首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nature has gifted mankind with a plethora of flora-bearing fruits, vegetables and nuts. The diverse array of bioactive nutrients present in these natural products plays a pivotal role in prevention and cure of various neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease and other neuronal dysfunctions. Accumulated evidence suggests that naturally occurring phyto-compounds, such as polyphenolic antioxidants found in fruits, vegetables, herbs and nuts, may potentially hinder neurodegeneration, and improve memory and cognitive function. Nuts such as walnut have also demonstrated neuroprotective effect against AD. The molecular mechanisms behind the curative effects rely mainly on the action of phytonutrients on distinct signalling pathways associated with protein folding and neuroinflammation. The neuroprotective effects of various naturally occurring compounds in AD is evaluating in this review.  相似文献   

2.
3.

Alzheimer’s disease (AD) and Parkinson’s disease (PD) are the most common neurodegenerative diseases worldwide. They are characterized by the loss of neurons and synapses in special parts of the central nervous system (CNS). There is no definitive treatment for AD and PD, but extensive studies are underway to identify the effective drugs which can slow the progression of these diseases by affecting the factors involved in their pathophysiology (i.e., aggregated proteins, neuroinflammation, and oxidative stress). Icariin, a natural compound isolated from Epimedii herba, is known because of its anti-inflammatory and anti-oxidant properties. In this regard, there are numerous studies indicating its potential as a natural compound against the progression of CNS disorders, such as neurodegenerative diseases. Therefore, this review aims to re-examine findings on the pharmacologic effects of icariin on factors involved in the pathophysiology of AD and PD.

  相似文献   

4.
The study of sporadic Alzheimer’s disease etiology, now more than ever, needs an infusion of new concepts. Despite ongoing interest in Alzheimer’s disease, the basis of this entity is not yet clear. At present, the best-established and accepted “culprit” in Alzheimer’s disease pathology by most scientists is the amyloid, as the main molecular factor responsible for neurodegeneration in this disease. Abnormal upregulation of amyloid production or a disturbed clearance mechanism may lead to pathological accumulation of amyloid in brain according to the “amyloid hypothesis.” We will critically review these observations and highlight inconsistencies between the predictions of the “amyloid hypothesis” and the published data. There is still controversy over the role of amyloid in the pathological process. A question arises whether amyloid is responsible for the neurodegeneration or if it accumulates because of the neurodegeneration. Recent evidence suggests that the pathophysiology and neuropathology of Alzheimer’s disease comprises more than amyloid accumulation, tau protein pathology and finally brain atrophy with dementia. Nowadays, a handful of researchers share a newly emerged view that the ischemic episodes of brain best describe the pathogenic cascade, which eventually leads to neuronal loss, especially in hippocampus, with amyloid accumulation, tau protein pathology and irreversible dementia of Alzheimer type. The most persuasive evidences come from investigations of ischemically damaged brains of patients and from experimental ischemic brain studies that mimic Alzheimer-type dementia. This review attempts to depict what we know and do not know about the triggering factor of the Alzheimer’s disease, focusing on the possibility that the initial pathological trigger involves ischemic episodes and ischemia-induced gene dysregulation. The resulting brain ischemia dysregulates additionally expression of amyloid precursor protein and amyloid-processing enzyme genes that, in addition, ultimately compromise brain functions, leading over time to the complex alterations that characterize advanced sporadic Alzheimer’s disease. The identification of the genes involved in Alzheimer’s disease induced by ischemia will enable to further define the events leading to sporadic Alzheimer’s disease-related abnormalities. Additionally, knowledge gained from the above investigations should facilitate the elaboration of the effective treatment and/or prevention of Alzheimer’s disease.  相似文献   

5.
Alzheimer’s disease (AD) is a chronic neurodegenerative disease categorized by the deficiency in the cognition and memory. Approximately 50 million peoples has the AD, which is categorized by the deficiency in the cognition, memory and other kinds of cognitive dissention. The present exploration was designed to unveil the ameliorative properties of ononin against the aluminium chloride (AlCl3)-provoked AD in animals via the suppression of oxidative stress and neuroinflammation. AD was provoked to the Sprague Dawley rats through administering orally with 0.5 ml/100 g b.wt. of AlCl3 25 days and then supplemented with the 30 mg/kg of ononin orally for 25th day to 36th day. The behavioural changes were examined using open field and Morris Water Maze test. The acetylcholine esterase (AChE) activity was studied by standard method. The status of Aβ1-42, MDA, SOD, total antioxidant capacity (TAC) were quantified using respective assay kits. The interleukin(IL)-1β and TNF-α, BDNF, PPAR-γ, p38MAPK, and NF-κB/p65 status was quantified using respective assay kits. Brain histology was studied using microscope. The ononin treatment effectively modulated the AlCl3-triggered behavioural alterations in the AD animals. Ononin appreciably suppressed the AChE, Aβ1-42, and MDA and improved the SOD and TAC in the brain tissues of AD animals. The status of IL-1β, TNF-α, p38MAPK, and NF-κB were suppressed and the BDNF and PPAR-γ contents were elevated in the brain tissues of AD animals. The outcomes brain histology analysis proved the attenuate role of ononin. Our findings recommended that the ononin treatment could ameliorate the cognitive impairment, suppress the neuroinflammation and oxidative stress in the AD animals.  相似文献   

6.
7.
Protocatechuic aldehyde (PAL) has been reported to bind to DJ-1, a key protein involved in Parkinson’s disease (PD), and exerts potential neuroprotective effects via DJ-1 in SH-SY5Y cells. In this study, we investigated the neuroprotective pharmacological effects of PAL against neurotoxin-induced cell and animal models of PD. In cellular models of PD, PAL markedly increased cell viability rates, mitochondrial oxidation-reduction activity and mitochondrial membrane potential, and reduced intracellular ROS levels to prevent neurotoxicity in PC12 cells. In animal models of PD, PAL reduced the apomorphine injection, caused turning in 6-OHDA treated rats, and increased the motor coordination and stride decreases in MPTP treated mice. Meanwhile, in an MPTP mouse model, PAL prevented a decrease of the contents of dopamine (DA) and its metabolites in the striatum and TH-positive dopaminergic neuron loss in the substantia nigra (SN). In addition, PAL increased the protein expression of DJ-1 and reduced the level of α-synuclein in the SN of MPTP lesioned mice. PAL also increased the spine density in hippocampal CA1 neurons. The current study demonstrates that PAL can efficiently protect dopaminergic neurons against neurotoxin injury in vitro and in vivo, and that the potential mechanisms may be related to its effects in increasing DJ-1, decreasing α-synuclein and its growth-promoting effect on spine density.  相似文献   

8.
Late onset Alzheimer’s disease (LOAD) etiology is influenced by complex interactions between genetic and environmental risk factors. Large-scale genome wide association studies (GWAS) for LOAD have identified 10 novel risk genes: ABCA7, BIN1, CD2AP, CD33, CLU, CR1, EPHA1, MS4A6A, MS4A6E, and PICALM. We sought to measure the influence of GWAS single nucleotide polymorphisms (SNPs) and gene expression levels on clinical and pathological measures of AD in brain tissue from the parietal lobe of AD cases and age-matched, cognitively normal controls. We found that ABCA7, CD33, and CR1 expression levels were associated with clinical dementia rating (CDR), with higher expression being associated with more advanced cognitive decline. BIN1 expression levels were associated with disease progression, where higher expression was associated with a delayed age at onset. CD33, CLU, and CR1 expression levels were associated with disease status, where elevated expression levels were associated with AD. Additionally, MS4A6A expression levels were associated with Braak tangle and Braak plaque scores, with elevated expression levels being associated with more advanced brain pathology. We failed to detect an association between GWAS SNPs and gene expression levels in our brain series. The minor allele of rs3764650 in ABCA7 is associated with age at onset and disease duration, and the minor allele of rs670139 in MS4A6E was associated with Braak tangle and Braak plaque score. These findings suggest that expression of some GWAS genes, namely ABCA7, BIN1, CD33, CLU, CR1 and the MS4A family, are altered in AD brains.  相似文献   

9.
10.
Receptor for advanced glycation end products (RAGE) is a receptor of the immunoglobulin super family that plays various important roles under physiological and pathological conditions. Compelling evidence suggests that RAGE acts as both an inflammatory intermediary and a critical inducer of oxidative stress, underlying RAGE-induced Alzheimer-like pathophysiological changes that drive the process of Alzheimer’s disease (AD). A critical role of RAGE in AD includes beta-amyloid (Aβ) production and accumulation, the formation of neurofibrillary tangles, failure of synaptic transmission, and neuronal degeneration. The steady-state level of Aβ depends on the balance between production and clearance. RAGE plays an important role in the Aβ clearance. RAGE acts as an important transporter via regulating influx of circulating Aβ into brain, whereas the efflux of brain-derived Aβ into the circulation via BBB is implemented by LRP1. RAGE could be an important contributor to Aβ generation via enhancing the activity of β- and/or γ-secretases and activating inflammatory response and oxidative stress. However, sRAGE–Aβ interactions could inhibit Aβ neurotoxicity and promote Aβ clearance from brain. Meanwhile, RAGE could be a promoting factor for the synaptic dysfunction and neuronal circuit dysfunction which are both the material structure of cognition, and the physiological and pathological basis of cognition. In addition, RAGE could be a trigger for the pathogenesis of Aβ and tau hyper-phosphorylation which both participate in the process of cognitive impairment. Preclinical and clinical studies have supported that RAGE inhibitors could be useful in the treatment of AD. Thus, an effective measure to inhibit RAGE may be a novel drug target in AD.  相似文献   

11.
正Alzheimer’s disease (AD), also known as Alzheimer’s, is a chronic neurodegenerative disorder with hallmark amyloid plaques in brain tissue. The diseases commences slowly and worsens over time (Sjogren et al. 1952). Although it has been investigated for over six decades, the cause of AD  相似文献   

12.
Wan  Teng  Fu  Mingyuan  Jiang  Yan  Jiang  Weiwei  Li  Peiling  Zhou  Shouhong 《Neurochemical research》2022,47(2):205-217
Neurochemical Research - Alzheimer’s disease (AD) is the most common type of dementia. Currently, more than 50 million people live with dementia worldwide, and this number is expected to...  相似文献   

13.
BACE-1 is considered to be one of the targets for prevention and treatment of Alzheimer’s disease (AD). We here report a novel class of semi-synthetic derivatives of prenylated isoflavones, obtained from the derivatization of natural flavonoids from Maclura pomifera. In vitro anti-AD effect of the synthesized compounds were evaluated via human recombinant BACE-1 inhibition assay. Compound 7, 8 and 13 were found to be the most active candidates which demonstrates good correlation between the computational docking and pharmacokinetic predictions. Moreover, cytotoxic studies demonstrated that the compounds are not toxic against normal and cancer cell lines. Among these three compounds, compound 7 enhance the activity of P-glycoprotein (P-gp) on A549 cancer cells and increases the activity of P-gp ATPase with a possible role on the efflux of amyloid-β across the blood- brain barrier. In conclusion, the present findings may pave the way for the discovery of a novel class of compounds to prevent and/or treat AD.  相似文献   

14.
15.
β-arrestins represent a small family of G protein-coupled receptors (GPCRs) regulators, which provide modulating effects by facilitating desensitization and internalization of GPCRs as well as initiating their own signalings. Recent reports have demonstrated that β-arrestins levels were correlated with amyloid-β peptide (Aβ) pathology in brains of Alzheimer’s disease (AD) patients and animal models. β-arrestins could enhance the activity of γ-secretase via interacting with anterior pharynx defective 1 subunit, which increased Aβ production and contributed to the pathogenesis of AD. In addition, Aβ-induced internalization of β2-adrenergic receptor internalization and loss of dendritic spine in neurons were proven to be mediated by β-arrestins, further establishing their pathogenic role in AD. More importantly, deletion of β-arrestins markedly attenuated AD pathology, without causing any gross abnormality. Here, we review the evidence about the roles of β-arrestins in the progression of AD. In addition, the established and postulated mechanisms by which β-arrestins mediated in AD pathogenesis are also discussed. Based on the role of β-arrestins in AD pathogenesis, genetically or pharmacologically targeting β-arrestins might provide new opportunities for AD treatment.  相似文献   

16.
17.
Kozin  S. A.  Makarov  A. A. 《Molecular Biology》2019,53(6):896-903
Molecular Biology - Advances in the research of molecular factors involved in the onset and progression of Alzheimer’s disease, have led to the creation of several pathogenesis concepts of...  相似文献   

18.
19.
20.

Background

Weight loss is common in people with Alzheimer’s disease (AD) and it could be a marker of impending AD in Mild Cognitive Impairment (MCI) and improve prognostic accuracy, if accelerated progression to AD would be shown.

Aims

To assess weight loss as a predictor of dementia and AD in MCI.

Methods

One hundred twenty-five subjects with MCI (age 73.8 ± 7.1 years) were followed for an average of 4 years. Two weight measurements were carried out at a minimum time interval of one year. Dementia was defined according to DSM-IV criteria and AD according to NINCDS-ADRDA criteria. Weight loss was defined as a ≥4% decrease in baseline weight.

Results

Fifty-three (42.4%) MCI progressed to dementia, which was of the AD-type in half of the cases. Weight loss was associated with a 3.4-fold increased risk of dementia (95% CI = 1.5–6.9) and a 3.2-fold increased risk of AD (95% CI = 1.4–8.3). In terms of years lived without disease, weight loss was associated to a 2.3 and 2.5 years earlier onset of dementia and AD.

Conclusions

Accelerated progression towards dementia and AD is expected when weight loss is observed in MCI patients. Weight should be closely monitored in elderly with mild cognitive impairment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号