首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The triggering of Ca2+ signaling pathways relies on Ca2+/Mg2+ specificity of proteins mediating these pathways. Two homologous milk Ca2+‐binding proteins, bovine α‐lactalbumin (bLA) and equine lysozyme (EQL), were analyzed using the simplest “four‐state” scheme of metal‐ and temperature‐induced structural changes in a protein. The association of Ca2+/Mg2+ by native proteins is entropy‐driven. Both proteins exhibit strong temperature dependences of apparent affinities to Ca2+ and Mg2+, due to low thermal stabilities of their apo‐forms and relatively high unfavorable enthalpies of Mg2+ association. The ratios of their apparent affinities to Ca2+ and Mg2+, being unusually high at low temperatures (5.3–6.5 orders of magnitude), reach the values inherent to classical EF‐hand motifs at physiological temperatures. The comparison of phase diagrams predicted within the model of competitive Ca2+ and Mg2+ binding with experimental data strongly suggests that the association of Ca2+ and Mg2+ ions with bLA is a competitive process, whereas the primary Mg2+ site of EQL is different from its Ca2+‐binding site. The later conclusion is corroborated by qualitatively different molar ellipticity changes in near‐UV region accompanying Mg2+ and Ca2+ association. The Ca2+/Mg2+ selectivity of Mg2+‐site of EQL is below an order of magnitude. EQL exhibits a distinct Mg2+‐specific site, probably arising as an adaptation to the extracellular environment. Proteins 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

3.
In inside-out human red cell membrane vesicles /IOV/, in the absence of Mg2+, the only calcium-induced labelling by γ32P-ATP occurs in a 140–150 000 molecular weight protein fraction, representing the hydroxylamine-sensitive phosphorylated intermediate /EP/ of the calcium pump. In the presence of Mg2+ calcium-induced phosphorylation is accelerated but several other membrane proteins are also phosphorylated through protein kinase action forming hydroxylamine-insensitive bonds. Addition of calmodulin accelerates EP formation both in the absence and presence of Mg2+.Treatment of the membrane with SH-group reagents significantly reduces EP formation. Mild trypsin digestion of IOVs, stimulating active calcium transport, eliminates calmodulin action and decreases the steady-state level of EP. In trypsin-digested IOVs the molecular weight of the 32P-labelled EP is shifted to lower values /110–120 000/ We suggest that trypsin digestion cleaves off a 20–40 000 molecular weight calmodulin-binding regulatory subunit of the calcium pump molecule.  相似文献   

4.
Kosterin  S. O. 《Neurophysiology》2003,35(3-4):187-200
Calcium ions play a crucial role in the excitation/contraction coupling in smooth muscles. I would like to interpret the biochemical mechanisms underlying Ca2+ exchange and dynamics of such an exchange in the smooth muscles. Particular emphasis is laid on the examination of kinetic, energetic, and catalytic properties of the membrane-linked energy-dependent Ca2+-transporting systems involved in regulation of the intracellular Ca2+ concentration in smooth muscle cells (SMC). It was suggested that the Mg2+,ATP-dependent plasma membrane calcium pump (Ca2+,Mg2+-ATPase) plays a key role in regulation of the Ca2+ concentration in SMC. The purpose of this review is to analyze some of our own results concerning kinetic, energetic, and catalytic properties of the calcium pump of the SMC plasma membrane. In our experiments, we used different biochemical models (namely, fractions of the membrane subcellular structures, highly purified Ca2+,Mg2+-ATPase of the SMC plasma membrane solubilized and reconstituted in the lyposomes, and suspension of digitonin-treated SMC) and a number of methods (including preparative biochemistry, enzymology, membranology, tracer 45Ca2+ flux analysis, and chemical and enzymological kinetics). We have shown that sodium azide-insensitive Mg2+,ATP-dependent Ca2+ accumulation in ureter smooth muscle microsomes is determined by two components. One component represents the Mg2+,ATP-dependent calcium pump of the sarcoplasmic reticulum functionally potentiated by Ca2+-precipitating permeating anions, oxalate or phosphate and inhibited by thapsigargin or cyclopiazonic acid, the highly selective inhibitors of the calcium pump of sarco(endo)plasmic rerticulum. Another component represents the Mg2+,ATP-dependent calcium pump of the plasma membrane functionally potentiated by phosphate. This pump is not inhibited by thapsigargin and cyclopiazonic acid. The effects of temperature, dielectric permeability (D), and ionic strength on the activity of purified Ca2+,Mg2+-ATPase solubilized from the myometrial sarcolemma were studied. The results suggest that changes in the polarity of the incubation medium markedly affect the activity of transport Ca2+,Mg2+-ATPase, and electrostatic interactions between the enzyme activity center and specific ligands (Mg·ADP-, in particular) significantly contribute to the energetics of ATP hydrolysis. Therefore, our data show that changes in the incubation medium polarity significantly affects the ATP-hydrolase activity of Ca2+,Mg2+-ATPase solubilized from the SMC plasma membranes, and electrostatic interactions between the enzyme active sites and reactants (in particular, Mg·ADP-) contribute to a significant extent to the energetics of ATP hydrolysis. We cannot rule out that under physiological conditions the local D values of the myoplasm may differ from that of water, and, moreover, may change (especially near the membrane surface) depending on the metabolic level of SMC. We suppose that local changes in the cytoplasmic D value will affect the plasma membrane calcium pump and, consequently, the efficiency of control of intracellular Ca2+ homeostasis in smooth muscle. So, our biochemical models are suitable experimental objects for studying the kinetic, energetic, and catalytic properties of the Mg2+,ATP-dependent calcium pump of the SMC plasma membrane. In addition, our data might be useful for screening of the mechanisms underlying the action of different physico-chemical factors involved in modulation of the contraction/relaxation cycle.  相似文献   

5.
Erythrocyte membranes prepared by three different procedures showed (Mg2+ + Ca2+)-ATPase activities differing in specific activity and in affinity for Ca2+. The (Mg2+ + Ca2+)-ATPase activity of the three preparations was stimulated to different extents by a Ca2+-dependent protein activator isolated from hemolystes. The Ca2+ affinity of the two most active preparations was decreased as the ATP concentration in the assay medium was increased. Lowering the ATP concentration from 2 mM to 2–200 μM or lowering the Mg:ATP ratio to less than one shifted the (Mg2+ + Ca2+)-ATPase activity in stepwise hemolysis membranes from mixed “high” and “low” affinity to a single high Ca2+ affinity. Membranes from which soluble proteins were extracted by EDTA (0.1 mM) in low ionic strengh, or membranes prepared by the EDTA (1–10 mM) procedure, did not undergo the shift in the Ca2+ affinity with changes in ATP and MgCl2 concentrations. The EDTA-wash membranes were only weakly activated by the protein activator. It is suggested that the differences in properties of the (Mg2+ + Ca2+)-ATPase prepared by these three procedures reflect differences determined in part by the degree of association of the membrane with a soluble protein activator and changes in the state of the enzyme to a less activatable form.  相似文献   

6.
Mg2+, Ca2+ and Mn2+ were found to act as activators of the ATP-dependent surface reaction, leading to head-to-head association in bull spermatozoa. Ca2+ was more efficient than Mg2+, while Zn2+, like Na+ + K+ in combination with Mg2+, seemed to have no such effect. High ionic strength induced head-to-head association, as did higher concentrations of Mg2+ and Ca2+ than those necessary for the activation of ATP, Ca2+ acting in a lower conc. than Mg2+. To this effect was added that of the ATP-dependent reaction when ATP was also present. As activators, Mg2+ and Ca2+ did not potentiate each other; their effects were cumulative when the ions acted together.When the ATP concentration within the range 1 × 10−5 to 8 × 10−5 M was increased stepwise in the presence of 2 × 10−5 M Mg2+ or Ca2+, the association resulting from each single concentration step progressively increased. At low cation concentrations, the increase was about the same for the two cations: at higher concentrations it was much steeper in the presence of Ca2+ than in that of Mg2+. In the latter case, it was not statistically significant above 4 × 10−5 M ATP.Increasing the cation concentration in the range 1 × 10−5 to 4 × 10−5 M in the presence of 2 × 10−5 M ATP produced an immediate high increase in association, which was followed by a lower increase. The optimum concentration ratio for Mg2+:ATP was at least 1:1 and for Ca2+: ATP at least 1.5:1.Oubain, containing enone structure, abolishes association.  相似文献   

7.
The Tet repressor (TetR) mediates the most important mechanism of bacterial resistance against tetracycline (Tc) antibiotics. In the absence of Tc, TetR is tightly bound to its operator DNA; upon binding of Tc with an associated Mg2+ ion, it dissociates from the DNA, allowing expression of the repressed genes. Its tight control by Tc makes TetR broadly useful in genetic engineering. The Tc binding site is over 20 Å from the DNA, so the binding signal must propagate a long distance. We use molecular dynamics simulations and continuum electrostatic calculations to test two models of the allosteric mechanism. We simulate the TetR:DNA complex, the Tc-bound, “induced” TetR, and the transition pathway between them. The simulations support the model inferred previously from the crystal structures and reveal new details. When [Tc:Mg]+ binds, the Mg2+ ion makes direct and water-mediated interactions with helix 8 of one TetR monomer and helix 6 of the other monomer, and helix 6 is pulled in towards the central core of the structure. Hydrophobic interactions with helix 6 then pull helix 4 in a pendulum motion, with a maximal displacement at its N-terminus: the DNA interface. The crystal structure of an additional TetR reported here corroborates this motion. The N-terminal residue of helix 4, Lys48, is highly conserved in DNA-binding regulatory proteins of the TetR class and makes the largest contribution of any amino acid to the TetR:DNA binding free energy. Thus, the conformational changes lead to a drastic reduction in the TetR:DNA binding affinity, allowing TetR to detach itself from the DNA. Tc plays the role of a specific Mg2+ carrier, whereas the Mg2+ ion itself makes key interactions that trigger the allosteric transition in the TetR:Tc complex.  相似文献   

8.
Cation-induced conformational changes of peptide as a guide to developing insights into human diseases-related proteins have received a lot of attention. The interactions between poly-l-glutamate (PGA) and different cations, including Na+, K+ and Mg2+, respectively, are studied in solvent at a concentration of 1 M, and the behaviours of peptide with different cations are investigated. For Na+, an oscillatory stabilising process to α-helix PGA is found, in accordance with the uniform free-energy landscape, whereas for K+, an extended α-helix structure is formed by the terminal turns, suggesting a weaker attraction to charged head groups. For Mg2+, the bridged charged side chains are responsible for the maximum probability of helix state. These distinct structural changes can be attributed to the different interactions between charged head groups and cations. Both Na+ and K+ are mainly attracted around head groups by direct ion binding while Mg2+ is centrally trapped among adjacent charged head groups. In addition, a surprising shift of the backbone hydrogen bond, from intact state to intermediate state, is observed. This is opposite to the stabilising effect of Na+ around negatively charged head groups.  相似文献   

9.
25Mg NMR spectroscopy was first applied to the ternary complexes consisting of Mg2+, ATP, ADP and creatine kinase. The 25Mg NMR spectra of the Mg2+-ATP (or ADP) complex are remarkably broadened in the ternary Mg2+-ATP(or ADP)-creatine kinase complex in contrast with previous prediction. From temperature dependence of the spectra of the protein-bound ion, it is suggested that Mg2+ of the protein-bound Mg2+-ATP(or ADP) complex is not in the fast exchange regime. The 25Mg NMR signal of the transition state analogue complex is narrower and less temperature-dependent than those of the ternary complex, suggesting that Mg2+ in the transition state analogue complex is in a more symmetrical environment or exchanges slower than that of the ternary complex.  相似文献   

10.
The objective of this study was to evaluate the effects of inserting peptide nucleic acid (PNA) sequences into the protein‐binding surface of an immobilized four‐way junction (4WJ). Here we compare the classic immobile DNA junction, J1, with two PNA containing hybrid junctions (4WJ‐PNA1 and 4WJ‐PNA3). The protein interactions of each 4WJ were evaluated using recombinant high mobility group proteins from rat (HMGB1b and HMGB1b/R26A) and human histone H1. In vitro studies show that both HMG and H1 proteins display high binding affinity toward 4WJ's. A 4WJ can access different conformations depending on ionic environment, most simply interpreted by a two‐state equilibrium between: (i) an open‐x state favored by absence of Mg2+, low salt, and protein binding, and (ii) a compact stacked‐x state favored by Mg2+. 4WJ‐PNA3, like J1, shifts readily from an open to stacked conformation in the presence of Mg+2, while 4WJ‐PNA1 does not. Circular dichroism spectra indicate that HMGB1b recognizes each of the hybrid junctions. H1, however, displays a strong preference for J1 relative to the hybrids. More extensive binding analysis revealed that HMGB1b binds J1 and 4WJ‐PNA3 with nearly identical affinity (KDs) and 4WJ‐PNA1 with two‐fold lower affinity. Thus both the sequence/location of the PNA sequence and the protein determine the structural and protein recognition properties of 4WJs.  相似文献   

11.
The binding of ATP and Ca2+ by the Ca2+ pump protein of sarcoplasmic reticulum from rabbit skeletal muscle has been studied and correlated with the formation of a phoshorylated intermediate. The Ca2+ pump protein has been found to contain one specific ATP and two specific Ca2+ binding sites per phosphorylation site. ATP binding is dependent on Mg2+ and is severely decreased when a phosphorylated intermediate is formed by the addition of Ca2+. In the presence of Mg2+ and the absence of Ca2+, ATP and ADP bind completely to the membrane. Pre-incubation with N-ethylmaleimide results in inhibition of ATP binding and decrease of Ca2+ binding. In the absence of ATP, Ca2+ binding is noncooperative at pH 6–7 and negatively cooperative at pH 8. Mg2+, Sr2+ and La3+, in that order, decrease Ca2+ binding by the Ca2+ pump protein. The affinity of the Ca2+ pump protein for both ATP and Ca2+ increases when the pH is raised from 6 to 8. At the infection point (pH ≈ 7.3) the binding constants of the Ca2+ pump protein-MgATP2? and Ca2+ pump protein-calcium complexes are approx. 0.25 and 0.5 μM?1, respectively. The unphosphorylated Ca2+ pump protein does not contain a Mg2+ binding site with an affinity comparable to those of the ATP and Ca2+ binding sites.The affinity of the Ca2+ pump protein for Ca2+ is not appreciably changed by the addition of ATP. The ratio of phosphorylated intermediate formed to bound Ca2+ is close to 2 over a 5-fold range of phosphoenzyme concentration. The equilibrium constant for phosphoenzyme formation is less than one at saturating levels of Ca2+. The phosphoenzyme is thus a “high-energy” intermediate, whose energy may then be used for the translocation of the two Ca2+.A reaction scheme is discussed showing that phosphorylation of sarcoplasmic reticulum proceeds via an enzyme-Ca22+-MgATP2? complex. This complex is then converted to a phosphoenzyme intermediate which binds two Ca2+ and probably Mg2+.  相似文献   

12.
Red cells of hibernating species have a higher relative rate of Na+–K+ pump activity at low temperature than the red cells of a mammal with a typical sensitivity to cold. The kinetics of ATP stimulation of the Na+–K+ pump were determined in guinea pig and ground squirrel red cells at different temperatures between 5 and 37°C by measuring ouabain-sensitive K+ influx at different levels of ATP. In guinea pig cells, elevation of intracellular free Mg2+ to 2 mmol·l-1 by use of the divalent cation ionophore A23187 caused the apparent affinity of the pump for ATP to increase with cooling to 20°C, rather than to decrease, as occurs in cells not loaded with Mg2+. In ground squirrel cells raising intracellular free Mg2+ had little effect on apparent affinity of the pump for ATP at 20°C. ATP affinity rose slightly with cooling both in Mg2+-enriched and in control ground squirrel cells. Increased intracellular free Mg2+ in guinea pig cells stimulated Na+–K+ pump activity so that at 20°C the pump rate was the same in the Mg2+-enriched guinea pig and control ground squirrel cells. Pump activity in Mg2+-enriched guinea pig cells at 5°C was significantly improved but still lower than pump activity in control cells from ground squirrel. Thus, loss of affinity of the Na+–K+ pump for ATP that occurs with cooling in cold-sensitive guinea pig red cells can be, at least partially, prevented by elevating cytoplasmic free Mg2+. Conversely, in ground squirrel red cells natural rise of free Mg2+ may in part account for the preservation of the ATP affinity of their Na+–K+ pump with cooling.Abbreviations K m Michaelis-Menten constant for apparent affinity - MOPS 3-(N-morpholino)-propanesulphonic acid - [Mg2+]i intracellular concentration of free Mg2+ - OD optical density - RBC red blood cell(s) - T b body temperature  相似文献   

13.
The spliceosome undergoes dramatic changes in both small nuclear RNA (snRNA) composition and structure during assembly and pre-mRNA splicing. It has been previously proposed that the U2 snRNA adopts two conformations within the stem II region: stem IIa or stem IIc. Dynamic rearrangement of stem IIa into IIc and vice versa is necessary for proper progression of the spliceosome through assembly and catalysis. How this conformational transition is regulated is unclear; although, proteins such as Cus2p and the helicase Prp5p have been implicated in this process. We have used single-molecule Förster resonance energy transfer (smFRET) to study U2 stem II toggling between stem IIa and IIc. Structural interconversion of the RNA was spontaneous and did not require the presence of a helicase; however, both Mg2+ and Cus2p promote formation of stem IIa. Destabilization of stem IIa by a G53A mutation in the RNA promotes stem IIc formation and inhibits conformational switching of the RNA by both Mg2+ and Cus2p. Transitioning to stem IIa can be restored using Cus2p mutations that suppress G53A phenotypes in vivo. We propose that during spliceosome assembly, Cus2p and Mg2+ may work together to promote stem IIa formation. During catalysis the spliceosome could then toggle stem II with the aid of Mg2+ or with the use of functionally equivalent protein interactions. As noted in previous studies, the Mg2+ toggling we observe parallels previous observations of U2/U6 and Prp8p RNase H domain Mg2+-dependent conformational changes. Together these data suggest that multiple components of the spliceosome may have evolved to switch between conformations corresponding to open or closed active sites with the aid of metal and protein cofactors.  相似文献   

14.
RNAs are highly negatively charged chain molecules. Metal ions play a crucial role in RNA folding stability and conformational changes. In this work, we employ the recently developed tightly bound ion (TBI) model, which accounts for the correlation between ions and the fluctuation of ion distributions, to investigate the ion-dependent free energy landscape for the three-way RNA junction in a 16S rRNA domain. The predicted electrostatic free energy landscape suggests that 1), ion-mediated electrostatic interactions cause an ensemble of unfolded conformations narrowly populated around the maximally extended structure; and 2), Mg2+ ion-induced correlation effects help bring the helices to the folded state. Nonelectrostatic interactions, such as noncanonical interactions within the junctions and between junctions and helix stems, might further limit the conformational diversity of the unfolded state, resulting in a more ordered unfolded state than the one predicted from the electrostatic effect. Moreover, the folded state is predominantly stabilized by the coaxial stacking force. The TBI-predicted folding stability agrees well with the experimental measurements for the different Na+ and Mg2+ ion concentrations. For Mg2+ solutions, the TBI model, which accounts for the Mg2+ ion correlation effect, gives more improved predictions than the Poisson-Boltzmann theory, which tends to underestimate the role of Mg2+ in stabilizing the folded structure. Detailed control tests indicate that the dominant ion correlation effect comes from the charge-charge Coulombic correlation rather than the size (excluded volume) correlation between the ions. Furthermore, the model gives quantitative predictions for the ion size effect in the folding energy landscape and folding cooperativity.  相似文献   

15.
GCAP1, a member of the neuronal calcium sensor subclass of the calmodulin superfamily, confers Ca2+-sensitive activation of retinal guanylyl cyclase 1 (RetGC1). We present NMR resonance assignments, residual dipolar coupling data, functional analysis, and a structural model of GCAP1 mutant (GCAP1V77E) in the Ca2+-free/Mg2+-bound state. NMR chemical shifts and residual dipolar coupling data reveal Ca2+-dependent differences for residues 170–174. An NMR-derived model of GCAP1V77E contains Mg2+ bound at EF2 and looks similar to Ca2+ saturated GCAP1 (root mean square deviations = 2.0 Å). Ca2+-dependent structural differences occur in the fourth EF-hand (EF4) and adjacent helical region (residues 164–174 called the Ca2+ switch helix). Ca2+-induced shortening of the Ca2+ switch helix changes solvent accessibility of Thr-171 and Leu-174 that affects the domain interface. Although the Ca2+ switch helix is not part of the RetGC1 binding site, insertion of an extra Gly residue between Ser-173 and Leu-174 as well as deletion of Arg-172, Ser-173, or Leu-174 all caused a decrease in Ca2+ binding affinity and abolished RetGC1 activation. We conclude that Ca2+-dependent conformational changes in the Ca2+ switch helix are important for activating RetGC1 and provide further support for a Ca2+-myristoyl tug mechanism.  相似文献   

16.
Helix 42 of Domain II of Escherichia coli 23S ribosomal RNA underlies the L7/L12 stalk in the ribosome and may be significant in positioning this feature relative to the rest of the 50S ribosomal subunit. Unlike the Haloarcula marismortui and Deinococcus radiodurans examples, the lower portion of helix 42 in E.coli contains two consecutive G•A oppositions with both adenines on the same side of the stem. Herein, the structure of an analog of positions 1037–1043 and 1112–1118 in the helix 42 region is reported. NMR spectra and structure calculations support a cis Watson–Crick/Watson–Crick (cis W.C.) G•A conformation for the tandem (G•A)2 in the analog and a minimally perturbed helical duplex stem. Mg2+ titration studies imply that the cis W.C. geometry of the tandem (G•A)2 probably allows O6 of G20 and N1 of A4 to coordinate with a Mg2+ ion as indicated by the largest chemical shift changes associated with the imino group of G20 and the H8 of G20 and A4. A cross-strand bridging Mg2+ coordination has also been found in a different sequence context in the crystal structure of H.marismortui 23S rRNA, and therefore it may be a rare but general motif in Mg2+ coordination.  相似文献   

17.
Tan ZJ  Chen SJ 《Nucleic acids research》2006,34(22):6629-6639
Metal ions are crucial for nucleic acid folding. From the free energy landscapes, we investigate the detailed mechanism for ion-induced collapse for a paradigm system: loop-tethered short DNA helices. We find that Na+ and Mg2+ play distinctive roles in helix–helix assembly. High [Na+] (>0.3 M) causes a reduced helix–helix electrostatic repulsion and a subsequent disordered packing of helices. In contrast, Mg2+ of concentration >1 mM is predicted to induce helix–helix attraction and results in a more compact and ordered helix–helix packing. Mg2+ is much more efficient in causing nucleic acid compaction. In addition, the free energy landscape shows that the tethering loops between the helices also play a significant role. A flexible loop, such as a neutral loop or a polynucleotide loop in high salt concentration, enhances the close approach of the helices in order to gain the loop entropy. On the other hand, a rigid loop, such as a polynucleotide loop in low salt concentration, tends to de-compact the helices. Therefore, a polynucleotide loop significantly enhances the sharpness of the ion-induced compaction transition. Moreover, we find that a larger number of helices in the system or a smaller radius of the divalent ions can cause a more abrupt compaction transition and a more compact state at high ion concentration, and the ion size effect becomes more pronounced as the number of helices is increased.  相似文献   

18.
The binding of ATP and Ca2+ by the Ca2+ pump protein of sarcoplasmic reticulum from rabbit skeletal muscle has been studied and correlated with the formation of a phoshorylated intermediate. The Ca2+ pump protein has been found to contain one specific ATP and two specific Ca2+ binding sites per phosphorylation site. ATP binding is dependent on Mg2+ and is severely decreased when a phosphorylated intermediate is formed by the addition of Ca2+. In the presence of Mg2+ and the absence of Ca2+, ATP and ADP bind completely to the membrane. Pre-incubation with N-ethylmaleimide results in inhibition of ATP binding and decrease of Ca2+ binding. In the absence of ATP, Ca2+ binding is noncooperative at pH 6–7 and negatively cooperative at pH 8. Mg2+, Sr2+ and La3+, in that order, decrease Ca2+ binding by the Ca2+ pump protein. The affinity of the Ca2+ pump protein for both ATP and Ca2+ increases when the pH is raised from 6 to 8. At the infection point (pH ≈ 7.3) the binding constants of the Ca2+ pump protein-MgATP2− and Ca2+ pump protein-calcium complexes are approx. 0.25 and 0.5 μM−1, respectively. The unphosphorylated Ca2+ pump protein does not contain a Mg2+ binding site with an affinity comparable to those of the ATP and Ca2+ binding sites.The affinity of the Ca2+ pump protein for Ca2+ is not appreciably changed by the addition of ATP. The ratio of phosphorylated intermediate formed to bound Ca2+ is close to 2 over a 5-fold range of phosphoenzyme concentration. The equilibrium constant for phosphoenzyme formation is less than one at saturating levels of Ca2+. The phosphoenzyme is thus a “high-energy” intermediate, whose energy may then be used for the translocation of the two Ca2+.A reaction scheme is discussed showing that phosphorylation of sarcoplasmic reticulum proceeds via an enzyme-Ca22+-MgATP2− complex. This complex is then converted to a phosphoenzyme intermediate which binds two Ca2+ and probably Mg2+.  相似文献   

19.
N-Ethylmaleimide was employed as a surface label for sarcolemmal proteins after demonstrating that it does not penetrate to the intracellular space at concentrations below 1·10?4 M. The sarcolemmal markers, ouabain-sensitive (Na+ + K+)-ATPase and Na+/Ca2+-exchange activities, were inhibited in N-ethylmaleimide perfused hearts. Intracellular activities such as creatine phosphokinase, glutamate-oxaloacetate transaminase and the internal phosphatase site of the Na+ pump (K+-p-nitrophosphatase) were not affected. Almost 20% of the (Ca2+ + Mg2+)-ATPase and Ca2+ pump were inhibited indicating the localization of a portion of this activity in the sarcolemma. Sarcolemma purified by a recent method (Morcos, N.C. and Drummond, G.I. (1980) Biochim. Biophys. Acta 598, 27–39) from N-ethylmaleimide-perfused hearts showed loss of approx. 85% of its (Ca2+ + Mg2+-ATPase and Ca2+ pump compared to control hearts. (Ca2+ + Mg2+)-ATPase and Ca2+ pump activities showed two classes of sensitivity to vanadate ion inhibition. The high vanadate affinity class (K12 for inhibition approx. 1.5 μM) may be localized in the sarcolemma and represented approx. 20% of the total inhibitable activity in agreement with estimates from N-ethylmaleimide studies. Sucrose density fractionation indicated that only a small portion of Mg2+-ATPase and Ca2+-ATPase may be associated with the sarcolemma. The major portion of these activities seems to be associated with high density particles.  相似文献   

20.
Summary The (Ca2+ + Mg2+) ATPase which serves as a Ca2+ pump in the kidney basolateral membranes is essential to the maintenance of an intracellular Ca2+ concentration optimal for kidney function. Since atrial natriuretic peptide (ANP) is known to participate in the Ca2+ homeostasis mechanism, altered levels of ANP in diabetes may vary the pump activity and consequently the kidney function. In order to examine the modulatory role of ANP on (Ca2+ + Mg2+) ATPase in short- (6 weeks) and long-term (6 months) diabetes, rats were injected with streptozotocin (65 mg/kg body wt, i.v.). At 6 weeks, the plasma ANP was decreased whereas, ANP-receptor binding in the kidney basolateral membrane was increased. In contrast, there was an increased plasma ANP and decreased ANP receptor binding at 6 months. Insulin treatment to diabetic animals normalized these parameters. The (Ca2+ + Mg2+) ATPase activity was unchanged both at 6 weeks and 6 months. Our results demonstrate that the unchanged Ca2+ pump activity in short-term and long-term diabetes serves to maintain the Ca2+ homeostasis in the kidney cells and thus may maintain the hyperfiltration state in diabetes. Unaltered (Ca2+ + Mg2+) ATPase is achieved by the initial up-regulation and subsequent down-regulation of the ANP receptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号