首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
DNA encapsulation by an air-agitated, liquid-liquid mixer   总被引:1,自引:0,他引:1  
Smooth and spherical alginate microspheres and nylon-membrane bound microcapsules were formed in an air-agitated, liquid-liquid mixer by emulsification/internal gelation and interfacial polymerization respectively. The mean diameter of the alginate microspheres ranged from 100 to 800 mum, and was controlled by process modifications. Increase in emulsifier concentration, gas flowrate, and emulsification time resulted in smaller microsphere size as did a decrease in liquid height. Increase in the dispersed phase viscosity resulted in a longer emulsification time required for approaching a minimum microsphere size. Microspheres could be formed with the proportion of dispersed phase approaching 30%. The yield of alginate microspheres was 70%, with losses attributed to incomplete recovery during washing and filtration operations. The yield of DNA encapsulation within the fraction of recovered microspheres, was 94%. The small loss was thought to occur by surface release during the washing of the microspheres. (c) 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 56: 464-470, 1997.  相似文献   

2.
Bovine serum albumin-loaded beads were prepared by ionotropic gelation of alginate with calcium chloride and chitosan. The effect of sodium alginate concentration and chitosan concentration on the particle size and loading efficacy was studied. The diameter of the beads formed is dependent on the size of the needle used. The optimum condition for preparation alginate–chitosan beads was alginate concentration of 3% and chitosan concentration of 0.25% at pH 5. The resulting bead formulation had a loading efficacy of 98.5% and average size of 1,501 μm, and scanning electron microscopy images showed spherical and smooth particles. Chitosan concentration significantly influenced particle size and encapsulation efficiency of chitosan–alginate beads (p < 0.05). Decreasing the alginate concentration resulted in an increased release of albumin in acidic media. The rapid dissolution of chitosan–alginate matrices in the higher pH resulted in burst release of protein drug.  相似文献   

3.
Chemical sensors utilizing immobilized enzymes and proteins are important for monitoring chemical processes and biological systems. In this study, calcium-cross-linked alginate hydrogel microspheres were fabricated as enzyme carriers by an emulsification technique. Glucose oxidase (GOx) was encapsulated in alginate microspheres using three different methods: physical entrapment (emulsion), chemical conjugation (conjugation), and a combination of physical entrapment and chemical conjugation (emulsion-conjugation). Nano-organized coatings were applied on alginate/GOx microspheres using the layer-by-layer self-assembly technique in order to stabilize the hydrogel/enzyme system under biological environment. The encapsulation of GOx and formation of nanofilm coating on alginate microspheres were verified with FTIR spectral analysis, zeta-potential analysis, and confocal laser scanning microscopy. To compare both the immobilization properties of enzyme encapsulation techniques and the influence of nanofilms with uncoated microspheres, the relationship between enzyme loading, release, and effective GOx activity (enzyme activity per unit protein loading) were studied over a period of four weeks. The results produced four key findings: (1) the emulsion-conjugation technique improved the stability of GOx in alginate microspheres compared to the emulsion technique, reducing the GOx leaching from microsphere from 50% to 17%; (2) the polyelectrolyte nanofilm coatings increased the GOx stability over time, but also reduced the effective GOx activity; (3) the effective GOx activity for the emulsion-conjugation technique (about 3.5 x 10(-)(5) AU microg(-)(1) s(-)(1)) was higher than that for other methods, and did not change significantly over four weeks; and (4) the GOx concentration, when compared after one week for microspheres with three bilayers of poly(allylamine hydrochloride)/sodium poly(styrene sulfonate) ({PAH/PSS}) coating, was highest for the emulsion-conjugation technique. As a result, the comparison of these three techniques showed the emulsion-conjugation technique to be a potentially effective and practical way to fabricate alginate/GOx microspheres for implantable glucose biosensor application.  相似文献   

4.
Electrospinning was employed to fabricate chitosan microspheres by a single-step encapsulation of proteins without organic solvents. Chitosan in acetic acid was electrospun toward a grounded sodium carbonate solution at various electric potential and feeding rates. Electrospun microspheres became insoluble and solidified in the sodium carbonate solution by neutralization of chitosan acetate. When the freeze-dried microspheres were examined by scanning electron microscopy, the small particle size was obtained at higher voltages. This is explained by the chitosan droplet size at the electrospinning needle was clearly controllable by the electric potential. The recovery yield of chitosan microspheres was dependent on the concentration of chitosan solution due to the viscosity is the major factor affecting formation of chitosan droplet during curling of the electrospinning jets. For protein encapsulation, fluorescently labeled bovine serum albumin (BSA) was codissolved with chitosan in the solution and electrospun. At higher concentration of sodium carbonate solution and longer solidification time in the solution, the encapsulation efficiency of the protein was confirmed to be significantly high. The high encapsulation efficiency was achievable by instant solidification of microspheres and electrostatic interactions between chitosan and BSA. Release profiles of BSA from the microspheres showed that the protein release was faster in acidic solution due to dissolution of chitosan. Reversed-phase chromatography of the released fractions confirmed that exposure of BSA to acidic solution during the electrospinning did not result in structural changes of the encapsulated protein.  相似文献   

5.
The feasibility of dissolved‐core alginate‐templated fluorescent microspheres as “smart tattoo” glucose biosensors was investigated in simulated interstitial fluid (SIF). The sensor works on the principle of competitive binding and fluorescence resonance energy transfer. The sensor consists of multilayer thin film coated alginate microspheres incorporating dye‐labeled glucose receptor and competing ligand within the partially dissolved alginate core. In this study, different approaches for the sensing and detection chemistry were studied, and the response of encapsulated reagents was compared with the solution‐phase counterparts. The glucose sensitivity of the encapsulated TRITC‐Con A/FITC‐dextran (500 kDa) assay in DI water was estimated to be 0.26%/mM glucose while that in SIF was observed to be 0.3%/mM glucose. The glucose sensitivity of TRITC‐apo‐GOx/FITC‐dextran (500 kDa) assay was estimated to be 0.33%/mM glucose in DI water and 0.5%/mM glucose in SIF and both demonstrated a response in the range of 0–50 mM glucose. Therefore, it is hypothesized that the calcium ion concentration outside the microsphere (in the SIF) does not interfere with the response sensitivity. The sensor response was observed to exhibit a maximum response time of 120 s. The system further exhibited a sensitivity of 0.94%/mM glucose with a response in range of 0–50 mM glucose, using near‐infrared dyes (Alexa Fluor‐647‐labeled dextran as donor and QSY‐21‐conjugated apo‐GOx as acceptor), thereby making the sensor more amenable to in vivo use, when implanted in scattering tissue. Biotechnol. Bioeng. 2009; 104: 1075–1085. © 2009 Wiley Periodicals, Inc.  相似文献   

6.
Dermatan sulfate (DS) is a glycosaminoglycan (GAG) with a great potential as a new therapeutic agent in tissue engineering. The aim of the present study was to investigate the formation of polyelectrolyte complexes (PECs) between chitosan and dermatan sulfate (CS/DS) and delivery of DS from PEC-containing alginate/chitosan/dermatan sulfate (Alg/CS/DS) microspheres for application in tissue regeneration. The CS/DS complexes were initially formed at different conditions including varying CS/DS ratio (positive/negative charge ratio), buffer, and pH. The obtained CS/DS complexes exhibited stronger electrostatic interaction, smaller complex size, and more stable colloidal structure when chitosan was in large excess (CS/DS 3:1) and prepared at pH 3.5 as compared to pH 5 using acetate buffer. The CS/DS complexes were subsequently incorporated into an alginate matrix by spray drying to form Alg/CS/DS composite microspheres with a DS encapsulation efficiency of 90-95%. The excessive CS induced a higher level of sustained DS release into Tris buffer (pH 7.4) from the microspheres formulated at pH 3.5; however, the amount of CS did not have a significant effect on the release from the microspheres formulated at pH 5. Significant cell proliferation was stimulated by the DS released from the microspheres in vitro. The present results provide a promising drug delivery strategy using PECs for sustained release of DS from microspheres intended for site-specific drug delivery and ultimately for use in tissue engineering.  相似文献   

7.
目的:在支架材料上引入具有控释行为的微球,旨在通过微球包裹生长因子,通过生长因子的缓慢释放从而促进种子细胞的生长分化。方法:本实验通过在海藻酸钠水凝胶中负载具有控释功能的壳聚糖微球,并通过在微球中包载溶菌酶从而达到控制壳聚糖降解速率的功效。实验研究了不同搅拌速度下壳聚糖微球的形貌及粒径大小,通过扫描电镜对壳聚糖微球及复合支架的形貌进行了观察,通过紫外光吸收法测试了微球的载药量及包封率,并研究了壳聚糖微球在体外的降解行为等。结果:制备的壳聚糖微球表面较光滑,溶菌酶的包封率在25.78%-41.89%之间,载药量在15.20%-24.44%之间。包封溶菌酶的微胶囊在降解9天后壳聚糖分子量下降了70.40%,载荷微球的复合凝胶孔洞增多,孔洞大小均匀。结论:此复合材料有望作为载荷软骨相关生长因子的支架模型,从而解决软骨组织工程中种子细胞匮乏的问题。  相似文献   

8.
The purpose of this research was to study the influence of type of chitosan with different molecular weights, ie, 190 and 419 kDa, on properties of pellets prepared by extrusion/ spheronization. The formulations, consisting of acetaminophen as model drug, chitosan, microcrystalline cellulose (MCC), and dibasic calcium phosphate dihydrate with/without sodium alginate, were extruded using a twin-screw extruder and water as the granulating liquid. With 30% wt/wt MCC and no added sodium alginate, spherical pellets were produced containing low and high molecular weight chitosan at a maximum amount of 60% and 40% wt/wt, respectively. With sodium alginate (2.5% wt/wt), pellets with either type of chitosan (60% wt/wt), MCC (17.5% wt/wt), and acetaminophen (20% wt/wt) could be produced indicating an improved pelletforming ability. Type and amount of chitosan and added sodium alginate affected physical properties of pellets including size, roundness, crushing force, and drug release. Low molecular weight chitosan produced pellets with higher mean diameter, sphericity, and crushing force. Additionally, the pellets made of low molecular weight chitosan and added sodium alginate showed faster drug release in 0.1 N HCl but had slower drug release in pH 7.4 phosphate buffer. This indicated that drug release from pellets could be modified by the molecular weight of chitosan. In conclusion, the molecular weight of chitosan had a major influence on formation, physical properties, and drug release from the obtained pellets. Published: August 10, 2007  相似文献   

9.
采用新型微孔膜乳化技术制备了载胰岛素的壳聚糖微球。研究表明,要制备粒径均一的壳聚糖微球,必须将亲水性膜修饰成疏水性;制得的微球粒径和所采用的膜孔径之间存在很好的线性关系,使得微球粒径可控;以胰岛素为模型药物,主要考察了交联剂用量和交联时间对微球表面形态、药物包埋率和微球体外释药特性的影响。结果表明当氨基与醛基的摩尔比为1∶0.7、交联时间为1h时,所得载药微球的包埋率最高,随着戊二醛用量的增加和交联时间的延长,药物体外释放速率减慢。  相似文献   

10.
The objective of the present study was to optimize the concentration of a chitosan solution, stirring speed, and concentration of drugs having different aqueous solubility for the formulation of chitosan microspheres. Chitosan microspheres (unloaded and drug loaded) were prepared by the chemical denaturation method and were subjected to measurement of morphology, mean particle size, particle size distribution, percentage drug entrapment (PDE), drug loading, and drug release (in vitro). Morphology of the microspheres was dependent on the level of independent process parameters. While mean particle size of unloaded microspheres was found to undergo significant change with each increase in concentration of chitosan solution, the stirring rate was found to have a significant effect only at the lower level (ie, 2000 to 3000 rpm). Of importance, spherical unloaded microspheres were also obtained with a chitosan solution of concentration less than 1 mg/mL. Segregated unloaded microspheres with particle size in the range of 7 to 15 microm and mean particle size of 12.68 microm were obtained in the batch prepared by using a chitosan solution of 2 mg/mL concentration and stirring speed of 3000 rpm. The highest drug load ( microg drug/mg microspheres) was 50.63 and 13.84 for microspheres containing 5-fluorouracil and methotrexate, respectively. While the release of 5-fluorouracil followed Higuchi's square-root model, methotrexate released more slowly with a combination of first-order kinetics and Higuchi's square-root model. The formation of chitosan microspheres is helped by the use of differential stirring. While an increase in the concentration of water-soluble drug may help to increase PDE and drug load over a large concentration range, the effect is limited in case of water-insoluble drugs.  相似文献   

11.
Emulsan, a tailorable biopolymer for controlled release   总被引:2,自引:0,他引:2  
Microsphere hydrogels made with emulsan-alginate were used as carrier for the microencapsulation of blue dextran in order to study the effect of emulsan on the alginate bead stability. Blue dextran release studies indicated an increase of microsphere stability in presence of emulsan, as a coating agent. BSA adsorption by emulsan-alginate microspheres is also enhanced 40% compared to alginate alone. XPS studies confirm the presence of BSA adsorbed on emulsan microsphere surfaces. These results are in agreement with the equilibrium adsorption model of Freundlich. Studies of BSA adsorption using non-equilibrium Lagergren second-order and intraparticle models, are suggesting a complex mechanisms of protein adsorption by chemisorption and intraparticle diffusion. Also, enzymatic release of BSA from emulsan microspheres containing azo-BSA under physiological conditions is suggests the possibility of using microspheres as a depot for pre-proteins of medical interest.  相似文献   

12.
This study aimed at preparation of a sustained-release steroidal treatment for chronic inflammatory conditions, such as rheumatoid arthritis. To achieve such a goal, biodegradable poly-lactide-co-glycolide prednisolone-loaded microspheres were prepared using o/w emulsion solvent evaporation method. Formulation parameters were adjusted so as to optimize the microsphere characteristics. The prepared microspheres exhibited smooth and intact surfaces, with average size range not exceeding 65 μm. The encapsulation efficiency percent of most microsphere formulations fell within the range of 25–68%. Drug release from these microspheres took place over 4 weeks, with near-to-zero-order patterns. Two successful formulations were chosen for the treatment of unilateral arthritis, induced in mice using Freund's complete adjuvant (FCA). Inflammatory signs of adjuvant arthritis included severe swelling of the FCA-injected limbs, in addition to many histopathological lesions. These included inflammatory cell infiltration, synovial hyperplasia, cartilage, and bone erosion. Parenteral administration of the selected formulae dramatically reduced the swelling of the FCA-injected limbs. In addition, histological examination revealed that the microsphere treatment protocol efficiently protected cartilages and bones of mice, injected with FCA initial and booster doses, from erosion. These results could not be achieved by a single prednisolone dose of 5 mg/kg.  相似文献   

13.
This paper reports the preparation and characterization of novel pH- and thermo-responsive blend hydrogel microspheres of sodium alginate (NaAlg) and poly(N-isopropylacrylamide)(PNIPAAm)-grafted-guar gum (GG) i.e., PNIPAAm-g-GG by emulsion cross-linking method using glutaraldehyde (GA) as a cross-linker. Isoniazid (INZ) was chosen as the model antituberculosis drug to achieve encapsulation up to 62%. INZ has a plasma half-life of 1.5 h, whose release was extended up to 12 h. Fourier transform infrared spectroscopy was used to confirm the grafting reaction and chemical stability of INZ during the encapsulation. Differential scanning calorimetry was used to investigate the drug’s physical state, while powder X-ray diffraction confirmed the molecular level dispersion of INZ in the matrix. Scanning electron microscopy confirmed varying surface morphologies of the drug-loaded microspheres. Temperature- and pH-responsive nature of the blend hydrogel microspheres were investigated by equilibrium swelling, and in vitro release experiments were performed in pH 1.2 and pH 7.4 buffer media at 37°C as well as at 25°C. Kinetics of INZ release was analyzed by Ritger–Peppas empirical equation to compute the diffusional exponent parameter (n), whose value ranged between 0.27 and 0.58, indicating the release of INZ follows a diffusion swelling controlled release mechanism.KEY WORDS: blend hydrogel microsphere, graft copolymer, isoniazid, pH sensitive, temperature sensitive  相似文献   

14.
Chitosan/carboxymethyl cashew gum microspheres (CH/CMCG) were prepared with carboxymethyl cashew gum with two different degrees of substitution (DS) and loaded with bovine serum albumin (BSA). In water, for microspheres formed using low molar mass chitosan (LCH) sample swelling was observed for both CMCG samples and CMCG sample with higher DS showed greater swelling. Using high molar mass chitosan (HCH) sample swelling was observed only for microsphere with high DS of CMCG (DS = 0.44). At pH 7.4, the HCH sample led to a lower degree of swelling. The diffusion coefficients Dv were higher for the higher DS of CMCG in both media and the HCH sample had a lower Dv than LCH one. Faster BSA release rates were observed for beads prepared with the higher DS, whereas those prepared with DS = 0.16 took twice the time to reach similar release profiles. All microsphere systems investigated had a non-Fickian BSA release mechanism.  相似文献   

15.
目的:开发一种有效地长效缓释干扰素α微球制剂。方法:利用S/O/W乳剂-挥发法制备了包裹干扰素α多糖颗粒的PLAG微球,对其外观形态进行了考察,并用ELISA方法考察了微球体外释放效果。结果:制备的干扰素α微球圆整光滑,粒径均匀;经24天体外释放,累计释放率达到80%以上。结论:通过包封包裹干扰素α的多糖颗粒进PLGA微球,有效地保护了干扰素α在微球中的活性,实现了长效缓释,是一种可行的缓释方案。  相似文献   

16.
The cross-linked microspheres using chitosan with different molecular weights and degree of deacetylation have been prepared in presence of sodium hexameta polyphosphate (SHMP) as physical cross-linker. The degree of cross-linking through electrostatic interactions in chitosan microspheres has been evaluated by varying the charge density on chitosan and varying degree of dissociation of sodium hexameta polyphosphate by solution pH. The degree of deacetylation and molecular weight of chitosan has controlled electrostatic interactions between hexameta polyphosphate anions and chitosan, which played significant role in swelling, loading and release characteristics of chitosan microspheres for centchroman. The microspheres prepared by hexameta polyphosphate anions cross-linker were compact and more hydrophobic than covalently cross-linked microspheres, which has been attributed to the participation of all amino groups of chitosan in physical cross-linking with added hexameta polyphosphate anions. The microspheres prepared under different experimental conditions have shown an initial step of burst release, which was followed by a step of controlled release for centchroman. The extent of drug release in these steps has shown dependence on properties of chitosan and degree of cross-linking between chitosan and added polyanions. The degree of swelling and release characteristics of microspheres was also studied in presence of organic and inorganic salts, which shown significant effect on controlled characteristics of microspheres due to variations in ionic strength of the medium. The initial step of drug release has followed first order kinetics and become zero order after attaining an equilibrium degree of swelling in these microspheres. The microspheres prepared using chitosan with 62% (w/w) degree of deacetylation and molecular weight of 1134 kg mol−1 have shown a sustained release for centchroman for 50 h at 4% (w/w) degree of cross-linking with SHMP.  相似文献   

17.
The aim of this study was to prepare cyclosporin A-loaded liposome (CyA-Lip) as an oral delivery carrier, with their encapsulation into microspheres based on alginate or extracellular polysaccharide (EPS) p-m 10356. The main advantage of liposomes in the microspheres (LIMs) is to improve the restricted drug release property from liposomes and their stability in the stomach environment. Alginate microspheres containing CyA-Lip were prepared with a spray nozzle; CyA-Liploaded EPS microspheres were also prepared using a w/o emulsion method. The shape of the LIMs was spherical and uniform, and the particle size of the alginate-LIMs ranged from 5 to 10 μm, and that of the EPS-LIMs was about 100 μm. In a release test, release rate of CyA in simulated intestinal fluid (SIF) from the LIMs was significantly enhanced compared to that in simulated gastric fluid (SGF). In addition, the CyA release rates were slower from formulations containing the liposomes compared to the microspheres without the liposome. Therefore, alginate-and EPS-LIMs have the potential for the controlled release of CyA and as an oral delivery system.  相似文献   

18.
目的:在支架材料上引入具有控释行为的微球,旨在通过微球包裹生长因子,通过生长因子的缓慢释放从而促进种子细胞的生长分化。方法:本实验通过在海藻酸钠水凝胶中负载具有控释功能的壳聚糖微球,并通过在微球中包栽溶茵酶从而达到控制壳聚糖降解速率的功效。实验研究了不同搅拌速度下壳聚糖微球的形貌及粒径大小,通过扫描电镜对壳聚糖微球及复合支架的形貌进行了观察,通过紫外光吸收法测试了微球的载药量及包封率,并研究了壳聚糖微球在体外的降解行为等。结果:制备的壳聚糖微球表面较光滑,溶菌酶的包封率在25.78%41.89%之间,载药量在15.20%-24.44%之间。包封溶茵酶的微胶囊在降解9天后壳聚糖分子量下降了70.40%,载荷微球的复合凝胶孔洞增多,孔洞大小均匀。结论:此复合材料有望作为栽荷软骨相关生长因子的支架模型,从而解决软骨组织工程中种子细胞匮乏的问题。  相似文献   

19.
Polysaccharides-based functional microspheres were fabricated under mild conditions. Firstly, magnetic alginate microspheres were prepared by emulsification/internal gelation and acted as substrates. Then the multilayer composite microspheres (MCM) were obtained through the layer-by-layer assembly of the distilled water-soluble chitosan and alginate. The components, morphology, and size distribution of the microspheres were characterized by element analysis (EA), X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM) and laser particle size analyzer (LPSA). Both EA and XPS analysis results indicated that alternate immersion was an effective method for preparing MCM. Vibrating sample magnetometer, SEM and LPSA results showed that the microspheres had good dispersion, uniform particle size and were superparamagnetic. In addition, in vitro drug release behaviors of the microspheres were investigated by using hemoglobin (HB) and Coomassie brilliant blue G250 (CBB) as model drugs. It was found that the release rates of both HB and CBB from the composite microspheres were slower than those from the substrates.  相似文献   

20.
The aim of this work was to design a biodegradable delivery system for oligonucleotides providing both a sustained release and an improved intracellular penetration. To this purpose oligonucleotide/polyethylenimine (ON/PEI) complexes at nitrogen to phosphate (N/P) molar ratios of about 15 or 40 were encapsulated into poly(lactide-co-glycolide) microspheres by the multiple emulsion-solvent evaporation technique. ON/PEI complexes were efficiently entrapped inside microspheres. The introduction of salts within the external aqueous phase allowed an improvement of microsphere characteristics. In particular, the use of sodium chloride led to a reduced microsphere porosity and a more homogeneous ON distribution inside the polymeric matrix. These effects were attributed to the reduced flux of water from the external aqueous phase toward the internal aqueous droplets, due to the osmotic effect of sodium chloride. Both, the reduced porosity and the improved ON distribution inside the matrix, were considered responsible for the lower burst effect and the slower ON release rate from microsphere prepared with sodium chloride. ON/PEI complexes encapsulated inside microspheres were also protected toward enzymatic degradation in fetal calf serum. Interestingly, ON/PEI complexes slowly released from microspheres efficiently penetrated inside HeLa cells and oligonucleotides were preferentially located in the nucleus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号