首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In cyanobacteria, Glu-244 and Tyr-246 of the Photosystem II (PS II) D1 protein are hydrogen bonded to two water molecules that are part of a hydrogen-bond network between the bicarbonate ligand to a non-heme iron and the cytosol. Ala substitutions were introduced in Synechocystis sp. PCC 6803 to investigate the roles of these residues and the hydrogen-bond network on electron transfer between the primary plastoquinone acceptor, QA, and the secondary plastoquinone acceptor, QB, of the quinone-Fe-acceptor complex. All mutants assembled PS II; however, an increase in the PS II to PS I ratio was apparent, particularly in the E244A:Y246A double mutant. The mutants also showed impaired oxygen evolution and retarded chlorophyll a fluorescence decays following single turnover actinic flashes, which appeared to be primarily due to reduced QB binding in the E244A strain and an enhanced back reaction with the S2 state of the oxygen-evolving complex in the Y246A mutant. Impaired PS II in the Y246A and E244A:Y246A mutants resulted in inactivation of the psbA gene encoding D1. The Y246A and E244A:Y246A mutants also showed high light sensitivity whereas the E244A mutant showed enhanced resilience towards photodamage. Unlike the control strain, all of the mutants were insensitive to the addition of formate or bicarbonate in assays following chlorophyll decay kinetics that reflect electron transfer between QA and QB, suggesting the bicarbonate binding environment was perturbed. Our data also indicate that waters W582 and W622 (PDB: 4UB6) have essential roles in maintaining the architecture of the acceptor side of PS II.  相似文献   

2.
Based on the electron-transport properties on the reducing side of the reaction center, photosystem II (PS II) in green plants and algae occurs in two distinct forms. Centers with efficient electron-transport from QA to plastoquinone (QB-reducing) account for 75% of the total PS II in the thylakoid membrane. Centers that are photochemically competent but unable to transfer electrons from QA to QB (QB-nonreducing) account for the remaining 25% of total PS II and do not participate in plastoquinone reduction. In Dunaliella salina, the pool size of QB-nonreducing centers changes transiently when the light regime is perturbed during cell growth. In cells grown under moderate illumination intensity (500 E m-2s-1), dark incubation induces an increase (half-time 45 min) in the QB-nonreducing pool size from 25% to 35% of the total PS II. Subsequent illumination of these cells restores the steady-state concentration of QB-nonreducing centers to 25%. In cells grown under low illumination intensity (30 µE m–2s–1), dark incubation elicits no change in the relative concentration of QB-nonreducing centers. However, a transfer of low-light grown cells to moderate light induces a rapid (half-time 10 min) decrease in the QB-nonreducing pool size and a concomitant increase in the QB-reducing pool size. These and other results are explained in terms of a pool of QB-nonreducing centers existing in a steady-state relationship with QB-reducing centers and with a photochemically silent form of PS II in the thylakoid membrane of D. salina. It is proposed that QB-nonreducing centers are an intermediate stage in the process of damage and repair of PS II. It is further proposed that cells regulate the inflow and outflow of centers from the QB-nonreducing pool to maintain a constant pool size of QB-nonreducing centers in the thylakoid membrane.Abbreviations Chl chlorophyll - PS photosystem - QA primary quinone electron acceptor of PS II - QB secondary quinone electron acceptor of PS II - LHC light harvesting complex - Fo non-variable fluorescence yield - Fpl intermediate fluorescence yield plateau level - Fmax maximum fluorescence yield - Fi mitial fluorescence yield increase from Fo to Fpl(Fpl-Fo) - Fv total variable fluorescence yield (Fmax-Fo) - DCMU dichlorophenyl-dimethylurea  相似文献   

3.
It is well known that two photosystems, I and II, are needed to transfer electrons from H2O to NADP+ in oxygenic photosynthesis. Each photosystem consists of several components: (a) the light-harvesting antenna (L-HA) system, (b) the reaction center (RC) complex, and (c) the polypeptides and other co-factors involved in electron and proton transport. First, we present a mini review on the heterogeneity which has been identified with the electron acceptor side of Photosystem II (PS II) including (a) L-HA system: the PS II and PS II units, (b) RC complex containing electron acceptor Q1 or Q2; and (c) electron acceptor complex: QA (having two different redox potentials QL and QH) and QB (QB-type; Q'B type; and non-QB type); additional components such as iron (Q-400), U (Em,7=–450 mV) and Q-318 (or Aq) are also mentioned. Furthermore, we summarize the current ideas on the so-called inactive (those that transfer electrons to the plastoquinone pool rather slowly) and active reaction centers. Second, we discuss the bearing of the first section on the ratio of the PS II reaction center (RC-II) and the PS I reaction center (RC-I). Third, we review recent results that relate the inactive and active RC-II, obtained by the use of quinones DMQ and DCBQ, with the fluorescence transient at room temperature and in heated spinach and soybean thylakoids. These data show that inactive RC-II can be easily monitored by the OID phase of fluorescence transient and that heating converts active into inactive centers.Abbreviations DCBQ 2,5 or 2,6 dichloro-p-benzoquinone - DMQ dimethylquinone - QA primary plastoquinone electron acceptor of photosystem II - QB secondary plastoquinone electron acceptor of photosystem II - IODP successive fluorescence levels during time course of chlorophyll a fluorescence: O for origin, I for inflection, D for dip or plateau, and P for peak  相似文献   

4.
We have isolated and characterized two nuclear mutations which affect plastoquinone accumulation in maize. The mutations, hcf103 and hcf114, modify the same genetic locus. Plants homozygous for either mutant allele exhibit reduced PS II electron transport activity, reduced variable chlorophyll fluorescence and reduced delayed fluorescence yield. In these ways, hcf103 and hcf114 resemble previously described PS II mutants which lack stably assembled PS II reaction center complexes. However, unlike most previously described PS II mutants, hcf103 and hcf114 possess stable membrane-associated PS II complexes. Plastoquinone (PQ-9), which performs a variety of redox functions essential to normal non-cyclic electron transport, is severely depleted in the mutants. The lack of PS II electron transport activity is attributed to the absence of PQ-9. This is the first report of mutants deficient in PQ which do not also suffer serious pleiotropic defects.Abbreviations PS II Photosystem II - PQ plastoquinone - QA and QB primary and secondary stable electron acceptors of PS II - HPLC high pressure liquid chromatography - LDS-PAGE lithium dodecyl sulfate polyacrylamide gel electrophoresis - TLC thin layer chromatography  相似文献   

5.
The PsbL protein is a 4.5 kDa subunit at the monomer–monomer interface of Photosystem II (PS II) consisting of a single membrane-spanning domain and a hydrophilic stretch of ~ 15 residues facing the cytosolic (or stromal) side of the photosystem. Deletion of conserved residues in the N-terminal region has been used to investigate the importance of this hydrophilic extension. Using Synechocystis sp. PCC 6803, three deletion strains: ?(N6–N8), ?(P11–V12) and ?(E13–N15), have been created. The ?(N6–N8) and ?(P11–V12) strains remained photoautotrophic but were more susceptible to photodamage than the wild type; however, the ?(E13–N15) cells had the most severe phenotype. The Δ(E13–N15) mutant showed decreased photoautotrophic growth, a reduced number of PS II centers, impaired oxygen evolution in the presence of PS II-specific electron acceptors, and was highly susceptible to photodamage. The decay kinetics of chlorophyll a variable fluorescence after a single turnover saturating flash and the sensitivity to low concentrations of PS II-directed herbicides in the Δ(E13–N15) strain indicate that the binding of plastoquinone to the QB-binding site had been altered such that the affinity of QB is reduced. In addition, the PS II-specific electron acceptor 2,5-dimethyl-p-benzoquinone was found to inhibit electron transfer through the quinone-acceptor complex of the ?(E13–N15) strain. The PsbL Y20A mutant was also investigated and it exhibited increased susceptibility to photodamage and increased herbicide sensitivity. Our data suggest that the N-terminal hydrophilic region of PsbL influences forward electron transfer from QA through indirect interactions with the D–E loop of the D1 reaction center protein. Our results further indicate that disruption of interactions between the N-terminal region of PsbL and other PS II subunits or lipids destabilizes PS II dimer formation. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: Keys to Produce Clean Energy.  相似文献   

6.
Photosystem II (PS II) is the site of oxygen evolution. Activation of dark adapted samples by a train of saturating flashes produces oxygen with a yield per flash which oscillates with a periodicity of four. Damping of the oxygen oscillations is accounted for by misses and double hits. The mechanisms hidden behind these parameters are not yet fully understood. The components which participate in charge transfer and storage in PS II are believed to be anchored to the heterodimer formed by the D1 and D2 proteins. The secondary plastoquinone acceptor QB binds on D1 in a loop connecting the fourth and fifth helices (the QB pocket). Several D1 mutants, mutated in the QB binding region, have been studied over the past ten years.In the present report, our results on nine D1 mutants of Synechocystis PCC 6714 and 6803 are analyzed. When oxygen evolution is modified, it can be due to a change in the electron transfer kinetics at the level of the acceptor side of PS II and also in some specific mutants to a long ranging effect on the donor side of PS II. The different properties of the mutants enable us to propose a classification in three categories. Our results can fit in a model in which misses are substantially determined by the fraction of centers which have QA - before each flash due to the reversibility of the electron transfer reactions. This idea is not new but was more thoroughly studied in a recent paper by Shinkarev and Wraight (1993). However, we will show in the discussion that some doubts remain as to the true origin of misses and double hits.Abbreviations BQ p-benzoquinone - Chl chlorophyll - D1 and D2 proteins of the core of PS II - DCMU 3-(3,4-dichlorophenyl)-1,1 dimethyl urea - OEC oxygen evolving complex - P680 chlorophyll center of PS II acting as the primary donor - PS II Photosystem II - QA and QB primary and secondary quinone electron acceptor - TL thermoluminescence  相似文献   

7.
《FEBS letters》1985,179(1):51-54
The high-potential form of cytochrome b-559 (b-559 HP) is closely linked to the oxygenic photosystem (photosystem II) but its relation to other redox components of the photosynthetic apparatus, including plastoquinone, is still obscure. We investigated the photoreduction of cytochrome b-559 HP by isolated chloroplasts in the presence of 3 antagonists of plastoquinone, of which, DBMIB (dibromothymoquinone) and DNP-INT (dinitrophenyl ether of iodonitrothymol) are known to inhibit the oxidation of the plastoquinone pool (PQ) by the FeS-cytochrome ƒ/b6 complex and one, UHDBT (5-n-undecyl-6-hydroxy-4,7-dioxobenzothiazole) is known to inhibit the reduction of PQ by QB.QB is a protein-bound plastoquinone that serves as a two-electron gate for the reduction of PQ. We found that DBMIB and DNP-INT did not inhibit but low concentrations of UHDBT severely inhibited the photoreduction of cytochrome b-559 HP. These results suggest that the electron donor for the reduction of cytochrome b-559 HP was either QB or a portion of the PQ pool that was oxidized by a new pathway free of binding sites for DBMIB and DNP-INT.  相似文献   

8.
The 32 000-dalton QB-protein of photosystem II (PS II) is rapidly damaged and removed from isolated pea thylakoids during incubation in the light resulting in a loss of photosynthetic electron flow through PS II. This in vitro photoinhibition is similar to that previously reported with intact Chlamydomonas cells. The damage occurs at a faster rate in vitro, however, due to the inability of isolated thylakoids to synthesize replacement QB-protein. The removal of the damaged QB-protein does not require any soluble components of the chloroplast stroma and is unaffected by the protease inhibitors phenyl-methylsulfonylfluoride or antipain. Unlike the effect of trypsin, no low mol. wt. membrane-bound or soluble fragments of the labelled QB-protein could be identified either by autoradiography or immunologically using polyclonal antibodies specific for the QB-protein. The lightinduced damage to the QB-protein (indicated by a loss of QB functional activity), preceded the removal of the protein from the membrane. We conclude that photodamage of the QB-protein generates a conformational change which renders the protein susceptible to attack by a highly efficient, intrinsic membrane protease.  相似文献   

9.
Disulfiram (tetraethylthiuram disulfide), a metal chelator, inhibits photosynthetic electron transport in broken chloroplasts. A major site of inhibition is detected on the electron-acceptor side of photosystem II between QA, the first plastoquinone electron-acceptor, and the second plastoquinone electron-acceptor, QB. This site of inhibition is shown by a severalfold increase in the half-time of QA oxidation, as monitored by the decay of the variable chlorophyll a flourescence after an actinic flash. Another site of inhibition is detected in the functioning of the reaction center of photosystem II; disulfiram is observed to quench the room temperature variable chlorophyll a fluorescence, as well as the intensity of the 695 nm peak, relative to the 685 nm peak, in the chlorophyll a fluorescence spectrum at 77 K. Electron transport from H2O to the photosystem II electron-acceptor silicomolybdate is also inhibited. Disulfiram does not inhibit electron flow before the site(s) of donation by exogenous electron donors to photosystem II, and no inhibition is detected in the partial reactions associated with photosystem I.  相似文献   

10.
We report here the first measurements on chlorophyll (Chl) a fluorescence characteristics of photoautotrophic soybean cells (cell lines SB-P and SBI-P). The cell fluorescence is free from severe distortion problems encountered in higher plant leaves. Chl a fluorescence spectra at 77 K show, after correction for the spectral sensitivity of the photomultiplier and the emission monochromator, peaks at 688, 696 and 745 nm, representing antenna systems of photosystem II-CP43 and CP47, and photosystem I, respectively. Calculations, based on the complementary area over the Chl a fluorescence induction curve, indicated a ratio of 6 of the mobile plastoquinone (including QB) to the primary stable electron acceptor, the bound plastoquinone QA. A ratio of one between the secondary stable electron acceptor, bound plastoquinone QB, and its reduced form QB - was obtained by using a double flash technique. Owing to this ratio, the flash number dependence of the Chl a fluorescence showed a distinct period of four, implying a close relationship to the S state of the oxygen evolution mechanism. Analysis of the QA - reoxidation kinetics showed (1) the halftime of each of the major decay components ( 300 s fast and 30 ms slow) increases with the increase of diuron and atrazine concentrations; and (2) the amplitudes of the fast and the slow components change in a complementary fashion, the fast component disappearing at high concentrations of the inhibitors. This implies that the inhibitors used are able to totally displace QB. In intact soybean cells, the relative amplitude of the 30 ms to 300 s component is higher (40:60) than that in spinach chloroplasts (30:70), implying a larger contribution of the centers with unbound QB. SB-P and SBI-P soybean cells display a slightly different sensitivity of QA - decay to inhibitors.Abbreviations CA complementary area over fluorescence induction curve - Chl chlorophyll, diuron - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - F m maximum chlorophyll a fluorescence - F 0 minimum chlorophyll a fluorescence - F v = F t-F0 - where F v = variable chlorophyll a fluorescence - and Ft = chlorophyll a fluorescence at time t - PS II photosystem II - Q a primary (plastoquinone) electron acceptor of PS II - Q b secondary (plastoquinone) electron acceptor of PS II - t50 the time at which the concentration of reduced Q a is 50% of that at its maximum value  相似文献   

11.
The effects of ultraviolet-B (UV-B: 280-320 nm) radiation on the photosynthetic pigments, primary photochemical reactions of thylakoids and the rate of carbon assimilation (Pn) in the cotyledons of clusterbean (Cyamopsis tetragonoloba) seedlings have been examined. The radiation induces an imbalance between the energy absorbed through the photophysical process of photosystem (PS) II and the energy consumed for carbon assimilation. Decline in the primary photochemistry of PS II induced by UV-B in the background of relatively stable Pn, has been implicated in the creation of the energy imbalance. The radiation induced damage of PS II hinders the flow of electron from QA to QB resulting in a loss in the redox homeostasis between the QA to QB leading to an accumulation of QA. The accumulation of QA generates an excitation pressure that diminishes the PS II-mediated O2 evolution, maximal photochemical potential (Fv/Fm) and PS II quantum yield (ΦPS II). While UV-B radiation inactivates the carotenoid-mediated protective mechanisms, the accumulation of flavonoids seems to have a small role in protecting the photosynthetic apparatus from UV-B onslaught. The failure of protective mechanisms makes PS II further vulnerable to the radiation and facilitates the accumulation of malondialdehyde (MDA) indicating the involvement of reactive oxygen species (ROS) metabolism in UV-B-induced damage of photosynthetic apparatus of clusterbean cotyledons.  相似文献   

12.
We have earlier reported that the endophyte infection can enhance photosynthetic capacity and antioxidant enzyme activities in rice exposed to salinity stress. Now, the changes in primary photochemistry of photosystem (PS) II induced by Na2CO3 stress in endophyte-infected (E+) and endophyte-uninfected (E-) rice seedlings were studied using chlorophyll a fluorescence (OJIP-test). Performance indices (PIABS and PITotal) of E- and E+ rice seedlings revealed the inhibitory effects of Na2CO3 on PS II connectivity (occurrence of an L-band), oxygen evolving complex (occurrence of a K-band), and on the J step of the induction curves, associated with an inhibition of electron transport from plastoquinone A (QA) to plastoquinone B (QB). In E+ seedlings, Na2CO3 effects on L and K bands were much smaller, or even negligible, and also there was no pronounced effect on the J step. Furthermore, the OJIP parameters indicated that 20 mM Na2CO3 had a greater influence on the photosystem (PS) II electron transport chain than did the 10 mM Na2CO3, and that changes were greater in E- than in E+. Endophyte infection was therefore deemed to enhance the photosynthetic mechanism of Oryza sativa exposed to salinity stress.  相似文献   

13.
Thermoluminescence experiments have been carried out to study the effect of a transmembrane proton gradient on the recombination properties of the S2 and S3 states of the oxygen evolving complex with QA - and QB -, the reduced electron acceptors of Photosystem II. We first determined the properties of the S2QA - (Q band), S2QB - and S3QB - (B bands) recombinations in the pH range 5.5 to 9.0, using uncoupled thylakoids. The, a proton gradient was created in the dark, using the ATP-hydrolase function of ATPases, in coupled unfrozen thylakoids. A shift towards low temperature of both Q and B bands was observed to increase with the magnitude of the proton gradient measured by the fluorescence quenching of 9-aminoacridine. This downshift was larger for S3QB - than for S2QB - and it was suppressed by nigericin, but not by valinomycin. Similar results were obtained when a proton gradient was formed by photosystem I photochemistry. When Photosystem II electron transfer was induced by a flash sequence, the reduction of the plastoquinone pool also contributed to the downshift in the absence of an electron acceptor. In leaves submitted to a flash sequence above 0°C, a downshift was also observed, which was supressed by nigericin infiltration. Thus, thermoluminescence provides direct evidence on the enhancing effect of lumen acidification on the S3S2 and S2S1 reverse-transitions. Both reduction of the plastoquinone pool and lumen acidification induce a shift of the Q and B bands to lower temperature, with a predominance of lumen acidification in non-freezing, moderate light conditions.Abbreviations 9-AA 9-aminoacridine - EA activation energy - F0 constant fluorescence level - FM maximum fluorescence, when all PS-II centers are closed - FV variable fluorescence (FM–F0) - PS I, PS II Photosystem I, photosystem II - PQ plastoquinone - TL thermoluminescence  相似文献   

14.
Recently, a novel procedure to isolate a highly pure and active Photosystem II preparation directly from thylakoid membranes, referred to as PS II–LHC II supercomplex, was reported [Eshaghi et al. (1999) FEBS Lett 446: 23–26]. In addition to the reaction center core proteins, the supercomplex contains all the extrinsic proteins of the oxygen evolving complex and a set of chlorophyll a/b binding proteins. In this paper, the functional properties of this isolated supercomplex are further characterized by using EPR spectroscopy, thermoluminescence, fluorescence relaxation kinetics and flash induced oxygen yield measurements. The PS II–LHC II supercomplex contains, in addition to QA and QB, a small pool of plastoquinone (PQ). Although the isolated complex is no longer membrane bound, it has preserved functional characteristics of a well defined PS II preparation with the exception of some modification of QB sites. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

15.
The PsbM (3.9 kDa) and PsbY (4.2 kDa) proteins are membrane-spanning, single-helix, subunits associated with the chlorophyll-binding CP47 pre-complex of photosystem II (PSII). Removal of PsbM resulted in accumulation of PSII pre-assembly complexes and impaired electron transfer between the primary (QA) and secondary (QB) plastoquinone electron acceptors of PSII indicating that the QB-binding site and bicarbonate binding to the non-heme iron were altered in this strain. Removal of PsbY alone had only a minor impact on PSII activity but deleting PsbY in the ΔPsbM background led to additional modification of the acceptor side resulting in ΔPsbM:ΔPsbY cells being susceptible to photodamage and this required protein synthesis for recovery. Addition of bicarbonate was able to compensate for the light-induced damage in ΔPsbM:ΔPsbY cells potentially re-occupying the modified bicarbonate-binding site in the ΔPsbM:ΔPsbY strain and complementation of ΔPsbM:ΔPsbY cells with the psbY gene restored the ΔPsbM phenotype.  相似文献   

16.
Herbicides that target photosystem II (PSII) compete with the native electron acceptor plastoquinone for binding at the QB site in the D1 subunit and thus block the electron transfer from QA to QB. Here, we present the first crystal structure of PSII with a bound herbicide at a resolution of 3.2 Å. The crystallized PSII core complexes were isolated from the thermophilic cyanobacterium Thermosynechococcus elongatus. The used herbicide terbutryn is found to bind via at least two hydrogen bonds to the QB site similar to photosynthetic reaction centers in anoxygenic purple bacteria. Herbicide binding to PSII is also discussed regarding the influence on the redox potential of QA, which is known to affect photoinhibition. We further identified a second and novel chloride position close to the water-oxidizing complex and in the vicinity of the chloride ion reported earlier (Guskov, A., Kern, J., Gabdulkhakov, A., Broser, M., Zouni, A., and Saenger, W. (2009) Nat. Struct. Mol. Biol. 16, 334–342). This discovery is discussed in the context of proton transfer to the lumen.  相似文献   

17.
The OJDIP rise in chlorophyll fluorescence during induction at different light intensities was mathematically modeled using 24 master equations describing electron transport through photosystem II (PSII) plus ordinary differential equations for electron budgets in plastoquinone, cytochrome f, plastocyanin, photosystem I, and ferredoxin. A novel feature of the model is consideration of electron in- and outflow budgets resulting in changes in redox states of Tyrosine Z, P680, and QA as sole bases for changes in fluorescence yield during the transient. Ad hoc contributions by transmembrane electric fields, protein conformational changes, or other putative quenching species were unnecessary to account for primary features of the phenomenon, except a peculiar slowdown of intra-PSII electron transport during induction at low light intensities. The lower than F m post-flash fluorescence yield F f was related to oxidized tyrosine Z. The transient J peak was associated with equal rates of electron arrival to and departure from QA and requires that electron transfer from QA ? to QB be slower than that from QA ? to QB ?. Strong quenching by oxidized P680 caused the dip D. Reduced plastoquinone, a competitive product inhibitor of PSII, blocked electron transport proportionally with its concentration. Electron transport rate indicated by fluorescence quenching was faster than the rate indicated by O2 evolution, because oxidized donor side carriers quench fluorescence but do not transport electrons. The thermal phase of the fluorescence rise beyond the J phase was caused by a progressive increase in the fraction of PSII with reduced QA and reduced donor side.  相似文献   

18.
After preheating of Amaranthus chloroplasts at elevated temperatures (up to 45°C), the chlorophyll a fluorescence level under low excitation light rises as compared to control (unheated) as observed earlier in other chloroplasts (Schreiber U and Armond PA (1978) Biochim Biophys Acta 502: 138–151). This elevation of heat induced fluorescence yield is quenched by addition of 0.1 mM potassium ferricyanide, suggesting that with mild heat stress the primary electron acceptor of photosystem II is more easily reduced than the unheated samples. Furthermore, the level of fluorescence attained after illumination of dithionite-treated samples is independent of preheating (up to 45°C). Thus, these experiments indicate that the heat induced rise of fluorescence level at low light can not be due to changes in the elevation in the true constant F0 level, that must by definition, be independent of the concentration of QA. It is supposed that the increase in the fluorescence level by weak modulated light is either partly associated with dark reduction of QA due to exposure of chloroplasts to elevated temperature or due to temperature induced fluorescence rise in the so called inactive photosystem II centre where QA are not connected to plastoquinone pool. In the presence of dichlorophenyldimethylurea the fluorescence level triggered by weak modulated light increases at alkaline pH, both in control and heat stressed chloroplasts. This result suggests that the alkaline pH accelerates electron donation from secondary electron donor of photosystem II to QA both in control and heat stressed samples. Thus the increase in fluorescence level probed by weak modulated light due to preheating is not solely linked to increase in true F0 level, but largely associated with the shift in the redox state of QA, the primary stable electron acceptor of photosystem II.Abbreviations ADRY Acceleration of Deactivation of Reaction of Enzyme Y - CCCP Carbonyl cyanide 4-(trifluoromethoxy)-phenylhydrazone - Chl Chlorophyll - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - FeCN potassium ferricyanide - HEPES 4-(2-hydroxy ethyl)-1-piperazine ethane sulfonic acid - LHCP Light harvesting chlorophyll protein - MES (4-morpholine ethane sulfonic acid) - PS photosystem - QA and QB first and second consecutive electron acceptors of photosystem II - TES (2-[tris(hydroxymethyl)-methylamino]-1-ethanesulfonic acid) sulfonic acid - TRICINE N-[tris(hydroxymethyl)methyl] glycine  相似文献   

19.
《FEBS letters》1986,205(2):275-281
EPR signals in the high-spin region were studied at 10 K in photosystem II (PS II) particles and in a purified oxygen-evolving PS II reaction center complex under oxidizing conditions. PS II particles showed EPR peaks at g = 8.0 and 5.6, confirming the recent report by Petrouleas and Diner [(1986) Biochim. Biophys. Acta 849, 264-275]. Addition of 3-(3',4'-dichlorophenyl)-1,1-dimethylurea (DCMU) or o-phenanthroline shifted the peaks to be closer to g = 6.0 depending on the medium pH. On the other hand, the PS II reaction center complex showed peaks at g = 6.1 and 7.8, and at g = 6.1 and 6.4, in the absence and presence of o-phenanthroline, respectively. All these peaks were found to be decreased by the illumination at 10 K. These results suggest that the high-spin signals are due to Q400, Fe(III) atom interacting with the PS II primary electron acceptor quinone QA as reported and that the Fe atom also interacts with the secondary acceptor quinone QB. This interaction seems to induce the highly asymmetric ligand coordination of the Fe atom and to be affected by DCMU and o-phenanthroline in a somewhat different manner.  相似文献   

20.
Haijun Liu 《BBA》2009,1787(8):1029-1038
The Arabidopsis thaliana mutant psbo1 has recently been described and characterized. Loss of expression of the PsbO-1 protein leads to a variety of functional perturbations including elevated levels of the PsbO-2 protein and defects on both the oxidizing- and reducing-sides of Photosystem II. In this communication, two plant lines were produced using the psbo1 mutant as transgenic host, which contained an N-terminally histidine6-tagged PsbO-1 protein. This protein was expressed and correctly targeted into the thylakoid lumen. Immunological analysis indicated that different levels of expression of the modified PsbO-1 protein were obtained in different transgenic plant lines and that the level of expression in each line was stable over several generations. Examination of the Photosystem II closure kinetics demonstrated that the defective double reduction of QB and the delayed exchange of QBH2 with the plastoquinone pool which were observed during the characterization of the psbo1 mutant were effectively restored to wild-type levels by the His6-tagged PsbO-1 protein. Flash fluorescence induction and decay were also examined. Our results indicated that high expression of the modified PsbO-1 was required to increase the ratio of PS IIα/PS IIβ reaction centers to wild-type levels. Fluorescence decay kinetics in the absence of DCMU indicated that the expression of the His6-tagged PsbO-1 protein restored efficient electron transfer to QB, while in the presence of DCMU, charge recombination between QA and the S2 state of the oxygen-evolving complex occurred at near wild-type rates. Our results indicate that high expression of the His6-tagged PsbO-1 protein efficiently complements nearly all of the photochemical defects observed in the psbo1 mutant. Additionally, this study establishes a platform on which the in vivo consequences of site-directed mutagenesis of the PsbO-1 protein can be examined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号