献   

10.
The electron microscopic study of the intact somatic muscle of man has established that skeletal muscular fibres have a well developed lysosome apparatus. This apparatus is localized near nuclei under the sarcolemma and is represented by 3 types of lysosomes: primary lysosomes, secondary lysosomes (phage lysosomes, digestive vacuoles) and residual bodies. These three morphological types of lysosomes reflect different stages of the functional activity of these organelles. The role of the lysosome apparatus in the process of intracellular digestion and self-renewal is shown. The presence of a peculiar "digestive center" of the muscle fibre has been established which is located in the perinuclear zone.  相似文献   

11.
《Biophysical journal》2020,118(6):1357-1369
In contrast to the canonical picture of transport by direct attachment to motor proteins, recent evidence shows that a number of intracellular “cargos” navigate the cytoplasm by hitchhiking on motor-driven “carrier” organelles. We describe a quantitative model of intracellular cargo transport via hitchhiking, examining the efficiency of hitchhiking initiation as a function of geometric and mechanical parameters. We focus specifically on the parameter regime relevant to the hitchhiking motion of peroxisome organelles in fungal hyphae. Our work predicts the dependence of transport initiation rates on the distribution of cytoskeletal tracks and carrier organelles, as well as the number, length, and flexibility of the linker proteins that mediate contact between the carrier and the hitchhiking cargo. Furthermore, we demonstrate that attaching organelles to microtubules can result in a substantial enhancement of the hitchhiking initiation rate in tubular geometries such as those found in fungal hyphae. This enhancement is expected to increase the overall transport rate of hitchhiking organelles and lead to greater efficiency in organelle dispersion. Our results leverage a quantitative physical model to highlight the importance of organelle encounter dynamics in noncanonical intracellular transport.  相似文献   

12.
Lysosomes are essential organelles for intracellular degradation and are generally sequestered near the cell center to receive vesicles with contents targeted for destruction. During ascorbic acid (AA)-induced differentiation of osteogenic cells ( Beck, G. R., Jr., Zerler, B., and Moran, E. (2001) Cell Growth Differ. 12, 61-83 ), we saw a marked increase in total lysosome organelles in osteoblastic cells, in addition to an enhanced endocytic rate. Interestingly, lysosomes were dispersed toward the cell periphery in differentiating osteoblasts. We determined that lysosome dispersion in differentiated osteoblasts required intact microtubules for long range transport and was dependent on kinesin motors but did not involve cytosolic acidification. Impairment of lysosome dispersion markedly reduced AA-induced osteoblast differentiation. Lysosomes were not secreted in differentiated osteoblasts, implicating them instead in intracellular degradation. We assayed the degradative capacity and saw a significant increase in DQ-ovalbumin fluorescence in differentiated osteogenic cells compared with undifferentiated control cells. Osteogenic cells are specialized for type I collagen production, and we noted enhanced secreted and intracellular collagen in AA-differentiated osteoblasts versus control cells. Importantly, osteoblasts displayed procollagen-containing vesicles that were distributed throughout the cytoplasm, a portion of which colocalized with lysosomes. Treatment of cells with 2,2'-dipyridyl to inhibit procollagen trimerization enhanced colocalization of lysosomes with procollagen-containing organelles, implicating dispersed lysosomes in collagen processing in osteogenic cells.  相似文献   

13.
Most eukaryotes utilize a single pool of clathrin to assemble clathrin-coated transport vesicles at different intracellular locations. Coat assembly is a cyclical process. Soluble clathrin triskelia are recruited to the membrane surface by compartment-specific adaptor and/or accessory proteins. Adjacent triskelia then pack together to assemble a polyhedral lattice that progressively invaginates, budding off the membrane surface encasing a nascent transport vesicle that is quickly uncoated. Using total internal reflection fluorescence microscopy to follow clathrin dynamics close to the cell surface, we find that the majority of labeled clathrin structures are relatively static, moving vertically in and out of the evanescent field but with little lateral motion. A small minority shows rapid lateral and directed movement over micrometer distances. Adaptor proteins, including the alpha subunit of AP-2, ARH, and Dab2 are also relatively static and exhibit virtually no lateral movement. A fluorescently labeled AP-2 beta2 subunit, incorporated into both AP-2 and AP-1 adaptor complexes, exhibits both types of behavior. This suggests that the highly motile clathrin puncta may be distinct from plasma membrane-associated clathrin structures. When endocytosed cargo molecules, such as transferrin or low density lipoprotein, are followed into cells, they exhibit even more lateral motion than clathrin, and gradually concentrate in the perinuclear region, consistent with classical endosomal trafficking. Importantly, clathrin partially colocalizes with internalized transferrin, but diverges as the structures move longitudinally. Thus, highly motile clathrin structures are apparently distinct from the plasma membrane, accompany transferrin, and contain AP-1, revealing an endosomal population of clathrin structures.  相似文献   

14.
Membraneless organelles have emerged during the evolution of eukaryotic cells as intracellular domains in which multiple proteins organize into complex structures to perform specialized functions without the need of a lipid bilayer compartment. Here we describe the perinuclear space of eukaryotic cells as a highly organized network of cytoskeletal filaments that facilitates assembly of biomolecular condensates. Using bioinformatic analyses, we show that the perinuclear proteome is enriched in intrinsic disorder with several proteins predicted to undergo liquid-liquid phase separation. We also analyze immunofluorescence and transmission electron microscopy images showing the association between the nucleus and other organelles, such as mitochondria and lysosomes, or the labeling of specific proteins within the perinuclear region of cells. Altogether our data support the existence of a perinuclear dense sub-micron region formed by a well-organized three-dimensional network of structural and signaling proteins, including several proteins containing intrinsically disordered regions with phase behavior. This network of filamentous cytoskeletal proteins extends a few micrometers from the nucleus, contributes to local crowding, and organizes the movement of molecular complexes within the perinuclear space. Our findings take a key step towards understanding how membraneless regions within eukaryotic cells can serve as hubs for biomolecular condensates assembly, in particular the perinuclear space. Finally, evaluation of the disease context of the perinuclear proteins revealed that alterations in their expression can lead to several pathological conditions, and neurological disorders and cancer are among the most frequent.  相似文献   

15.
Lysosomes play a central role in the degradation of extracellular and intracellular macromolecules. These organelles contain hydrolytic enzymes capable of degrading proteins, proteoglycans, nucleic acids, and lipids. The mechanisms involved in the delivery of such intracellular compounds to the lysosome have been characterized in several recent studies. The sequestration of intracellular macromolecules for intralysosomal degradation can occur by crinophagy, hsc73-mediated carrier transport, or autophagy. The major route of delivery of cellular proteins and RNA into lysosomes is by autophagy. Furthermore, autophagy is regulated by nutrients and hormones, thus allowing the cell to adjust its degradative state to environmental changes.  相似文献   

16.
Wilson's disease is a genetic disorder characterized by the accumulation of copper in the body due to a defect of biliary copper excretion. However, the mechanism of biliary copper excretion has not been fully clarified. We examined the effect of copper on the intracellular localization of the Wilson disease gene product (ATP7B) and green fluorescent protein (GFP)-tagged ATP7B in a human hepatoma cell line (Huh7). The intracellular organelles were visualized by fluorescence microscopy. GFP-ATP7B colocalized with late endosome markers, but not with endoplasmic reticulum, Golgi, or lysosome markers in both the steady and copper-loaded states. ATP7B mainly localized at the perinuclear regions in both states. These results suggest that the main localization of ATP7B is in the late endosomes in both the steady and copper-loaded states. ATP7B seems to translocate copper from the cytosol to the late endosomal lumen, thus participating in biliary copper excretion via lysosomes.  相似文献   

17.
How does subcellular architecture influence the intracellular movements of large organelles and macromolecular assemblies? To investigate the effects of mechanical changes in cytoplasmic structure on intracellular motility, we have characterized the actin-based motility of the intracellular bacterial pathogen Listeria monocytogenes in normal mouse fibroblasts and in fibroblasts lacking intermediate filaments. The apparent diffusion coefficient of L. monocytogenes was two-fold greater in vimentin-null fibroblasts than in wild-type fibroblasts, indicating that intermediate filaments significantly restrict the Brownian motion of bacteria. However, the mean speed of L. monocytogenes actin-based motility was statistically identical in vimentin-null and wild-type cells. Thus, environmental drag is not rate limiting for bacterial motility. Analysis of the temporal variations in speed measurements indicated that bacteria in vimentin-null cells displayed larger fluctuations in speed than did trajectories in wild-type cells. Similarly, the presence of the vimentin meshwork influenced the turning behavior of the bacteria; in the vimentin-null cells, bacteria made sharper turns than they did in wild-type cells. Taken together, these results suggest that a network of intermediate filaments constrains bacterial movement and operates over distances of several microns to reduce fluctuations in motile behavior.  相似文献   

18.
Dyneins are large microtubule-based motor complexes that power a range of cellular processes including the transport of organelles, as well as the beating of cilia and flagella. The motor domain is located within the dynein heavy chain and comprises an N-terminal mechanical linker element, a central ring of six AAA + modules of which four bind or hydrolyze ATP, and a long stalk extending from the AAA + ring with a microtubule-binding domain (MTBD) at its tip. A crucial mechanism underlying the motile activity of cytoskeletal motor proteins is precise coupling between the ATPase and track-binding activities. In dynein, a stalk region consisting of a long (~ 15 nm) antiparallel coiled coil separates these two activities, which must facilitate communication between them. This communication is mediated by a small degree of helix sliding in the coiled coil. However, no high-resolution structure is available of the entire stalk region including the MTBD. Here, we have reported the structure of the entire stalk region of mouse cytoplasmic dynein in a weak microtubule-binding state, which was determined using X-ray crystallography, and have compared it with the dynein motor domain from Dictyostelium discoideum in a strong microtubule-binding state and with a mouse MTBD with its distal portion of the coiled coil fused to seryl-tRNA synthetase from Thermus thermophilus. Our results strongly support the helix-sliding model based on the complete structure of the dynein stalk with a different form of coiled-coil packing. We also propose a plausible mechanism of helix sliding together with further analysis using molecular dynamics simulations. Our results present the importance of conserved proline residues for an elastic motion of stalk coiled coil and imply the manner of change between high-affinity state and low-affinity state of MTBD.  相似文献   

19.
Visualization of functional properties of individual cells and intracellular organelles still remains an experimental challenge in cell biology. The coherent phase microscopy (CPM) provides a convenient and non-invasive tool for imaging cells and intracellular organelles. In this work, we report results of statistical analysis of CPM images of cyanobacterial cells (Synechocystis sp. PCC 6803) and spores (Bacillus licheniformis). It has been shown that CPM images of cyanobacterial cells and spores are sensitive to variations of their metabolic states. We found a correlation between one of optical parameters of the CPM image ('phase thicknesses' Deltah) and cell energization. It was demonstrated that the phase thickness Deltah decreased after cell treatment with the uncoupler CCCP or inhibitors of electron transport (KCN or DCMU). Statistical analysis of distributions of parameter Deltah and cell diameter d demonstrated that a decrease in the phase thickness Deltah could not be attributed entirely to a decrease in geometrical sizes of cells. This finding demonstrates that the CPM technique may be a convenient tool for fast and non-invasive diagnosis of metabolic states of individual cells and intracellular organelles.  相似文献   

20.
Leishmania donovani causes human visceral leishmaniasis. The parasite infectious cycle comprises extracellular flagellated promastigotes that proliferate inside the insect vector, and intracellular nonmotile amastigotes that multiply within infected host cells. Using primary macrophages infected with virulent metacyclic promastigotes and high spatiotemporal resolution microscopy, we dissect the dynamics of the early infection process. We find that motile promastigotes enter macrophages in a polarized manner through their flagellar tip and are engulfed into host lysosomal compartments. Persistent intracellular flagellar activity leads to reorientation of the parasite flagellum toward the host cell periphery and results in oscillatory parasite movement. The latter is associated with local lysosomal exocytosis and host cell plasma membrane wounding. These findings implicate lysosome recruitment followed by lysosome exocytosis, consistent with parasite-driven host cell injury, as key cellular events in Leishmania host cell infection. This work highlights the role of promastigote polarity and motility during parasite entry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号