首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Insulin-like growth factor I receptor (IGF-1R) signaling is essential for cell, organ, and animal growth. The C-terminal tail of the IGF-1R exhibits regulatory function, but the mechanism is unknown. Here, we show that mutation of Ser-1248 (S1248A) enhances IGF-1R in vitro kinase activity, autophosphorylation, Akt/mammalian target of rapamycin activity, and cell growth. Ser-1248 phosphorylation is mediated by GSK-3β in a mechanism that involves a priming phosphorylation on Ser-1252. GSK-3β knock-out cells exhibit reduced IGF-1R cell surface expression, enhanced IGF-1R kinase activity, and signaling. Examination of crystallographic structures of the IGF-1R kinase domain revealed that the (1248)SFYYS(1252) motif adopts a conformation tightly packed against the kinase C-lobe when Ser-1248 is in the unphosphorylated state that favors kinase activity. S1248A mutation is predicted to lock the motif in this position. In contrast, phosphorylation of Ser-1248 will drive profound structural transition of the sequence, critically affecting connection of the C terminus as well as exposing potential protein docking sites. Decreased kinase activity of a phosphomimetic S1248E mutant and enhanced kinase activity in mutants of its predicted target residue Lys-1081 support this auto-inhibitory model. Thus, the SFYYS motif controls the organization of the IGF-1R C terminus relative to the kinase domain. Its phosphorylation by GSK-3β restrains kinase activity and regulates receptor trafficking and signaling.  相似文献   

2.
3.
Natriuretic peptide receptor A (NPR-A) is the biological receptor for atrial natriuretic peptide (ANP). Activation of the NPR-A guanylyl cyclase requires ANP binding to the extracellular domain and ATP binding to a putative site within its cytoplasmic region. The allosteric interaction of ATP with the intracellular kinase homology domain (KHD) is hypothesized to derepress the carboxyl-terminal guanylyl cyclase catalytic domain, resulting in the synthesis of the second messenger, cyclic GMP. Here, we show that phosphorylation of the KHD is essential for receptor activation. Using a combination of phosphopeptide mapping techniques, we have identified six residues within the ATP-binding domain (S497, T500, S502, S506, S510, and T513) which are phosphorylated when NPR-A is expressed in HEK 293 cells. Mutation of any one of these Ser or Thr residues to Ala caused reductions in the receptor phosphorylation state, the number and pattern of phosphopeptides observed in tryptic maps, and ANP-dependent guanylyl cyclase activity. The reductions were not explained by decreases in NPR-A protein levels, as indicated by immunoblot analysis and determinations of cyclase activity in the presence of detergent. Conversion of Ser-497 to Ala resulted in the most dramatic decrease in cyclase activity (~20% of wild-type activity), but conversion to an acidic residue (Glu), which mimics the charge of the phosphoserine moiety, had no effect. Simultaneous mutation of five of the phosphorylation sites to Ala resulted in a dephosphorylated receptor which was unresponsive to hormone and had potent dominant negative inhibitory activity. We conclude that phosphorylation of the KHD is absolutely required for hormone-dependent activation of NPR-A.  相似文献   

4.
The charge isomers of bovine brain PI-TPalpha (i.e. PI-TPalphaI containing a phosphatidylinositol (PI) molecule and PI-TPalphaII containing a phosphatidylcholine (PC) molecule) were phosphorylated in vitro by rat brain protein kinase C (PKC) at different rates. From the double-reciprocal plot, it was estimated that the V(max) values for PI-TPalphaI and II were 2.0 and 6.0 nmol/min, respectively; the K(m) values for both charge isomers were about equal, i.e. 0.7 micrometer. Phosphorylation of charge isomers of recombinant mouse PI-TPalpha confirmed that the PC-containing isomer was the better substrate. Phosphoamino acid analysis of in vitro and in vivo (32)P-labeled PI-TPalphas showed that serine was the major site of phosphorylation. Degradation of (32)P-labeled PI-TPalpha by cyanogen bromide followed by high pressure liquid chromatography and sequence analysis yielded one (32)P-labeled peptide (amino acids 104-190). This peptide contained Ser-148, Ser-152, and the consensus PKC phosphorylation site Ser-166. Replacement of Ser-166 with an alanine residue confirmed that indeed this residue was the site of phosphorylation. This mutation completely abolished PI and PC transfer activity. This was also observed when Ser-166 was replaced with Asp, implying that this is a key amino acid residue in regulating the function of PI-TPalpha. Stimulation of NIH3T3 fibroblasts by phorbol ester or platelet-derived growth factor induced the rapid relocalization of PI-TPalpha to perinuclear Golgi structures concomitant with a 2-3-fold increase in lysophosphatidylinositol levels. This relocalization was also observed for Myc-tagged wtPI-TPalpha expressed in NIH3T3 cells. In contrast, the distribution of Myc-tagged PI-TPalpha(S166A) and Myc-tagged PI-TPalpha(S166D) were not affected by phorbol ester, suggesting that phosphorylation of Ser-166 was a prerequisite for the relocalization to the Golgi. A model is proposed in which the PKC-dependent phosphorylation of PI-TPalpha is linked to the degradation of PI.  相似文献   

5.
Whereas kinesin I is designed to transport cargoes long distances in isolation, a closely related kinesin motor, Eg5, is designed to generate a sustained opposing force necessary for proper mitotic spindle formation. Do the very different roles for these evolutionarily related motors translate into differences in how they generate movement? We have addressed this question by examining when in the ATPase cycle the Eg5 motor domain and neck linker move through the use of a series of novel spectroscopic probes utilizing fluorescence resonance energy transfer, and we have compared our results to kinesin I. Our results are consistent with a model in which movement in Eg5 occurs in two sequential steps, an ATP-dependent docking of the neck linker, followed by a rotation or "rolling" of the entire motor domain on the microtubule surface that occurs with ATP hydrolysis. These two forms of movement are consistent with the functions of a motor designed to generate sustained opposing force, and hence, our findings support the argument that the mechanochemical features of a molecular motor are shaped more by the demands placed on it than by its particular family of origin.  相似文献   

6.
The MukB protein from Escherichia coli has a domain structure that is reminiscent of the eukaryotic motor proteins kinesin and myosin: N-terminal globular domains, a region of coiled-coil, and a specialised C-terminal domain. Sequence alignment of the N-terminal domain of MukB with the kinesin motor domain indicated an approximately 22% sequence identity. These observations raised the possibility that MukB might be a prokaryotic motor protein and, due to the sequence homology shared with kinesin, might bind to microtubules (Mts). We found that a construct encoding the first 342 residues of MukB (Muk342) binds specifically to Mts and shares a number of properties with the motor domain of kinesin. Visualisation of the Muk342 decorated Mt complexes using negative stain electron microscopy indicated that the Muk342 smoothly decorates the outside of Mts. Biochemical data demonstrate that Muk342 decorates Mts with a binding stoichiometry of one Muk342 monomer per tubulin monomer. These findings strongly suggest that MukB has a role in force generation and that it is a prokaryotic homologue of kinesin and myosin.  相似文献   

7.
The microtubule-based motor kinesin-I is essential for the intracellular transport of membrane-bound organelles in the Drosophila nervous system and female germ line. A number of studies have demonstrated that kinesin-I binds to its intracellular cargos through protein-protein interactions between the kinesin tail domain and proteins on the cargo surface. To identify proteins that mediate or regulate kinesin-cargo interactions, we have performed yeast two-hybrid screens of a Drosophila embryonic cDNA library, using the tetratricopeptide repeats of the kinesin light chain and amino acids 675-975 of the kinesin heavy chain as baits. One of the proteins we have identified is YETI. Interestingly, YETI has the unique ability to bind specifically to both subunits of the kinesin tail domain. An epitope-tagged YETI fusion protein, when expressed in Drosophila S2 cultured cells, binds to kinesin-I in copurification assays, suggesting that YETI-kinesin-I interactions are context-independent. Immunostaining of cultured cells expressing YETI shows that YETI accumulates in the nucleus and cytosol. YETI is evolutionarily conserved, and its yeast homolog (AOR1) may have a role in regulating cytoskeletal dynamics or intracellular transport. Collectively, these results demonstrate that YETI interacts with both kinesin subunits of the kinesin tail domain, and is potentially involved in kinesin-dependent transport pathways.  相似文献   

8.
Conventional kinesin is a highly processive molecular motor that takes several hundred steps per encounter with a microtubule. Processive motility is believed to result from the coordinated, hand-over-hand motion of the two heads of the kinesin dimer, but the specific factors that determine kinesin's run length (distance traveled per microtubule encounter) are not known. Here, we show that the neck coiled-coil, a structure adjacent to the motor domain, plays an important role in governing the run length. By adding positive charge to the neck coiled-coil, we have created ultra-processive kinesin mutants that have fourfold longer run lengths than the wild-type motor, but that have normal ATPase activity and motor velocity. Conversely, adding negative charge on the neck coiled-coil decreases the run length. The gain in processivity can be suppressed by either proteolytic cleavage of tubulin's negatively charged COOH terminus or by high salt concentrations. Therefore, modulation of processivity by the neck coiled-coil appears to involve an electrostatic tethering interaction with the COOH terminus of tubulin. The ability to readily increase kinesin processivity by mutation, taken together with the strong sequence conservation of the neck coiled-coil, suggests that evolutionary pressures may limit kinesin's run length to optimize its in vivo function.  相似文献   

9.
Activity of the mammalian pyruvate dehydrogenase complex (PDC) is regulated by phosphorylation-dephosphorylation of three serine residues (designated site 1, Ser-264; site 2, Ser-271; site 3, Ser-203) in the alpha subunit of the pyruvate dehydrogenase (E1) component. Substitutions of the phosphorylation sites were generated by site-directed mutagenesis. Glutamate (S1E) and aspartate (S1D) substitutions at site 1 resulted in the complete loss of PDC activity; however, these mutants were variably active in the decarboxylation and 2,6-dichlorophenolindophenol assays. S1Q had only 3% of wild-type PDC activity. The apparent K(m) values for pyruvate increased for the mutants of site 1 when determined in the 2,6-dichlorophenolindophenol assay. The substitutions at sites 2 and 3 caused only moderate reductions in activity in the three assays. S3E had a 27-fold increase in the apparent K(m) for thiamine pyrophosphate and 8-fold increase in the K(i) for pyrophosphate. Site 3 was almost completely protected from phosphorylation by thiamine pyrophosphate. The results show that the size rather than negative charge of the substituted amino acid residue affects the active site of E1 and that modification of each of the three serine residues affect the active site in a site-specific manner for its ability to bind the cofactor and substrates.  相似文献   

10.
The cellular processes of transport, division and, possibly, early development all involve microtubule-based motors. Recent work shows that, unexpectedly, many of these cellular functions are carried out by different types of kinesin and kinesin-related motor proteins. The kinesin proteins are a large and rapidly growing family of microtubule-motor proteins that share a 340-amino-acid motor domain. Phylogenetic analysis of the conserved motor domains groups the kinesin proteins into a number of subfamilies, the members of which exhibit a common molecular organization and related functions. The kinesin proteins that belong to different subfamilies differ in their rates and polarity of movement along microtubules, and probably in the particles/organelles that they transport. The kinesins arose early in eukaryotic evolution and gene duplication has allowed functional specialization to occur, resulting in a surprisingly large number of different classes of these proteins adapted for intracellular transport of vesicles and organelles, and for assembly and force generation in the meiotic and mitotic spindles.  相似文献   

11.
Regulation of the opposing kinesin and dynein motors that drive axonal transport is essential to maintain neuronal homeostasis. Here, we examine coordination of motor activity by the scaffolding protein JNK-interacting protein 1 (JIP1), which we find is required for long-range anterograde and retrograde amyloid precursor protein (APP) motility in axons. We identify novel interactions between JIP1 and kinesin heavy chain (KHC) that relieve KHC autoinhibition, activating motor function in single molecule assays. The direct binding of the dynactin subunit p150Glued to JIP1 competitively inhibits KHC activation in vitro and disrupts the transport of APP in neurons. Together, these experiments support a model whereby JIP1 coordinates APP transport by switching between anterograde and retrograde motile complexes. We find that mutations in the JNK-dependent phosphorylation site S421 in JIP1 alter both KHC activation in vitro and the directionality of APP transport in neurons. Thus phosphorylation of S421 of JIP1 serves as a molecular switch to regulate the direction of APP transport in neurons.  相似文献   

12.
13.
An emerging theme in cell signaling is that membrane-bound channels and receptors are organized into supramolecular signaling complexes for optimum function and cross-talk. In this study, we determined how protein kinase C (PKC) phosphorylation influences the scaffolding protein Na(+)/H(+) exchanger regulatory factor 1 (NHERF) to assemble protein complexes of cystic fibrosis transmembrane conductance regulator (CFTR), a chloride ion channel that controls fluid and electrolyte transport across cell membranes. NHERF directs polarized expression of receptors and ion transport proteins in epithelial cells, as well as organizes the homo- and hetero-association of these cell surface proteins. NHERF contains two modular PDZ domains that are modular protein-protein interaction motifs, and a C-terminal domain. Previous studies have shown that NHERF is a phosphoprotein, but how phosphorylation affects NHERF to assemble macromolecular complexes is unknown. We show that PKC phosphorylates two amino acid residues Ser-339 and Ser-340 in the C-terminal domain of NHERF, but a serine 162 of PDZ2 is specifically protected from being phosphorylated by the intact C-terminal domain. PKC phosphorylation-mimicking mutant S339D/S340D of NHERF has increased affinity and stoichiometry when binding to C-CFTR. Moreover, solution small angle x-ray scattering indicates that the PDZ2 and C-terminal domains contact each other in NHERF, but such intramolecular domain-domain interactions are released in the PKC phosphorylation-mimicking mutant indicating that PKC phosphorylation disrupts the autoinhibition interactions in NHERF. The results demonstrate that the C-terminal domain of NHERF functions as an intramolecular switch that regulates the binding capability of PDZ2, and thus controls the stoichiometry of NHERF to assemble protein complexes.  相似文献   

14.
Eukaryotic initiation factor 6 (eIF6), a highly conserved protein from yeast to mammals, is essential for 60 S ribosome biogenesis and assembly. Both yeast and mammalian eIF6 are phosphorylated at Ser-174 and Ser-175 by the nuclear isoform of casein kinase 1 (CK1). The molecular basis of eIF6 phosphorylation, however, remains elusive. In the present work, we show that subcellular distribution of eIF6 in the nuclei and the cytoplasm of mammalian cells is mediated by dephosphorylation and phosphorylation, respectively. This nucleo-cytoplasmic shuttling is dependent on the phosphorylation status at Ser-174 and Ser-175 of eIF6. We demonstrate that Ca(2+)-activated calcineurin phosphatase binds to and promotes nuclear localization of eIF6. Increase in intracellular concentration of Ca(2+) leads to rapid translocation of eIF6 from the cytoplasm to the nucleus, an event that is blocked by specific calcineurin inhibitors cyclosporin A or FK520. Nuclear export of eIF6 is regulated by phosphorylation at Ser-174 and Ser-175 by the nuclear isoform of CK1. Mutation of eIF6 at the phosphorylatable Ser-174 and Ser-175 to alanine or treatment of cells with the CK1 inhibitor, D4476 inhibits nuclear export of eIF6 and results in nuclear accumulation of eIF6. Together, these results establish eIF6 as a substrate for calcineurin and suggest a novel paradigm for calcineurin function in 60 S ribosome biogenesis via regulating the nuclear accumulation of eIF6.  相似文献   

15.
p150(Glued) is the major subunit of dynactin, a complex that functions with dynein in minus-end-directed microtubule transport. Mutations within the p150(Glued) CAP-Gly microtubule-binding domain cause neurodegenerative diseases through an unclear mechanism. A p150(Glued) motor neuron degenerative disease-associated mutation introduced into the Drosophila Glued locus generates a partial loss-of-function allele (Gl(G38S)) with impaired neurotransmitter release and adult-onset locomotor dysfunction. Disruption of the p150(Glued) CAP-Gly domain in neurons causes a specific disruption of vesicle trafficking at?terminal boutons (TBs), the distal-most ends of synapses. Gl(G38S) larvae accumulate endosomes along with dynein and kinesin motor proteins within swollen TBs, and genetic analyses show that kinesin and p150(Glued) function cooperatively at TBs to coordinate transport. Therefore, the p150(Glued) CAP-Gly domain regulates dynein-mediated retrograde transport at synaptic termini, and this function of dynactin is disrupted by a mutation that causes motor?neuron disease.  相似文献   

16.
Critical to SNARE protein function in neurotransmission are the accessory proteins, soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP), and NSF, that play a role in activation of the SNAREs for membrane fusion. In this report, we demonstrate the depolarization-induced, calcium-dependent phosphorylation of NSF in rat synaptosomes. Phosphorylation of NSF is coincident with neurotransmitter release and requires an influx of external calcium. Phosphoamino acid analysis of the radiolabeled NSF indicates a role for a serine/threonine-specific kinase. Synaptosomal phosphorylation of NSF is stimulated by phorbol esters and is inhibited by staurosporine, chelerythrine, bisindolylmaleimide I, calphostin C, and Ro31-8220 but not the calmodulin kinase II inhibitor, Kn-93, suggesting a role for protein kinase C (PKC). Indeed, NSF is phosphorylated by PKC in vitro at Ser-237 of the catalytic D1 domain. Mutation of this residue to glutamic acid or to alanine eliminates in vitro phosphorylation. Molecular modeling studies suggest that Ser-237 is adjacent to an inter-subunit interface at a position where its phosphorylation could affect NSF activity. Consistently, mutation of Ser-237 to Glu, to mimic phosphorylation, results in a hexameric form of NSF that does not bind to SNAP-SNARE complexes, whereas the S237A mutant does form complex. These data suggest a negative regulatory role for PKC phosphorylation of NSF.  相似文献   

17.
18.
Pancreatic and duodenal homeobox 1 (PDX1) regulates pancreatic development and mature β-cell function. We demonstrate by mass spectrometry that serine residue at position 269 in the C-terminal domain of PDX1 is phosphorylated in β-cells. Besides we show that the degree of phosphorylation, assessed with a phospho-Ser-269-specific antibody, is decreased by elevated glucose concentrations in both MIN6 β-cells and primary mouse pancreatic islets. Homeodomain interacting protein kinase 2 (HIPK2) phosphorylates PDX1 in vitro; phosphate incorporation substantially decreases in PDX1 S269A mutant. Silencing of HIPK2 led to a 51 ± 0.2% decrease in Ser-269 phosphorylation in MIN6 β-cells. Mutation of Ser-269 to phosphomimetic residue glutamic acid (S269E) or de-phosphomimetic residue alanine (S269A) exerted no effect on PDX1 half-life. Instead, PDX1 S269E mutant displayed abnormal changes in subnuclear localization in response to high glucose. Our results suggest that HIPK2-mediated phosphorylation of PDX1 at Ser-269 might be a regulatory mechanism connecting signals generated by changes in extracellular glucose concentration to downstream effectors via changes in subnuclear localization of PDX1, thereby influencing islet cell differentiation and function.  相似文献   

19.
Azobenzene is a photochromic molecule that undergoes rapid and reversible isomerization between the cis- and trans-forms in response to ultraviolet (UV) and visible (VIS) light irradiation, respectively. Here, we introduced the sulfhydryl-reactive azobenzene derivative 4-phenylazophenyl maleimide (PAM) into the functional region of kinesin to reversibly regulate the ATPase activity of kinesin by photoirradiation. We prepared five kinesin motor domain mutants, A247C, L249C, A252C, G272C and S275C, which contained a single reactive cysteine residue in loops L11 and L12. These loops are considered to be key regions for the functioning of kinesin as a motor protein. PAM was stoichiometrically incorporated into the cysteine residues in the loops of the mutants. The PAM-modified S275C mutant exhibited reversible alterations in ATPase activity accompanied by cis-trans isomerization upon UV and VIS light irradiation. The ATPase activity exhibited by the cis-isomer of the PAM bound to the mutant was two times higher than that of the trans-isomer. Further, the PAM-modified L249C mutant exhibited reversible alterations in ATPase activity on UV-VIS light irradiation but exhibited the opposite effect on UV and VIS light irradiation. Using a photochromic azobenzene derivative, we have demonstrated that the ATPase activity of the motor protein kinesin is photoregulated.  相似文献   

20.
Bidirectional cargo transport along microtubules is carried out by opposing teams of kinesin and dynein motors. Despite considerable study, the factors that determine whether these competing teams achieve net anterograde or retrograde transport in cells remain unclear. The goal of this work is to use stochastic simulations of bidirectional transport to determine the motor properties that most strongly determine overall cargo velocity and directionality. Simulations were carried out based on published optical tweezer characterization of kinesin‐1 and kinesin‐2, and for available data for cytoplasmic dynein and the dynein‐dynactin‐BicD2 (DDB) complex. By varying dynein parameters and analyzing cargo trajectories, we find that net cargo transport is predicted to depend minimally on the dynein stall force, but strongly on dynein load‐dependent detachment kinetics. In simulations, dynein is dominated by kinesin‐1, but DDB and kinesin‐1 are evenly matched, recapitulating recent experimental work. Kinesin‐2 competes less well against dynein and DDB, and overall, load‐dependent motor detachment is the property that most determines a motor's ability to compete in bidirectional transport. It follows that the most effective intracellular regulators of bidirectional transport are predicted to be those that alter motor detachment kinetics rather than motor velocity or stall force.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号