共查询到17条相似文献,搜索用时 0 毫秒
1.
Adam S. Mastrocola Sang Hwa Kim Anthony T. Trinh Lance A. Rodenkirch Randal S. Tibbetts 《The Journal of biological chemistry》2013,288(34):24731-24741
The list of factors that participate in the DNA damage response to maintain genomic stability has expanded significantly to include a role for proteins involved in RNA processing. Here, we provide evidence that the RNA-binding protein fused in sarcoma/translocated in liposarcoma (FUS) is a novel component of the DNA damage response. We demonstrate that FUS is rapidly recruited to sites of laser-induced DNA double-strand breaks (DSBs) in a manner that requires poly(ADP-ribose) (PAR) polymerase activity, but is independent of ataxia-telangiectasia mutated kinase function. FUS recruitment is mediated by the arginine/glycine-rich domains, which interact directly with PAR. In addition, we identify a role for the prion-like domain in promoting accumulation of FUS at sites of DNA damage. Finally, depletion of FUS diminished DSB repair through both homologous recombination and nonhomologous end-joining, implicating FUS as an upstream participant in both pathways. These results identify FUS as a new factor in the immediate response to DSBs that functions downstream of PAR polymerase to preserve genomic integrity. 相似文献
2.
3.
Bo Zhang Edward Wang Hui Dai Jianfeng Shen Hui-Ju Hsieh Xiongbin Lu Guang Peng 《The Journal of biological chemistry》2014,289(49):34284-34295
The ataxia telangiectasia-mutated and Rad3-related (ATR) kinase functions as a central node in the DNA damage response signaling network. The mechanisms by which ATR activity is amplified and/or maintained are not understood. Here we demonstrate that BRIT1/microcephalin (MCPH1), a human disease-related protein, is dispensable for the initiation but essential for the amplification of ATR signaling. BRIT1 interacts with and recruits topoisomerase-binding protein 1 (TopBP1), a key activator of ATR signaling, to the sites of DNA damage. Notably, replication stress-induced ataxia telangiectasia-mutated or ATR-dependent BRIT1 phosphorylation at Ser-322 facilitates efficient TopBP1 recruitment. These results reveal a mechanism that ensures the continuation of ATR-initiated DNA damage signaling. Our study uncovers a previously unknown regulatory axis of ATR signaling in maintaining genomic integrity, which may provide mechanistic insights into the perturbation of ATR signaling in human diseases such as neurodevelopmental defects and cancer. 相似文献
4.
5.
Shahar Zirkin Ateret Davidovich Jeremy Don 《The Journal of biological chemistry》2013,288(30):21770-21783
The oncogenic nature ascribed to the PIM-2 kinase relies mostly on phosphorylation of substrates that act as pro-survival/anti-apoptotic factors. Nevertheless, pro-survival effects can also result from activating DNA repair mechanisms following damage. In this study, we addressed the possibility that PIM-2 plays a role in the cellular response to UV damage, an issue that has never been addressed before. We found that in U2OS cells, PIM-2 expression and activity increased upon exposure to UVC radiation (2–50 mJ/cm2), and Pim-2-silenced cells were significantly more sensitive to UV radiation. Overexpression of PIM-2 accelerated removal of UV-induced DNA lesions over time, reduced γH2AX accumulation in damaged cells, and rendered these cells significantly more viable following UV radiation. The protective effect of PIM-2 was mediated by increased E2F-1 and activated ATM levels. Silencing E2F-1 reduced the protective effect of PIM-2, whereas inhibiting ATM activity abrogated this protective effect, irrespective of E2F-1 levels. The results obtained in this study place PIM-2 upstream to E2F-1 and ATM in the UV-induced DNA damage response. 相似文献
6.
Gideon Coster Ayala Gold Darlene Chen David G. Schatz Michal Goldberg 《The Journal of biological chemistry》2012,287(43):36488-36498
The first step in V(D)J recombination is the formation of specific DNA double-strand breaks (DSBs) by the RAG1 and RAG2 proteins, which form the RAG recombinase. DSBs activate a complex network of proteins termed the DNA damage response (DDR). A key early event in the DDR is the phosphorylation of histone H2AX around DSBs, which forms a binding site for the tandem BRCA1 C-terminal (tBRCT) domain of MDC1. This event is required for subsequent signal amplification and recruitment of additional DDR proteins to the break site. RAG1 bears a histone H2AX-like motif at its C terminus (R1Ct), making it a putative MDC1-binding protein. In this work we show that the tBRCT domain of MDC1 binds the R1Ct motif of RAG1. Surprisingly, we also observed a second binding interface between the two proteins that involves the Proline-Serine-Threonine rich (PST) repeats of MDC1 and the N-terminal non-core region of RAG1 (R1Nt). The repeats-R1Nt interaction is constitutive, whereas the tBRCT-R1Ct interaction likely requires phosphorylation of the R1Ct motif of RAG1. As the C terminus of RAG1 has been implicated in inhibition of RAG activity, we propose a model in which phosphorylation of the R1Ct motif of RAG1 functions as a self-initiated regulatory signal. 相似文献
7.
8.
Ekaterina A. Maltseva Nadejda I. Rechkunova Maria V. Sukhanova Olga I. Lavrik 《The Journal of biological chemistry》2015,290(36):21811-21820
Poly(ADP-ribosyl)ation is a reversible post-translational modification that plays an essential role in many cellular processes, including regulation of DNA repair. Cellular DNA damage response by the synthesis of poly(ADP-ribose) (PAR) is mediated mainly by poly(ADP-ribose) polymerase 1 (PARP1). The XPC-RAD23B complex is one of the key factors of nucleotide excision repair participating in the primary DNA damage recognition. By using several biochemical approaches, we have analyzed the influence of PARP1 and PAR synthesis on the interaction of XPC-RAD23B with damaged DNA. Free PAR binds to XPC-RAD23B with an affinity that depends on the length of the poly(ADP-ribose) strand and competes with DNA for protein binding. Using 32P-labeled NAD+ and immunoblotting, we also demonstrate that both subunits of the XPC-RAD23B are poly(ADP-ribosyl)ated by PARP1. The efficiency of XPC-RAD23B PARylation depends on DNA structure and increases after UV irradiation of DNA. Therefore, our study clearly shows that XPC-RAD23B is a target of poly(ADP-ribosyl)ation catalyzed by PARP1, which can be regarded as a universal regulator of DNA repair processes. 相似文献
9.
Elvira Crescenzi Zelinda Raia Francesco Pacifico Stefano Mellone Fortunato Moscato Giuseppe Palumbo Antonio Leonardi 《The Journal of biological chemistry》2013,288(23):16212-16224
Premature or drug-induced senescence is a major cellular response to chemotherapy in solid tumors. The senescent phenotype develops slowly and is associated with chronic DNA damage response. We found that expression of wild-type p53-induced phosphatase 1 (Wip1) is markedly down-regulated during persistent DNA damage and after drug release during the acquisition of the senescent phenotype in carcinoma cells. We demonstrate that down-regulation of Wip1 is required for maintenance of permanent G2 arrest. In fact, we show that forced expression of Wip1 in premature senescent tumor cells induces inappropriate re-initiation of mitosis, uncontrolled polyploid progression, and cell death by mitotic failure. Most of the effects of Wip1 may be attributed to its ability to dephosphorylate p53 at Ser15 and to inhibit DNA damage response. However, we also uncover a regulatory pathway whereby suppression of p53 Ser15 phosphorylation is associated with enhanced phosphorylation at Ser46, increased p53 protein levels, and induction of Noxa expression. On the whole, our data indicate that down-regulation of Wip1 expression during premature senescence plays a pivotal role in regulating several p53-dependent aspects of the senescent phenotype. 相似文献
10.
Natsumi Shimizu Nakako Izumi Nakajima Takaaki Tsunematsu Ikuko Ogawa Hidehiko Kawai Ryoichi Hirayama Akira Fujimori Akiko Yamada Ryuichi Okayasu Naozumi Ishimaru Takashi Takata Yasusei Kudo 《The Journal of biological chemistry》2013,288(24):17238-17252
Chemotherapy and radiation in addition to surgery has proven useful in a number of different cancer types, but the effectiveness in normal tissue cannot be avoided in these therapies. To improve the effectiveness of these therapies selectively in cancer tissue is important for avoiding side effects. Early mitotic inhibitor 1 (Emi1) is known to have the function to inhibit anaphase-promoting complex/cyclosome ubiquitin ligase complex, which ubiquitylates the cell cycle-related proteins. It recently has been shown that Emi1 knockdown prevents transition from S to G2 phase by down-regulating geminin via anaphase-promoting complex/cyclosome activation. At present, anticancer drugs for targeting DNA synthesis to interfere with rapidly dividing cells commonly are used. As Emi1 depletion interferes with completion of DNA synthesis in cancer cells, we thought that Emi1 knockdown might enhance the sensitivity for anticancer agents. Here, we confirmed that Emi1 siRNA induced polyploidy for preventing transition from S to G2 phase in several cancer cell lines. Then, we treated Emi1 depleted cells with doxorubicin. Interestingly, increased apoptotic cells were observed after doxorubicin treatment in Emi1 siRNA-treated cancer cells. In addition, Emi1 depletion enhanced the sensitivity of x-ray irradiation in cancer cells. Importantly, synergistic effect of Emi1 knockdown in these combination therapies was not observed in normal cells. These results suggest that Emi1 siRNA can be a useful tool for enhancing of sensitivity of cancer cells to anticancer reagents and radiation. 相似文献
11.
Jeong Eun Yoo Young Nyun Park Bong-Kyeong Oh 《The Journal of biological chemistry》2014,289(10):6886-6898
TRF1, a telomere-binding protein, is important for telomere protection and homeostasis. PinX1 interacts with TRF1, but the physiological consequences of their interaction in telomere protection are not yet understood. Here we investigated PinX1 function on TRF1 stability in HeLa cells. PinX1 overexpression stabilized TRF1, but PinX1 depletion by siRNA led to TRF1 degradation, TRF1 ubiquitination, and less TRF1 telomere association. The depletion also induced DNA damage responses at telomeres and chromosome instability. These telomere dysfunctional phenotypes were in fact due to TRF1 deficiency. We also report that hTERT, a catalytic component of telomerase, plays dual roles in the TRF1 steady state pathway. PinX1-mediated TRF1 stability was not observed in hTERT-negative immortal cells, but was pronounced when hTERT was ectopically expressed in the cells, suggesting that hTERT may be needed in the PinX1-mediated TRF1 stability pathway. Interestingly, the knockdown of both PinX1 and hTERT in HeLa cells stabilized TRF1, suppressed DNA damage response activation, and restored chromosome stability. In summary, our findings suggested that PinX1 may maintain telomere integrity by regulating TRF1 stability and that hTERT may act as both a positive and a negative regulator of TRF1 homeostasis in a PinX1-dependent manner. 相似文献
12.
Yi-Hsin Hsu Li-Jen Liao Chuan-Hang Yu Chun-Pin Chiang Jing-Ru Jhan Lien-Cheng Chang Yann-Jang Chen Pei-Jen Lou Jing-Jer Lin 《The Journal of biological chemistry》2010,285(29):22630-22638
Pituitary tumor transforming gene (PTTG1, securin) is involved in cell-cycle control through inhibition of sister-chromatid separation. Elevated levels of PTTG1 were found to be associated with many different tumor types that might be involved in late stage tumor progression. However, the role of PTTG1 in early stage of tumorigenesis is unclear. Here we utilized the adenovirus expression system to deliver PTTG1 into normal human fibroblasts to evaluate the role of PTTG1 in tumorigenesis. Expressing PTTG1 in normal human fibroblasts inhibited cell proliferation. Several senescence-associated (SA) phenotypes including increased SA-β-galactosidase activities, decreased bromodeoxyuridine incorporation, and increased SA-heterochromatin foci formation were also observed in PTTG1-expressing cells, indicating that PTTG1 overexpression induced a senescent phenotype in normal cells. Significantly, the PTTG1-induced senescence is p53-dependent and telomerase-independent, which is distinctively different from that of replicative senescence. The mechanism of PTTG1-induced senescence was also analyzed. Consistent with its role in regulating sister-chromatid separation, overexpression of PTTG1 inhibited the activation of separase. Consequently, the numbers of cells with abnormal nuclei morphologies and chromosome separations were increased, which resulted in activation of the DNA damage response. Thus, we concluded that PTTG1 overexpression in normal human fibroblasts caused chromosome instability, which subsequently induced p53-dependent senescence through activation of DNA-damage response pathway. 相似文献
13.
Bachar H. Hassan Laura A. Lindsey-Boltz Michael G. Kemp Aziz Sancar 《The Journal of biological chemistry》2013,288(26):18903-18910
TopBP1 (topoisomerase IIβ-binding protein 1) is a dual replication/checkpoint protein. Treslin/Ticrr, an essential replication protein, was discovered as a binding partner for TopBP1 and also in a genetic screen for checkpoint regulators in zebrafish. Treslin is phosphorylated by CDK2/cyclin E in a cell cycle-dependent manner, and its phosphorylation state dictates its interaction with TopBP1. The role of Treslin in the initiation of DNA replication has been partially elucidated; however, its role in the checkpoint response remained elusive. In this study, we show that Treslin stimulates ATR phosphorylation of Chk1 both in vitro and in vivo in a TopBP1-dependent manner. Moreover, we show that the phosphorylation state of Treslin at Ser-1000 is important for its checkpoint activity. Overall, our results indicate that, like TopBP1, Treslin is a dual replication/checkpoint protein that directly participates in ATR-mediated checkpoint signaling. 相似文献
14.
15.
16.
P Lisa-Santamaría A Jiménez JL Revuelta 《The Journal of biological chemistry》2012,287(35):29636-29647
The heterologous expression of human caspase-10 in Saccharomyces cerevisiae induces a lethal phenotype, which includes some hallmarks of apoptosis and autophagy, alterations in the intra-S checkpoint, and cell death. To determine the cellular processes and pathways that are responsible of the caspase-10-induced cell death we have designed a loss-of-function screening system to identify genes that are essential for the lethal phenotype. We observed that the ER-Golgi-localized family of proteins Far, MAPK signaling, the autophagy machinery, and several kinases and phosphatases are essential for caspase-10 toxicity. We also found that the expression of caspase-10 elicits a simultaneous activation of the MAP kinases Fus3, Kss1, and Slt2. Furthermore, the protein Far11, which is a target of MAP kinases, is essential for the dephosphorylation of Atg13 and, consequently, for the induction of autophagy. In addition, Far11 participates in the regulation of the DNA damage response through the dephosphorylation of Rad53. Finally, we have also demonstrated that Far11 is able to physically interact with the phosphatases Pph21, Pph22, and Pph3. Overall, our results indicate that the expression of human caspase-10 in S. cerevisiae activates an intracellular death signal that depends on the Far protein complex and that Far11 may function as a regulator subunit of phosphatases in different processes, thus representing a mechanistic link between them. 相似文献
17.
Maren Cam Hemant K. Bid Linlin Xiao Gerard P. Zambetti Peter J. Houghton Hakan Cam 《The Journal of biological chemistry》2014,289(7):4083-4094
Under conditions of DNA damage, the mammalian target of rapamycin complex 1 (mTORC1) is inhibited, preventing cell cycle progression and conserving cellular energy by suppressing translation. We show that suppression of mTORC1 signaling to 4E-BP1 requires the coordinated activity of two tumor suppressors, p53 and p63. In contrast, suppression of S6K1 and ribosomal protein S6 phosphorylation by DNA damage is Akt-dependent. We find that loss of either p53, required for the induction of Sestrin 1/2, or p63, required for the induction of REDD1 and activation of the tuberous sclerosis complex, prevents the DNA damage-induced suppression of mTORC1 signaling. These data indicate that the negative regulation of cap-dependent translation by mTORC1 inhibition subsequent to DNA damage is abrogated in most human cancers. 相似文献