首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Canine Visceral Leishmaniasis (CVL) is a zoonotic disease caused by Leishmania infantum, transmitted by the bite of Lutzomyia longipalpis sand flies. Dogs are the main domestic reservoir of the parasite. The establishment of an experimental model that partially reproduces natural infection in dogs is very important to test vaccine candidates, mainly regarding those that use salivary proteins from the vector and new therapeutical approaches.

Methodology/Principal Findings

In this report, we describe an experimental infection in dogs, using intradermal injection of Leishmania infantum plus salivary gland homogenate (SGH) of Lutzomyia longipalpis. Thirty-five dogs were infected with 1×107 parasites combined with five pairs of Lutzomyia longipalpis salivary glands and followed for 450 days after infection and clinical, immunological and parasitological parameters were evaluated. Two hundred and ten days after infection we observed that 31,4% of dogs did not display detectable levels of anti-Leishmania antibodies but all presented different numbers of parasites in the lymph nodes. Animals with a positive xenodiagnosis had at least 3,35×105 parasites in their lymph nodes. An increase of IFN-γ and IL-10 levels was detected during infection. Twenty two percent of dogs developed symptoms of CVL during infection.

Conclusion

The infection model described here shows some degree of similarity when compared with naturally infected dogs opening new perspectives for the study of CVL using an experimental model that employs the combination of parasites and sand fly saliva both present during natural transmission.  相似文献   

2.

Background

Phlebotomine sand flies are blood-sucking insects that can transmit Leishmania parasites. Hosts bitten by sand flies develop an immune response against sand fly salivary antigens. Specific anti-saliva IgG indicate the exposure to the vector and may also help to estimate the risk of Leishmania spp. transmission. In this study, we examined the canine antibody response against the saliva of Phlebotomus perniciosus, the main vector of Leishmania infantum in the Mediterranean Basin, and characterized salivary antigens of this sand fly species.

Methodology/Principal Findings

Sera of dogs bitten by P. perniciosus under experimental conditions and dogs naturally exposed to sand flies in a L. infantum focus were tested by ELISA for the presence of anti-P. perniciosus antibodies. Antibody levels positively correlated with the number of blood-fed P. perniciosus females. In naturally exposed dogs the increase of specific IgG, IgG1 and IgG2 was observed during sand fly season. Importantly, Leishmania-positive dogs revealed significantly lower anti-P. perniciosus IgG2 compared to Leishmania-negative ones. Major P. perniciosus antigens were identified by western blot and mass spectrometry as yellow proteins, apyrases and antigen 5-related proteins.

Conclusions

Results suggest that monitoring canine antibody response to sand fly saliva in endemic foci could estimate the risk of L. infantum transmission. It may also help to control canine leishmaniasis by evaluating the effectiveness of anti-vector campaigns. Data from the field study where dogs from the Italian focus of L. infantum were naturally exposed to P. perniciosus bites indicates that the levels of anti-P. perniciosus saliva IgG2 negatively correlate with the risk of Leishmania transmission. Thus, specific IgG2 response is suggested as a risk marker of L. infantum transmission for dogs.  相似文献   

3.

Background

Leishmania transmission occurs in the presence of insect saliva. Immunity to Phlebotomus papatasi or Lutzomyia longipalpis saliva or salivary components confers protection against an infection by Leishmania in the presence of the homologous saliva. However, immunization with Lutzomyia intermedia saliva did not protect mice against Leishmania braziliensis plus Lu. intermedia saliva. In the present study, we have studied whether the immunization with Lu. longipalpis saliva or a DNA plasmid coding for LJM19 salivary protein would be protective against L. braziliensis infection in the presence of Lu. intermedia saliva, the natural vector for L. braziliensis.

Methodology/Principal Findings

Immunization with Lu. longipalpis saliva or with LJM19 DNA plasmid induced a Delayed-Type Hypersensitivity (DTH) response against Lu. longipalpis as well as against a Lu. intermedia saliva challenge. Immunized and unimmunized control hamsters were then intradermally infected in the ears with L. braziliensis in the presence of Lu. longipalpis or Lu. intermedia saliva. Animals immunized with Lu. longipalpis saliva exhibited smaller lesion sizes as well as reduced disease burdens both at lesion site and in the draining lymph nodes. These alterations were associated with a significant decrease in the expression levels of IL-10 and TGF-β. Animals immunized with LJM19 DNA plasmid presented similar findings in protection and immune response and additionally increased IFN-γ expression.

Conclusions/Significance

Immunization with Lu. longipalpis saliva or with a DNA plasmid coding LJM19 salivary protein induced protection in hamsters challenged with L. braziliensis plus Lu. intermedia saliva. These findings point out an important role of immune response against saliva components, suggesting the possibility to develop a vaccine using a single component of Lu. longipalpis saliva to generate protection against different species of Leishmania, even those transmitted by a different vector.  相似文献   

4.
5.

Background

The binding of Leishmania promastigotes to the midgut epithelium is regarded as an essential part of the life-cycle in the sand fly vector, enabling the parasites to persist beyond the initial blood meal phase and establish the infection. However, the precise nature of the promastigote stage(s) that mediate binding is not fully understood.

Methodology/Principal Findings

To address this issue we have developed an in vitro gut binding assay in which two promastigote populations are labelled with different fluorescent dyes and compete for binding to dissected sand fly midguts. Binding of procyclic, nectomonad, leptomonad and metacyclic promastigotes of Leishmania infantum and L. mexicana to the midguts of blood-fed, female Lutzomyia longipalpis was investigated. The results show that procyclic and metacyclic promastigotes do not bind to the midgut epithelium in significant numbers, whereas nectomonad and leptomonad promastigotes both bind strongly and in similar numbers. The assay was then used to compare the binding of a range of different parasite species (L. infantum, L. mexicana, L. braziliensis, L. major, L. tropica) to guts dissected from various sand flies (Lu. longipalpis, Phlebotomus papatasi, P. sergenti). The results of these comparisons were in many cases in line with expectations, the natural parasite binding most effectively to its natural vector, and no examples were found where a parasite was unable to bind to its natural vector. However, there were interesting exceptions: L. major and L. tropica being able to bind to Lu. longipalpis better than L. infantum; L. braziliensis was able to bind to P. papatasi as well as L. major; and significant binding of L. major to P. sergenti and L. tropica to P. papatasi was observed.

Conclusions/Significance

The results demonstrate that Leishmania gut binding is strictly stage-dependent, is a property of those forms found in the middle phase of development (nectomonad and leptomonad forms), but is absent in the early blood meal and final stages (procyclic and metacyclic forms). Further they show that although gut binding may be necessary for parasite establishment, in several vector-parasite pairs the specificity of such in vitro binding alone is insufficient to explain overall vector specificity. Other significant barriers to development must exist in certain refractory Leishmania parasite-sand fly vector combinations. A re-appraisal of the specificity of the Leishmania-sand fly relationship is required.  相似文献   

6.
Some reports have described the interference of Leishmania on sand flies physiology, and such behavior most likely evolved to favor the development and transmission of the parasite. Most of these studies showed that Leishmania could modulate the level of proteases in the midgut after an infective blood meal, and decreased proteolytic activity is indeed beneficial for the development of promastigotes in the gut of sand flies. In the present study, we performed a detailed investigation of the intestinal pH in Lutzomyia longipalpis females naturally infected with Leishmania infantum and investigated the production of trypsin by these insects using different approaches. Our results allowed us to propose a mechanism by which these parasites interfere with the physiology of L. longipalpis to decrease the production of proteolytic enzymes. According to our hypothesis L. infantum promastigotes indirectly interfere with the production of trypsin by modulating the mechanism that controls the intestinal pH via the action of a yet non-identified substance released by promastigote forms inside the midgut. This substance is not an acid, whose action would be restrict on to release H+ to the medium, but is a substance that is able to interfere with midgut physiology through a mechanism involving pH control. According to our hypothesis, as the pH decreases, the proteolytic enzymes efficiency is also reduced, leading to a decline in the supply of amino acids to the enterocytes: this decline reduces the stimulus for protease production because it is regulated by the supply of amino acids, thus leading to a delay in digestion.  相似文献   

7.

Background

Various factors contribute to the urbanization of the visceral leishmaniasis (VL), including the difficulties of implementing control measures relating to the domestic reservoir. The aim of this study was to determine the prevalence of canine visceral leishmaniasis in an urban endemic area in Brazil and the factors associated with Leishmania infantum infection among seronegative and PCR-positive dogs.

Methodology

A cross-sectional study was conducted in Belo Horizonte, Minas Gerais, Brazil. Blood samples were collected from 1,443 dogs. Serology was carried out by using two enzyme-linked immunosorbent assays (Biomanguinhos/FIOCRUZ/RJ and “in house”), and molecular methods were developed, including PCR-RFLP. To identify the factors associated with early stages of infection, only seronegative (n = 1,213) animals were evaluated. These animals were divided into two groups: PCR-positive (n = 296) and PCR-negative (n = 917) for L. infantum DNA. A comparison of these two groups of dogs taking into consideration the characteristics of the animals and their owners was performed. A mixed logistic regression model was used to identify factors associated with L. infantum infection.

Principal Findings

Of the 1,443 dogs examined, 230 (15.9%) were seropositive in at least one ELISA, whereas PCR-RFLP revealed that 356 animals (24.7%) were positive for L. infantum DNA. Results indicated that the associated factors with infection were family incomeConclusionsPCR detected a high prevalence of L. infantum infection in dogs in an area under the Control Program of VL intervention. Socioeconomic variables, dog behavior and the knowledge of the owner regarding the vector were factors associated with canine visceral leishmaniasis (CVL). The absence of previous serological examination conducted by the control program was also associated with L. infantum infection. It is necessary to identify the risk factors associated with CVL to understand the expansion and urbanization of VL.  相似文献   

8.

Background

Antimonials remain the primary antileishmanial drugs in most developing countries. However, drug resistance to these compounds is increasing and our understanding of resistance mechanisms is partial.

Methods/Principal Findings

In the present study, quantitative proteomics using stable isotope labelling of amino acids in cell culture (SILAC) and genome next generation sequencing were used in order to better characterize in vitro generated Leishmania infantum antimony resistant mutant (Sb2000.1). Using the proteomic method, 58 proteins were found to be differentially regulated in Sb2000.1. The ABC transporter MRPA (ABCC3), a known marker of antimony resistance, was observed for the first time in a proteomic screen. Furthermore, transfection of its gene conferred antimony resistance in wild-type cells. Next generation sequencing revealed aneuploidy for 8 chromosomes in Sb2000.1. Moreover, specific amplified regions derived from chromosomes 17 and 23 were observed in Sb2000.1 and a single nucleotide polymorphism (SNP) was detected in a protein kinase (LinJ.33.1810-E629K).

Conclusion/Significance

Our results suggest that differentially expressed proteins, chromosome number variations (CNVs), specific gene amplification and SNPs are important features of antimony resistance in Leishmania.  相似文献   

9.
We demonstrate that a proteophosphoglycan-rich gel secreted by Leishmania infantum inside the midgut of Lutzomyia longipalpis sand flies (promastigote secretory gel) is regurgitated along with an average dose of 500 L. infantum metacyclic promastigotes per infected bite. Using both low (103) and high (105) doses of parasites in the ears of BALB/c mice we show that the infections benefit from the presence of vector saliva and parasite gel in the skin. However, chronic infection of the spleen was only enhanced in high dose co-infections with gel. These results provide the framework for a more natural experimental model of visceral leishmaniasis.  相似文献   

10.
The quantification of anti-Leishmania antibodies in serum and saliva by a time-resolved immunofluorometric assay is useful for the diagnosis and treatment monitoring of dogs with clinical leishmaniasis. We compared the kinetics of anti-Leishmania IgG2 and IgA antibodies in serum and saliva from 11 Beagle dogs experimentally infected with Leishmania infantum. Most dogs showed detectable concentrations of anti-Leishmania IgG2 earlier in serum (between 3 and 4 months p.i.) than in saliva (between 4 and 6 months p.i.). Overall, a high correlation between concentrations of anti-Leishmania IgG2 in serum and saliva (r = 0.853; P < 0.0001) was observed. The quantification of anti-Leishmania IgA showed less diagnostic value than IgG2, since detectable amounts of IgA were not observed in the saliva of four dogs and in the serum of one dog. In addition, a very low correlation between anti-Leishmania IgA in serum and saliva (r = 0.289; P < 0.001) was observed. Our results indicate that the antibodies against L. infantum in saliva appear approximately 1 month later than in serum, and suggest that there is a threshold for the passing of immunoglobulins from serum to saliva in dogs. These facts should be taken into consideration for a proper interpretation of saliva assays for quantification of antibodies.  相似文献   

11.

Background

Visceral leishmaniasis in Brazil is caused by the protozoan Leishmania (Leishmania) chagasi and it is transmitted by sandfly of the genus Lutzomyia. Dogs are an important domestic reservoir, and control of the transmission of visceral leishmaniasis (VL) to humans includes the elimination of infected dogs. However, though dogs are considered to be an important element in the transmission cycle of Leishmania, the identification of infected dogs representing an immediate risk for transmission has not been properly evaluated. Since it is not possible to treat infected dogs, they are sacrificed when a diagnosis of VL is established, a measure that is difficult to accomplish in highly endemic areas. In such areas, parameters that allow for easy identification of reservoirs that represents an immediate risk for transmission is of great importance for the control of VL transmission. In this study we aimed to identify clinical parameters, reinforced by pathological parameters that characterize dogs with potential to transmit the parasite to the vector.

Results

The major clinical manifestations of visceral leishmaniasis in dogs from an endemic area were onicogriphosis, skin lesions, conjunctivitis, lymphadenopathy, and weight loss. The transmission potential of these dogs was assessed by xenodiagnosis using Lutzomyia longipalpis. Six of nine symptomatic dogs were infective to Lutzomyia longipalpis while none of the five asymptomatic dogs were infective to the sandfly. Leishmania amastigotes were present in the skin of all clinically symptomatic dogs, but absent in asymptomatic dogs. Higher parasite loads were observed in the ear and ungueal region, and lower in abdomen. The inflammatory infiltrate was more intense in the ears and ungueal regions of both symptomatic and asymptomatic dogs. In clinically affected dogs in which few or none Leishmania amastigotes were observed, the inflammatory infiltrate was constituted mainly of lymphocytes and macrophages. When many parasites were present, the infiltrate was also comprised of lymphocytes and macrophages, as well as a larger quantity of polymorphonuclear neutrophils (PMNs).

Conclusion

Dogs that represent an immediate risk for transmission of Leishmania in endemic areas present clinical manifestations that include onicogriphosis, skin lesions, conjunctivitis, lymphadenopathy, and weight loss. Lymphadenopathy in particular was a positive clinical hallmark since it was closely related to the positive xenodiagnosis.
  相似文献   

12.

Background

Visceral Leishmaniasis (VL) caused by species from the Leishmania donovani complex is the most severe form of the disease, lethal if untreated. VL caused by Leishmania infantum is a zoonosis with an increasing number of human cases and millions of dogs infected in the Old and the New World. In this study, L. infantum (syn. L.chagasi) strains were isolated from human and canine VL cases. The strains were obtained from endemic areas from Brazil and Portugal and their genetic polymorphism was ascertained using the LSSP-PCR (Low-Stringency Single Specific Primer PCR) technique for analyzing the kinetoplastid DNA (kDNA) minicircles hypervariable region.

Principal Findings

KDNA genetic signatures obtained by minicircle LSSP-PCR analysis of forty L. infantum strains allowed the grouping of strains in several clades. Furthermore, LSSP-PCR profiles of L. infantum subpopulations were closely related to the host origin (human or canine). To our knowledge this is the first study which used this technique to compare genetic polymorphisms among strains of L. infantum originated from both the Old and the New World.

Conclusions

LSSP-PCR profiles obtained by analysis of L. infantum kDNA hypervariable region of parasites isolated from human cases and infected dogs from Brazil and Portugal exhibited a genetic correlation among isolates originated from the same reservoir, human or canine. However, no association has been detected among the kDNA signatures and the geographical origin of L. infantum strains.  相似文献   

13.

Background

The mode of reproduction in Leishmania spp has been argued to be essentially clonal. However, recent data (genetic analysis of populations and co-infections in sand flies) have proposed the existence of a non-obligate sexual cycle in the extracellular stage of the parasite within the sand fly vector. In this article we propose the existence of intraclonal genetic exchange in the natural vector of Leishmania infantum.

Methodology/Principal findings

We have developed transgenic L. infantum lines expressing drug resistance markers linked to green and red fluorescent reporters. We hypothesized whether those cells with identical genotype can recognize each other and mate. Both types of markers were successfully exchanged within the sand fly midgut of the natural vector Phlebotomus perniciosus when individuals from these species were fed with a mixture of parental clones. Using the yellow phenotype and drug resistance markers, we provide evidence for genetic exchange in L. infantum. The hybrid progeny appeared to be triploid based on DNA content analysis. The hybrid clone analyzed was stable throughout the complete parasite life cycle. The progress of infections by the hybrid clone in BALB/c mice caused a reduction in parasite loads in both spleen and liver, and provided weight values similar to those obtained with uninfected mice. Spleen arginase activity was also significantly reduced relative to parental strains.

Conclusions/Significance

A L. infantum hybrid lineage was obtained from intraclonal genetic exchange within the midgut of the natural vector, suggesting the ability of this parasite to recognize the same genotype and mate. The yellow hybrid progeny is stable throughout the whole parasite life cycle but with a slower virulence, which correlates well with the lower arginase activity detected both in vitro and in vivo infections.  相似文献   

14.

Background

Visceral leishmaniasis has emerged as an important opportunistic disease among patients infected with HIV-1. Both HIV-1 and the protozoan parasite Leishmania can productively infect cells of the macrophage-dendritic cell lineage.

Methodology/Principal Findings

Here we demonstrate that Leishmania infantum amastigotes increase HIV-1 production when human primary dendritic cells (DCs) are cocultured together with autologous CD4+ T cells. Interestingly, the promastigote form of the parasite does not modulate virus replication. Moreover, we report that amastigotes promote virus replication in both cell types. Our results indicate that this process is due to secretion of parasite-induced soluble factors by DCs. Luminex micro-beads array system analyses indicate that Leishmania infantum amastigotes induce a higher secretion of several cytokines (i.e. IL-1α, IL-2, IL-6, IL-10 and TNF-α) and chemokines (i.e. MIP-1α, MIP-1β and RANTES) in these cells. Studies conducted with pentoxifylline and neutralizing antibodies revealed that the Leishmania-dependent augmentation in HIV-1 replication is due to a higher secretion of IL-6 and TNF-α.

Conclusions/Significance

Altogether these findings suggest that the presence of Leishmania within DC/T-cell conjugates leads to an enhancement of virus production and demonstrate that HIV-1 and Leishmania can establish complex interactions in such a cellular microenvironment.  相似文献   

15.

Background

Visceral leishmaniasis caused by the protozoan Leishmania infantum is a zoonotic, life threatening parasitic disease. Domestic dogs are the main peridomestic reservoir, and allopurinol is the most frequently used drug for the control of infection, alone or in combination with other drugs. Resistance of Leishmania strains from dogs to allopurinol has not been described before in clinical studies.

Methodology/Principal Findings

Following our observation of clinical disease relapse in dogs under allopurinol treatment, we tested susceptibility to allopurinol of L. infantum isolated from groups of dogs pre-treatment, treated in remission, and with disease relapse during treatment. Promastigote isolates obtained from four treated relapsed dogs (TR group) showed an average half maximal inhibitory concentration (IC50) of 996 μg/mL. A significantly lower IC50 (P = 0.01) was found for isolates from ten dogs before treatment (NT group, 200 μg/mL), as well as for five isolates obtained from treated dogs in remission (TA group, 268 μg/mL). Axenic amastigotes produced from isolates of the TR group also showed significantly higher (P = 0.002) IC50 compared to the NT group (1678 and 671 μg/mL, respectively). The lower sensitivity of intracellular amastigotes from the TR group relative to those from the NT group (P = 0.002) was confirmed using an infected macrophage model (6.3% and 20% growth inhibition, respectively at 300 μg/mL allopurinol).

Conclusions

This is the first study to demonstrate allopurinol resistance in L. infantum and to associate it with disease relapse in the canine host. These findings are of concern as allopurinol is the main drug used for long term control of the disease in dogs, and resistant L. infantum strains may enhance uncontrolled transmission to humans and to other dogs.  相似文献   

16.

Background

Leishmania is transmitted by female sand flies and deposited together with saliva, which contains a vast repertoire of pharmacologically active molecules that contribute to the establishment of the infection. The exposure to vector saliva induces an immune response against its components that can be used as a marker of exposure to the vector. Performing large-scale serological studies to detect vector exposure has been limited by the difficulty in obtaining sand fly saliva. Here, we validate the use of two sand fly salivary recombinant proteins as markers for vector exposure.

Methodology/principal findings

ELISA was used to screen human sera, collected in an area endemic for visceral leishmaniasis, against the salivary gland sonicate (SGS) or two recombinant proteins (rLJM11 and rLJM17) from Lutzomyia longipalpis saliva. Antibody levels before and after SGS seroconversion (n = 26) were compared using the Wilcoxon signed rank paired test. Human sera from an area endemic for VL which recognize Lu. longipalpis saliva in ELISA also recognize a combination of rLJM17 and rLJM11. We then extended the analysis to include 40 sera from individuals who were seropositive and 40 seronegative to Lu. longipalpis SGS. Each recombinant protein was able to detect anti-saliva seroconversion, whereas the two proteins combined increased the detection significantly. Additionally, we evaluated the specificity of the anti-Lu. longipalpis response by testing 40 sera positive to Lutzomyia intermedia SGS, and very limited (2/40) cross-reactivity was observed. Receiver-operator characteristics (ROC) curve analysis was used to identify the effectiveness of these proteins for the prediction of anti-SGS positivity. These ROC curves evidenced the superior performance of rLJM17+rLJM11. Predicted threshold levels were confirmed for rLJM17+rLJM11 using a large panel of 1,077 serum samples.

Conclusion

Our results show the possibility of substituting Lu. longipalpis SGS for two recombinant proteins, LJM17 and LJM11, in order to probe for vector exposure in individuals residing in endemic areas.  相似文献   

17.

Background

Visceral leishmaniasis is the most severe form of leishmaniasis. Approximately 20% of zoonotic human visceral leishmaniasis worldwide is caused by Leishmania infantum, which is also known as Leishmania chagasi in Latin America, and disease incidence is increasing in urban and peri-urban areas of the tropics. In this form of disease, dogs are the main reservoirs. Diagnostic methods used to identify Leishmania infected animals are not able to detect all of the infected ones, which can compromise the effectiveness of disease control. Therefore, to contribute to the improvement of diagnostic methods for canine visceral leishmaniasis (CVL), we aimed to identify and test novel antigens using high-throughput analysis.

Methodology/Principal Findings

Immunodominant proteins from L. infantum were mapped in silico to predict B cell epitopes, and the 360 predicted peptides were synthesized on cellulose membranes. Immunoassays were used to select the most reactive peptides, which were then investigated with canine sera. Next, the 10 most reactive peptides were synthesized using solid phase peptide synthesis protocol and tested using ELISA. The sensitivity and specificity of these peptides were also compared to the EIE-LVC Bio-Manguinhos kit, which is recommended by the Brazilian Ministry of Health for use in leishmaniasis control programs. The sensitivity and specificity of the selected synthesized peptides was as high as 88.70% and 95.00%, respectively, whereas the EIE-LVC kit had a sensitivity of 13.08% and 100.00% of specificity. Although the tests based on synthetic peptides were able to diagnose up to 94.80% of asymptomatic dogs with leishmaniasis, the EIE-LVC kit failed to detect the disease in any of the infected asymptomatic dogs.

Conclusions/Significance

Our study shows that ELISA using synthetic peptides is a technique with great potential for diagnosing CVL; furthermore, the use of these peptides in other diagnostic methodologies, such as immunochromatographic tests, could be beneficial to CVL control programs.  相似文献   

18.
19.

Background

Sand fly saliva contains molecules that modify the host''s hemostasis and immune responses. Nevertheless, the role played by this saliva in the induction of key elements of inflammatory responses, such as lipid bodies (LB, also known as lipid droplets) and eicosanoids, has been poorly investigated. LBs are cytoplasmic organelles involved in arachidonic acid metabolism that form eicosanoids in response to inflammatory stimuli. In this study, we assessed the role of salivary gland sonicate (SGS) from Lutzomyia (L.) longipalpis, a Leishmania infantum chagasi vector, in the induction of LBs and eicosanoid production by macrophages in vitro and ex vivo.

Methodology/Principal Findings

Different doses of L. longipalpis SGS were injected into peritoneal cavities of C57BL/6 mice. SGS induced increased macrophage and neutrophil recruitment into the peritoneal cavity at different time points. Sand fly saliva enhanced PGE2 and LTB4 production by harvested peritoneal leukocytes after ex vivo stimulation with a calcium ionophore. At three and six hours post-injection, L. longipalpis SGS induced more intense LB staining in macrophages, but not in neutrophils, compared with mice injected with saline. Moreover, macrophages harvested by peritoneal lavage and stimulated with SGS in vitro presented a dose- and time-dependent increase in LB numbers, which was correlated with increased PGE2 production. Furthermore, COX-2 and PGE-synthase co-localized within the LBs induced by L. longipalpis saliva. PGE2 production by macrophages induced by SGS was abrogated by treatment with NS-398, a COX-2 inhibitor. Strikingly, SGS triggered ERK-1/2 and PKC-α phosphorylation, and blockage of the ERK-1/2 and PKC-α pathways inhibited the SGS effect on PGE2 production by macrophages.

Conclusion

In sum, our results show that L. longipalpis saliva induces lipid body formation and PGE2 production by macrophages ex vivo and in vitro via the ERK-1/2 and PKC-α signaling pathways. This study provides new insights regarding the pharmacological mechanisms whereby L. longipalpis saliva influences the early steps of the host''s inflammatory response.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号