共查询到20条相似文献,搜索用时 15 毫秒
1.
A bovine β-lactoglobulin hydrolysate, obtained by the hydrolysis by the Glu specific enzyme Bacillus licheniformis protease (BLP), was fractionated at pH 7.0 into a soluble and an insoluble fraction and characterized by LC-MS. From the 26 peptides identified in the soluble fraction, five peptides (A[f97-112] = [f115-128], AB[f1-45], AB[f135-157], AB[f135-158], and AB[f138-162]) bound to β-lactoglobulin at room temperature. After heating of β-lactoglobulin in the presence of peptides, eight peptides were identified in the pellet formed, three of them belonging to the previously mentioned peptides. Principle component analysis revealed that the binding at room temperature (to β-lactoglobulin) was related to the total hydrophobicity and the total charge of the peptides. The binding to the unfolded protein could not be attributed to distinct properties of the peptides. The presence of the peptides caused a 50% decrease in denaturation enthalpy (from 148 ± 3 kJ/mol for the protein alone to 74 ± 2 kJ/mol in the presence of peptides), while no change in secondary structure or denaturation temperature was observed. At temperatures <85 °C, the addition of peptides resulted in a 30-40% increase of precipitated β-lactoglobulin. At pH < 6, no differences in the amount of aggregated β-lactoglobulin were observed, which indicates the lack of binding of peptides to β-lactoglobulin at those pH values as was also observed by SELDI-TOF-MS. Although only a few peptides were found to participate in aggregation, suggesting specificity, principal component analysis was unable to identify specific properties responsible for this. 相似文献
2.
The energetics of protein homo-oligomerization was analyzed in detail with the application of a general thermodynamic model. We have studied the thermodynamic aspects of protein-protein interaction employing β-lactoglobulin A from bovine milk at pH=6.7 where the protein is mainly in its dimeric form. We performed differential calorimetric scans at different total protein concentration and the resulting thermograms were analyzed with the thermodynamic model for oligomeric proteins previously developed. The thermodynamic model employed, allowed the prediction of the sign of the enthalpy of dimerization, the analysis of complex calorimetric profiles without transitions baselines subtraction and the obtainment of the thermodynamic parameters from the unfolding and the association processes and the compared with association parameters obtained with Isothermal Titration Calorimetry performed at different temperatures. The dissociation and unfolding reactions were also monitored by Fourier-transform infrared spectroscopy and the results indicated that the dimer of β-lactoglobulin (N(2)) reversibly dissociates into monomeric units (N) which are structurally distinguishable by changes in their infrared absorbance spectra upon heating. Hence, it is proposed that β-lactoglobulin follows the conformational path induced by temperature:N(2)?2N?2D. The general model was validated with these results indicating that it can be employed in the study of the thermodynamics of other homo-oligomeric protein systems. 相似文献
3.
Daniela Russo Maria Grazia Ortore Francesco Spinozzi Paolo Mariani Camille Loupiac Burkhard Annighofer Alessandro Paciaroni 《Biochimica et Biophysica Acta (BBA)/General Subjects》2013
Methods
Combining small-angle X-ray and neutron scattering measurements with inelastic neutron scattering experiments, we investigated the impact of high hydrostatic pressure on the structure and dynamics of β-lactoglobulin (βLG) in aqueous solution.Background
βLG is a relatively small protein, which is predominantly dimeric in physiological conditions, but dissociates to monomer below about pH 3.Results
High-pressure structural results show that the dimer–monomer equilibrium, as well as the protein–protein interactions, are only slightly perturbed by pressure, and βLG unfolding is observed above a threshold value of 3000 bar. In the same range of pressure, dynamical results put in evidence a slowing down of the protein dynamics in the picosecond timescale and a loss of rigidity of the βLG structure. This dynamical behavior can be related to the onset of unfolding processes, probably promoted from water penetration in the hydrophobic cavity.General significance
Results suggest that density and compressibility of water molecules in contact with the protein are key parameters to regulate the protein flexibility. 相似文献4.
Inés Burgos Sergio A. Dassie Marcos A. Villarreal Gerardo D. Fidelio 《Biochimica et Biophysica Acta - Proteins and Proteomics》2012,1824(2):383-391
The energetics of protein homo-oligomerization was analyzed in detail with the application of a general thermodynamic model. We have studied the thermodynamic aspects of protein-protein interaction employing β-lactoglobulin A from bovine milk at pH = 6.7 where the protein is mainly in its dimeric form. We performed differential calorimetric scans at different total protein concentration and the resulting thermograms were analyzed with the thermodynamic model for oligomeric proteins previously developed. The thermodynamic model employed, allowed the prediction of the sign of the enthalpy of dimerization, the analysis of complex calorimetric profiles without transitions baselines subtraction and the obtainment of the thermodynamic parameters from the unfolding and the association processes and the compared with association parameters obtained with Isothermal Titration Calorimetry performed at different temperatures. The dissociation and unfolding reactions were also monitored by Fourier-transform infrared spectroscopy and the results indicated that the dimer of β-lactoglobulin (N2) reversibly dissociates into monomeric units (N) which are structurally distinguishable by changes in their infrared absorbance spectra upon heating. Hence, it is proposed that β-lactoglobulin follows the conformational path induced by temperature:N2 ? 2N ? 2D. The general model was validated with these results indicating that it can be employed in the study of the thermodynamics of other homo-oligomeric protein systems. 相似文献
5.
The milk protein β-lactoglobulin (βLG) dominates the properties of whey aggregates in food products. Here we use spectroscopic and calorimetric techniques to elucidate how anionic, cationic and non-ionic surfactants interact with bovine βLG and modulate its heat-induced aggregation. Alkyl trimethyl ammonium chlorides (xTAC) strongly promote aggregation, while sodium alkyl sulfates (SxS) and alkyl maltopyranosides (xM) reduce aggregation. Sodium dodecyl sulfate (SDS) binds to non-aggregated βLG in several steps, but reduction of aggregation was associated with the first binding step, which occurs far below the critical micelle concentration. In contrast, micellar concentrations of xMs are required to reduce aggregation. The ranking order for reduction of aggregation (normalized to their tendency to self-associate) was C10-C12>C8>C14 for SxS and C8>C10>C12>C14>C16 for xM. xTAC promote aggregation in the same ranking order as xM reduce it. We conclude that SxS reduce aggregation by stabilizing the protein's ligand-bound state (the melting temperature t(m) increases by up to 10°C) and altering its charge potential. xM monomers also stabilize the protein's ligand-bound state (increasing t(m) up to 6°C) but in the absence of charged head groups this is not sufficient by itself to prevent aggregation. Although micelles of both anionic and non-ionic surfactants destabilize βLG, they also solubilize unfolded protein monomers, leaving them unavailable for protein-protein association and thus inhibiting aggregation. Cationic surfactants promote aggregation by a combination of destabilization and charge neutralization. The food compatible surfactant sodium dodecanoate also inhibited aggregation well below the cmc, suggesting that surfactants may be a practical way to modulate whey protein properties. 相似文献
6.
Ohtomo H Konuma T Utsunoiya H Tsuge H Ikeguchi M 《Protein science : a publication of the Protein Society》2011,20(11):1867-1875
β-lactoglobulin (LG) contains nine β-strands (strands A-I) and one α-helix. Strands A-H form a β-barrel. At neutral pH, equine LG (ELG) is monomeric, whereas bovine LG (BLG) is dimeric, and the I-strands of its two subunits form an intermolecular β-sheet. We previously constructed a chimeric ELG in which the sequence of the I-strand was replaced with that of BLG. This chimera did not dimerize. For this study, we constructed the new chimera we call Gyuba (which means cow and horse in Japanese). The amino acid sequence of Gyuba includes the sequences of the BLG secondary structures and those of the ELG loops. The crystal structure of Gyuba is very similar to that of BLG and indicates that Gyuba dimerizes via the intermolecular β-sheet formed by the two I-strands. Thus, the entire arrangement of the secondary structural elements is important for LG dimer formation. 相似文献
7.
Kristin R. Domike Athene M. Donald 《International journal of biological macromolecules》2009,44(4):301-310
Proteins aggregated into spherulite structures of amyloid fibrils have been observed in patients with certain brain diseases such as Alzheimer's and Parkinson's. The conditions under which these protein spherulites form and grow are not currently known. In order to illuminate the role of environmental factors on protein spherulites, this research aims to explore the kinetics and mechanisms of spherulite formation and growth, as monitored by optical microscopy, in a range of salt concentrations, and initial protein concentrations for two model proteins: bovine β-lactoglobulin and insulin.These two proteins are significantly different in their size and fibril growth rate, but both of these proteins have been shown previously to form amyloid fibrils and spherulites under low pH conditions. The growth pattern of spherulites in each protein solution was monitored and quantified using a linear polymerisation reaction model which allowed for quantification of formation and growth rates across experiments.Two themes were found in the experimental results of spherulite formation and growth: the two model protein systems behaved very similarly to one another when viewed on relative scales, and the spherulites in these systems followed trends seen in some of the previous research of amyloid fibril growth.Specifically, in the presence of salt, both β-lactoglobulin and insulin systems demonstrated maximum growth rates at the same salt concentration, possibly suggesting the role that salt plays in altering rates may not be protein specific (e.g. anion binding to aid unfolding), but may be generic (e.g. electrostatic shielding of repelling charges).Specifically, with variations in the initial protein concentrations, spherulite trends across both model systems were a decrease in appearance time (faster appearance) and an increased growth rate as concentration increased. The appearance time decreased at a diminishing rate towards a limiting shortest appearance time. A limiting shortest appearance time suggests that, in the higher concentrations of protein tested, spherulite formation is not dependent upon the spatial concentration of protein but on the preparedness of the protein to form or join the spherulite. 相似文献
8.
Fang Tian Katrina Johnson Andrea E. Lesar Harry Moseley James Ferguson Ifor D.W. Samuel Alberto Mazzini Lorenzo Brancaleon 《Biochimica et Biophysica Acta (BBA)/General Subjects》2006
We have investigated the interaction between PPIX and β-lactoglobulin (β-lg) as a function of the pH of the solution. β-lg is a small globular protein (MW ≈18 kDa) with a very well characterized structure that reveals several possible binding sites for ligands. The interaction with β-lg affects the photophysical properties of PPIX. The shift of PPIX emission maximum, excitation maximum and the increase of the fluorescence intensity is an indicator that binding between the porphyrin and β-lg occurs. The binding constant appears to be modulated by the pH of the solution. Spectroscopic measurements do not reveal any significant energy transfer between the Trp residues of β-lg and PPIX, however, fluorescence anisotropy decay measurements confirm the binding and the modulation introduced by the pH of the solution. Since β-lg has been shown to be stable within the range of pH adopted in our experiments (5.0–9.0), the results suggest that PPIX binds a site affected by the pH of the solution. Because of the crystallographic evidence an obvious site is near the aperture of the interior β-barrel however an alternative (or concurrent) binding site may still be present. 相似文献
9.
Antoine Gautier 《BBA》2014
The biochemical processes of living cells involve a numerous series of reactions that work with exceptional specificity and efficiency. The tight control of this intricate reaction network stems from the architecture of the proteins that drive the chemical reactions and mediate protein–protein interactions. Indeed, the structure of these proteins will determine both their function and interaction partners. A detailed understanding of the proximity and orientation of pivotal functional groups can reveal the molecular mechanistic basis for the activity of a protein. Together with X-ray crystallography and electron microscopy, NMR spectroscopy plays an important role in solving three-dimensional structures of proteins at atomic resolution. In the challenging field of membrane proteins, retinal-binding proteins are often employed as model systems and prototypes to develop biophysical techniques for the study of structural and functional mechanistic aspects. The recent determination of two 3D structures of seven-helical trans-membrane retinal proteins by solution-state NMR spectroscopy highlights the potential of solution NMR techniques in contributing to our understanding of membrane proteins. This review summarizes the multiple strategies available for expression of isotopically labeled membrane proteins. Different environments for mimicking lipid bilayers will be presented, along with the most important NMR methods and labeling schemes used to generate high-quality NMR spectra. The article concludes with an overview of types of conformational restraints used for generation of high-resolution structures of membrane proteins. This article is part of a Special Issue entitled: Retinal Proteins — You can teach an old dog new tricks. 相似文献
10.
Violaine Athès Pascal Degraeve Dominique Cavaillé-Lefebvre Sandrine Espeillac Pierre Lemay Didier Combes 《Biotechnology letters》1997,19(3):273-276
High pressure (>200Mpa) or high temperature (>45°C) can both induce an irreversible inactivation of the -galactosidases of Aspergillus oryzae, Kluyveromyces lactis and Escherichia coli. Moderate pressures (50MPa-250 MPa) exerted a protective effect against thermal inactivation for the three -galactosidases investigated. High pressure could thus be used to carry out b-galactosidase catalysed reactions such as lactose hydrolysis, at higher temperatures. 相似文献
11.
A. Belatik C.D. Kanakis S. Hotchandani P.A. Tarantilis M.G. Polissiou H.A. Tajmir-Riahi 《Journal of biomolecular structure & dynamics》2013,31(4):437-447
β-lactoglobulin (β-LG) is a member of lipocalin superfamily of transporters for small hydrophobic molecules such as retinoids. We located the binding sites of retinol and retinoic acid on β-LG in aqueous solution at physiological conditions, using FTIR, CD, fluorescence spectroscopic methods, and molecular modeling. The retinoid-binding sites and the binding constants as well as the effect of retinol and retinoic acid complexation on protein stability and secondary structure were determined. Structural analysis showed that retinoids bind strongly to β-LG via both hydrophilic and hydrophobic contacts with overall binding constants of K retinol- β -LG?=?6.4 (±?.6)?×?106?M?1 and K retinoic acid- β -LG?=?3.3 (±?.5)?×?106?M?1. The number of retinoid molecules bound per protein (n) is 1.1 (±?.2) for retinol and 1.5 (±?.3) for retinoic acid. Molecular modeling showed the participation of several amino acids in the retinoid–protein complexes with the free binding energy of ?8.11?kcal/mol for retinol and ?7.62?kcal/mol for retinoic acid. Protein conformation was altered with reduction of β-sheet from 59 (free protein) to 52–51% and a major increase in turn structure from 13 (free protein) to 24–22%, in the retinoid–β-LG complexes, indicating a partial protein destabilization. 相似文献
12.
Belatik A Kanakis CD Hotchandani S Tarantilis PA Polissiou MG Tajmir-Riahi HA 《Journal of biomolecular structure & dynamics》2012,30(4):437-447
β-lactoglobulin (β-LG) is a member of lipocalin superfamily of transporters for small hydrophobic molecules such as retinoids. We located the binding sites of retinol and retinoic acid on β-LG in aqueous solution at physiological conditions, using FTIR, CD, fluorescence spectroscopic methods, and molecular modeling. The retinoid-binding sites and the binding constants as well as the effect of retinol and retinoic acid complexation on protein stability and secondary structure were determined. Structural analysis showed that retinoids bind strongly to β-LG via both hydrophilic and hydrophobic contacts with overall binding constants of K (retinol-) (β) (-LG?)=?6.4 (±?.6)?×?10(6)?M(-1) and K (retinoic acid-) (β) (-LG?)=?3.3 (±?.5)?×?10(6)?M(-1). The number of retinoid molecules bound per protein (n) is 1.1 (±?.2) for retinol and 1.5 (±?.3) for retinoic acid. Molecular modeling showed the participation of several amino acids in the retinoid-protein complexes with the free binding energy of -8.11?kcal/mol for retinol and -7.62?kcal/mol for retinoic acid. Protein conformation was altered with reduction of β-sheet from 59 (free protein) to 52-51% and a major increase in turn structure from 13 (free protein) to 24-22%, in the retinoid-β-LG complexes, indicating a partial protein destabilization. 相似文献
13.
《Biochimica et Biophysica Acta - Proteins and Proteomics》2018,1866(2):316-326
β-Lactoglobulin is one of the major components of bovine milk and it remains in a dimeric form under physiological conditions. The present contribution elucidates the structural change of β-lactoglobulin at pH 7.4 under the action of guanidine hydrochloride (GnHCl) and heat at the single molecular level. The only free cysteine (Cys-121) of β-lactoglobulin has been tagged with 7-diethylamino-3-(4-maleimidophenyl)-4-methylcoumarin (CPM) for this purpose. The dimeric structure of β-lactoglobulin found to undergoes a monomerization prior to the unfolding process upon being subjected to GnHCl. The hydrodynamic diameter of the native dimer, native monomer and the unfolded monomer has been estimated as ~ 55 Å, ~ 29 Å and ~ 37 Å, respectively. The free energy change for the monomerization and denaturation are respectively 1.57 kcal mol− 1 and 8.93 kcal mol− 1. With change in temperature, development of two types of aggregates (small aggregates and large aggregates) was observed, which is triggered by the formation of the monomeric structure of β-lactoglobulin. The hydrodynamic diameters of the smaller and larger aggregates have been estimated to be ~ 77 Å and ~ 117 Å, respectively. The formation of small aggregates turns out to be reversible whereas that of larger aggregates is irreversible. The free energy associated with these two steps are 0.69 kcal mol− 1 and 9.09 kcal mol− 1. Based on the size parameters, the smaller and larger aggregates have been proposed to contain ~twenty and ~sixty monomeric units. It has also been concluded that the monomeric subunits retain their native like secondary structure in these aggregates. 相似文献
14.
Loch JI Polit A Bonarek P Olszewska D Kurpiewska K Dziedzicka-Wasylewska M Lewiński K 《International journal of biological macromolecules》2012,50(4):1095-1102
Lactoglobulin is a globular milk protein for which physiological function has not been clarified. Due to its binding properties lactoglobulin might serve as a carrier for bioactive molecules. Binding of 12-, 14-, 16- and 18-carbon saturated fatty acids to bovine β-lactoglobulin has been characterised by isothermal titration calorimetry and X-ray crystallography as a part of systematic studies of lactoglobulin complexes with ligands of biological importance. The thermodynamic parameters have been determined for lauric, myristic and palmitic acid complexes revealing systematic decrease of enthalpic and increase of entropic component of ΔG with elongation of aliphatic chain. In all crystal structures determined with resolution 1.9-2.1?, single fatty acid molecule was found in the β-barrel in extended conformation with individual pattern of interactions. Location of a fatty acid in the binding site depends on the length of aliphatic chain and influences polar interactions between protein and ligand. Systematic changes of entropic component indicate important role of water in binding process. 相似文献
15.
Complexes between chitosan and β-lactoglobulin (β-Lg) were investigated, and their formation was found to depend on pH and ionic strength. The electrostatic attraction between the cationic polysaccharide and the negatively charged protein above its isoelectric point has been identified as the main driving force in the molecular recognition process. At low protein concentration, soluble complexes were shown to be formed, and their structural features were characterized by circular dichroism (CD) and steady-state fluorescence. Both the overall secondary structure of the protein and the local environment probed by its tryptophan residues are not affected by the presence of chitosan in the complex. Furthermore, the formation of the complex does not lead to a net stabilization of the native state of the protein over its denatured state due to formation of a similarly stable complex between the polyelectrolyte and the denatured state of the protein. The formation of coacervates between β-Lg and chitosan was also characterized as a function of average molecular weight of chitosan (subjected to ultrasonication for different periods of time: 0, 5, 15, and 30 min) by means of both turbidimetric and calorimetric techniques. The combination of turbidimetric as well as isothermal calorimetric titrations have allowed the deconvolution of two processes usually coupled in the formation of protein-polyelectrolyte coacervates: the formation of complex coacervates as the protein sites become saturated by polyelectrolyte molecules and the redissolution of the coacervates as the polyelectrolyte-to-protein ratio increases. 相似文献
16.
Kornelius Zeth 《BBA》2010,1797(6-7):1292-1299
Gram-negative bacteria are the ancestors of mitochondrial organelles. Consequently, both entities contain two surrounding lipid bilayers known as the inner and outer membranes. While protein synthesis in bacteria is accomplished in the cytoplasm, mitochondria import 90–99% of their protein ensemble from the cytosol in the opposite direction. Three protein families including Sam50, VDAC and Tom40 together with Mdm10 compose the set of integral β-barrel proteins embedded in the mitochondrial outer membrane in S. cerevisiae (MOM). The 16-stranded Sam50 protein forms part of the sorting and assembly machinery (SAM) and shows a clear evolutionary relationship to members of the bacterial Omp85 family. By contrast, the evolution of VDAC and Tom40, both adopting the same fold cannot be traced to any bacterial precursor. This finding is in agreement with the specific function of Tom40 in the TOM complex not existent in the enslaved bacterial precursor cell. Models of Tom40 and Sam50 have been developed using X-ray structures of related proteins. These models are analyzed with respect to properties such as conservation and charge distribution yielding features related to their individual functions. 相似文献
17.
《Gene》1997,193(2):239-243
We have analysed the expression of β-lactoglobulin (BLG) gene constructs with combinations of introns deleted to further define the role of intronic regions in directing position-independent mammary expression of BLG transgenes. Intron removal had no obvious effect on hormonal induction of BLG expression in vitro but dramatically reduced expression in vivo, in that removal of intron pairs always resulted in a proportion of the transgenic lines generated failing to express the transgene in the mammary gland. Position-dependent expression was seen for all intron-deleted transgenes regardless of which introns were removed and the ability of the intron-deleted transgenes to be expressed bore no relationship to transgene copy number. Thus, intron removal per se increases the sensitivity of BLG transgenes to position effects. 相似文献
18.
Uchiyama Hirofumi Iwai Atsushi Dohra Hideo Ohnishi Toshiyuki Kato Tatsuya Park Enoch Y. 《Applied microbiology and biotechnology》2018,102(10):4467-4475
Applied Microbiology and Biotechnology - Killer toxin resistant 6 (Kre6) and its paralog, suppressor of Kre null 1 (Skn1), are thought to be involved in the biosynthesis of cell wall... 相似文献
19.
The interaction of benzodiazepines and beta-carbolines with metal cations was investigated. Among numerous transition metal cations, only three, CO2+, Ni2+ and Zn2+, specifically inhibited the binding of [3H]beta-carboline-3-carboxylate ethyl ester (beta-CCE). The effects of these cations on [3H]beta-CCE binding were exactly opposite to those on [3H]diazepam binding. The effects of these cations was not dependent on lipid peroxidation. The differential effect of these cations may reflect a general difference in the way agonists and antagonists bind to the benzodiazepine receptor. 相似文献
20.
Lucas V.B. Hoelz Rafael C. Bernardi Bruno A.C. Horta Jocley Q. Araújo Magaly G. Albuquerque Joaquim F.M. da Silva 《Molecular simulation》2013,39(11):907-913
The human β1-adrenoceptor (hβ1AR) is a transmembrane (TM) protein responsible for the signal transduction pathway via agonist interaction. Despite its importance, hβ1AR activation mechanism is still unclear. The most studied and widely accepted mechanism is the disruption of a salt bridge between TM3 arginine and TM6 glutamic acid, called ionic lock. In this work, we constructed a functional hβ1AR-model equilibrated in a membrane environment to study the influence of agonist binding on the dynamical behaviour of hβ1AR and on the opening of the ionic lock. The results indicate that the agonist (R-noradrenaline) disturbs the hβ1AR, causing a TM helices rotation, disrupting the ionic lock. This rotational motion occurs in opposite directions in the intercellular and extracellular domains of hβ1AR, opening the ionic lock. 相似文献