首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Weng J  Fan K  Wang W 《PloS one》2012,7(1):e30465
BtuCD is a member of the ATP-binding cassette transporters in Escherichia coli that imports vitamin B(12) into the cell by utilizing the energy of ATP hydrolysis. Crystal structures of BtuCD and its homologous protein HI1470/1 in various conformational states support the "alternating access" mechanism which proposes the conformational transitions of the substrate translocation pathway at transmembrane domain (TMD) between the outward-facing and inward-facing states. The conformational transition at TMD is assumed to couple with the movement of the cytoplasmic nucleotide-binding domains (NBDs) driven by ATP hydrolysis/binding. In this study, we performed targeted molecular dynamics (MD) simulations to explore the atomic details of the conformational transitions of BtuCD importer. The outward-facing to inward-facing (O→I) transition was found to be initiated by the conformational movement of NBDs. The subsequent reorientation of the substrate translocation pathway at TMD began with the closing of the periplasmic gate, followed by the opening of the cytoplamic gate in the last stage of the conformational transition due to the extensive hydrophobic interactions at this region, consistent with the functional requirement of unidirectional transport of the substrates. The reverse inward-facing to outward-facing (I→O) transition was found to exhibit intrinsic diversity of the conformational transition pathways and significant structural asymmetry, suggesting that the asymmetric crystal structure of BtuCD-F is an intermediate state in this process.  相似文献   

2.
The serotonin transporter (SERT) shapes serotonergic neurotransmission by retrieving its eponymous substrate from the synaptic cleft. Ligands that discriminate between SERT and its close relative, the dopamine transporter DAT, differ in their association rate constant rather than their dissociation rate. The structural basis for this phenomenon is not known. Here we examined the hypothesis that the extracellular loops 2 (EL2) and 4 (EL4) limit access to the ligand-binding site of SERT. We employed an antibody directed against EL4 (residues 388–400) and the antibody fragments 8B6 scFv (directed against EL2 and EL4) and 15B8 Fab (directed against EL2) and analyzed their effects on the transport cycle of and inhibitor binding to SERT. Electrophysiological recordings showed that the EL4 antibody and 8B6 scFv impeded the initial substrate-induced transition from the outward to the inward-facing conformation but not the forward cycling mode of SERT. In contrast, binding of radiolabeled inhibitors to SERT was enhanced by either EL4- or EL2-directed antibodies. We confirmed this observation by determining the association and dissociation rate of the DAT-selective inhibitor methylphenidate via electrophysiological recordings; occupancy of EL2 with 15B8 Fab enhanced the affinity of SERT for methylphenidate by accelerating its binding. Based on these observations, we conclude that (i) EL4 undergoes a major movement during the transition from the outward to the inward-facing state, and (ii) EL2 and EL4 limit access of inhibitors to the binding of SERT, thus acting as a selectivity filter. This insight has repercussions for drug development.  相似文献   

3.
The competitive inhibitor cocaine and the non-competitive inhibitor ibogaine induce different conformational states of the human serotonin transporter. It has been shown from accessibility experiments that cocaine mainly induces an outward-facing conformation, while the non-competitive inhibitor ibogaine, and its active metabolite noribogaine, have been proposed to induce an inward-facing conformation of the human serotonin transporter similar to what has been observed for the endogenous substrate, serotonin. The ligand induced conformational changes within the human serotonin transporter caused by these three different types of ligands, substrate, non-competitive and competitive inhibitors, are studied from multiple atomistic molecular dynamics simulations initiated from a homology model of the human serotonin transporter. The results reveal that diverse conformations of the human serotonin transporter are captured from the molecular dynamics simulations depending on the type of the ligand bound. The inward-facing conformation of the human serotonin transporter is reached with noribogaine bound, and this state resembles a previously identified inward-facing conformation of the human serotonin transporter obtained from molecular dynamics simulation with bound substrate, but also a recently published inward-facing conformation of a bacterial homolog, the leucine transporter from Aquifex Aoelicus. The differences observed in ligand induced behavior are found to originate from different interaction patterns between the ligands and the protein. Such atomic-level understanding of how an inhibitor can dictate the conformational response of a transporter by ligand binding may be of great importance for future drug design.  相似文献   

4.
LeuT-like fold Na-dependent secondary active transporters form a large family of integral membrane proteins that transport various substrates against their concentration gradient across lipid membranes, using the free energy stored in the downhill concentration gradient of sodium ions. These transporters play an active role in synaptic transmission, the delivery of key nutrients, and the maintenance of osmotic pressure inside the cell. It is generally believed that binding of an ion and/or a substrate drives the conformational dynamics of the transporter. However, the exact mechanism for converting ion binding into useful work has yet to be established. Using a multi-dimensional path sampling (string-method) followed by all-atom free energy simulations, we established the principal thermodynamic and kinetic components governing the ion-dependent conformational dynamics of a LeuT-like fold transporter, the sodium/benzyl-hydantoin symporter Mhp1, for an entire conformational cycle. We found that inward-facing and outward-facing states of Mhp1 display nearly the same free energies with an ion absent from the Na2 site conserved across the LeuT-like fold transporters. The barrier separating an apo-state from inward-facing or outward-facing states of the transporter is very low, suggesting stochastic gating in the absence of ion/substrate bound. In contrast, the binding of a Na2 ion shifts the free energy stabilizing the outward-facing state and promoting substrate binding. Our results indicate that ion binding to the Na2 site may also play a key role in the intracellular thin gate dynamics modulation by altering its interactions with the transmembrane helix 5 (TM5). The Potential of Mean Force (PMF) computations for a substrate entrance displays two energy minima that correspond to the locations of the main binding site S1 and proposed allosteric S2 binding site. However, it was found that substrate''s binds to the site S1 ∼5 kcal/mol more favorable than that to the site S2 for all studied bound combinations of ions and a substrate.  相似文献   

5.
Active transport of substrates across cytoplasmic membranes is of great physiological, medical and pharmaceutical importance. The glycerol-3-phosphate (G3P) transporter (GlpT) of the E. coli inner membrane is a secondary active antiporter from the ubiquitous major facilitator superfamily that couples the import of G3P to the efflux of inorganic phosphate (Pi) down its concentration gradient. Integrating information from a novel combination of structural, molecular dynamics simulations and biochemical studies, we identify the residues involved directly in binding of substrate to the inward-facing conformation of GlpT, thus defining the structural basis for the substrate-specificity of this transporter. The substrate binding mechanism involves protonation of a histidine residue at the binding site. Furthermore, our data suggest that the formation and breaking of inter- and intradomain salt bridges control the conformational change of the transporter that accompanies substrate translocation across the membrane. The mechanism we propose may be a paradigm for organophosphate:phosphate antiporters.  相似文献   

6.
Major facilitator superfamily (MFS) transporters typically need to alternatingly sample the outward-facing and inward-facing conformations, in order to transport the substrate across membrane. To understand the mechanism, in this work, we focused on one MFS member, the L-fucose/H+ symporter (FucP), whose crystal structure exhibits an outward-open conformation. Previous experiments imply several residues critical to the substrate/proton binding and structural transition of FucP, among which Glu135, located in the periplasm-accessible vestibule, is supposed as being involved in both proton translocation and conformational change of the protein. Here, the structural transition of FucP in presence of substrate was investigated using molecular-dynamics simulations. By combining the equilibrium and accelerated simulations as well as thermodynamic calculations, not only was the large-scale conformational change from the outward-facing to inward-facing state directly observed, but also the free energy change during the structural transition was calculated. The simulations confirm the critical role of Glu135, whose protonation facilitates the outward-to-inward structural transition both by energetically favoring the inward-facing conformation in thermodynamics and by reducing the free energy barrier along the reaction pathway in kinetics. Our results may help the mechanistic studies of both FucP and other MFS transporters.  相似文献   

7.
The human serotonin transporter (hSERT) terminates neurotransmission by removing serotonin (5HT) from the synaptic cleft, an essential process for proper functioning of serotonergic neurons. Structures of the hSERT have revealed its molecular architecture in four conformations, including the outward-open and occluded states, and show the transporter’s engagement with co-transported ions and the binding mode of inhibitors. In this study, we investigated the molecular mechanism by which the hSERT occludes and sequesters the substrate 5HT. This first step of substrate uptake into cells is a structural change consisting of the transition from the outward-open to the occluded state. Inhibitors such as the antidepressants citalopram, fluoxetine, and sertraline inhibit this step of the transport cycle. Using molecular dynamics simulations, we reached a fully occluded state, in which the transporter-bound 5HT becomes fully shielded from both sides of the membrane by two closed hydrophobic gates. Analysis of 5HT-triggered occlusion showed that bound 5HT serves as an essential trigger for transporter occlusion. Moreover, simulations revealed a complex sequence of steps and showed that movements of bundle domain helices are only partially correlated. 5HT-triggered occlusion is initially dominated by movements of transmembrane helix 1b, while in the final step, only transmembrane helix 6a moves and relaxes an intermediate change in its secondary structure.  相似文献   

8.
Structural information about monoamine transporters and their interactions with psychotropic drugs is important for understanding their molecular mechanisms of action and for drug development. The crystal structure of a Major Facilitator Superfamily (MFS) transporter, the lactose permease symporter (lac permease), has provided insight into the three-dimensional structure and mechanisms of secondary transporters. Based on the hypothesis that the 12 transmembrane alpha-helix (TMH) secondary transporters belong to a common folding class, the lac permease structure was used for molecular modeling of the serotonin transporter (SERT), the dopamine transporter (DAT), and the noradrenaline transporter (NET). The molecular modeling methods used included amino acid sequence alignment, homology modeling, and molecular mechanical energy calculations. The lac permease crystal structure has an inward-facing conformation, and construction of outward-facing SERT, DAT, and NET conformations allowing ligand binding was the most challenging step of the modeling procedure. The psychomotor stimulants cocaine and S-amphetamine, and the selective serotonin reuptake inhibitor (SSRI) S-citalopram, were docked into putative binding sites on the transporters to examine their molecular binding mechanisms. In the inward-facing conformation of SERT the translocation pore was closed towards the extracellular side by hydrophobic interactions between the conserved amino acids Phe105, Pro106, Phe117, and Ala372. An unconserved amino acid, Asp499 in TMH10 in NET, may contribute to the low affinity of S-citalopram to NET.  相似文献   

9.
YiiP is a secondary transporter that couples Zn2+ transport to the proton motive force. Structural studies of YiiP from prokaryotes and Znt8 from humans have revealed three different Zn2+ sites and a conserved homodimeric architecture. These structures define the inward-facing and outward-facing states that characterize the archetypal alternating access mechanism of transport. To study the effects of Zn2+ binding on the conformational transition, we use cryo-EM together with molecular dynamics simulation to compare structures of YiiP from Shewanella oneidensis in the presence and absence of Zn2+. To enable single-particle cryo-EM, we used a phage-display library to develop a Fab antibody fragment with high affinity for YiiP, thus producing a YiiP/Fab complex. To perform MD simulations, we developed a nonbonded dummy model for Zn2+ and validated its performance with known Zn2+-binding proteins. Using these tools, we find that, in the presence of Zn2+, YiiP adopts an inward-facing conformation consistent with that previously seen in tubular crystals. After removal of Zn2+ with high-affinity chelators, YiiP exhibits enhanced flexibility and adopts a novel conformation that appears to be intermediate between inward-facing and outward-facing states. This conformation involves closure of a hydrophobic gate that has been postulated to control access to the primary transport site. Comparison of several independent cryo-EM maps suggests that the transition from the inward-facing state is controlled by occupancy of a secondary Zn2+ site at the cytoplasmic membrane interface. This work enhances our understanding of individual Zn2+ binding sites and their role in the conformational dynamics that govern the transport cycle.  相似文献   

10.
The serotonin transporter (SERT) regulates extracellular levels of the neurotransmitter serotonin (5-hydroxytryptamine) in the brain by facilitating uptake of released 5-hydroxytryptamine into neuronal cells. SERT is the target for widely used antidepressant drugs, including imipramine, fluoxetine, and (S)-citalopram, which are competitive inhibitors of the transport function. Knowledge of the molecular details of the antidepressant binding sites in SERT has been limited due to lack of structural data on SERT. Here, we present a characterization of the (S)-citalopram binding pocket in human SERT (hSERT) using mutational and computational approaches. Comparative modeling and ligand docking reveal that (S)-citalopram fits into the hSERT substrate binding pocket, where (S)-citalopram can adopt a number of different binding orientations. We find, however, that only one of these binding modes is functionally relevant from studying the effects of 64 point mutations around the putative substrate binding site. The mutational mapping also identify novel hSERT residues that are crucial for (S)-citalopram binding. The model defines the molecular determinants for (S)-citalopram binding to hSERT and demonstrates that the antidepressant binding site overlaps with the substrate binding site.  相似文献   

11.
The serotonin transporter (SERT) terminates neurotransmission by removing serotonin from the synaptic cleft. In addition, it is the site of action of antidepressants (which block the transporter) and of amphetamines (which induce substrate efflux). The interaction energies involved in binding of such compounds to the transporter are unknown. Here, we used atomic force microscopy (AFM) to probe single molecular interactions between the serotonin transporter and MFZ2-12 (a potent cocaine analog) in living CHOK1 cells. For the AFM measurements, MFZ2-12 was immobilized on AFM tips by using a heterobifunctional cross-linker. By varying the pulling velocity in force distance cycles drug-transporter complexes were ruptured at different force loadings allowing for mapping of the interaction energy landscape. We derived chemical rate constants from these recordings and compared them with those inferred from inhibition of transport and ligand binding: koff values were in good agreement with those derived from uptake experiments; in contrast, the kon values were scaled down when determined by AFM. Our observations generated new insights into the energy landscape of the interaction between SERT and inhibitors. They thus provide a useful framework for molecular dynamics simulations by exploring the range of forces and energies that operate during the binding reaction.  相似文献   

12.
Significant advances have been made in recent years in characterizing neurotransmitter:sodium symporter (NSS) family structure and function. Yet, many time-resolved events and intermediates that control the various stages of transport cycle remain to be elucidated. Whether NSSs harbor one or two sites for binding their substrates (neurotransmitters or amino acids), and what the role of the secondary site S2 is, if any, are still unresolved. Using molecular modeling and simulations for LeuT, a bacterial NSS, we present a comprehensive account of substrate-binding and -stabilization events, and subsequently triggered interactions leading to substrate (alanine) release. LeuT instantaneous conformation as it reconfigures from substrate-receiving (outward-facing) to -releasing (inward-facing) state appears to be a determinant of its affinity to bind substrate at site S2. In the outward-facing state, S1 robustly binds alanine and regulates subsequent redistribution of interactions to trigger extracellular gate closure; whereas S2 is only a transient binding site. The substrate-binding affinity at S2 increases in an intermediate close to inward-facing state. LeuT harbors the two substrate-binding sites, and small displacements of second substrate near S2 are observed to induce concerted small translocations in the substrate bound to primary site S1, although complete release requires collective structural rearrangements that fully expose the intracellular vestibule to the cytoplasm.  相似文献   

13.
Ibogaine, a hallucinogenic alkaloid proposed as a treatment for opiate withdrawal, has been shown to inhibit serotonin transporter (SERT) noncompetitively, in contrast to all other known inhibitors, which are competitive with substrate. Ibogaine binding to SERT increases accessibility in the permeation pathway connecting the substrate-binding site with the cytoplasm. Because of the structural similarity between ibogaine and serotonin, it had been suggested that ibogaine binds to the substrate site of SERT. The results presented here show that ibogaine binds to a distinct site, accessible from the cell exterior, to inhibit both serotonin transport and serotonin-induced ionic currents. Ibogaine noncompetitively inhibited transport by both SERT and the homologous dopamine transporter (DAT). Ibogaine blocked substrate-induced currents also in DAT and increased accessibility of the DAT cytoplasmic permeation pathway. When present on the cell exterior, ibogaine inhibited SERT substrate-induced currents, but not when it was introduced into the cytoplasm through the patch electrode. Similar to noncompetitive transport inhibition, the current block was not reversed by increasing substrate concentration. The kinetics of inhibitor binding and dissociation, as determined by their effect on SERT currents, indicated that ibogaine does not inhibit by forming a long-lived complex with SERT, but rather binds directly to the transporter in an inward-open conformation. A kinetic model for transport describing the noncompetitive action of ibogaine and the competitive action of cocaine accounts well for the results of the present study.  相似文献   

14.
Significant advances have been made in recent years in characterizing neurotransmitter:sodium symporter (NSS) family structure and function. Yet, many time-resolved events and intermediates that control the various stages of transport cycle remain to be elucidated. Whether NSSs harbor one or two sites for binding their substrates (neurotransmitters or amino acids), and what the role of the secondary site S2 is, if any, are still unresolved. Using molecular modeling and simulations for LeuT, a bacterial NSS, we present a comprehensive account of substrate-binding and -stabilization events, and subsequently triggered interactions leading to substrate (alanine) release. LeuT instantaneous conformation as it reconfigures from substrate-receiving (outward-facing) to -releasing (inward-facing) state appears to be a determinant of its affinity to bind substrate at site S2. In the outward-facing state, S1 robustly binds alanine and regulates subsequent redistribution of interactions to trigger extracellular gate closure; whereas S2 is only a transient binding site. The substrate-binding affinity at S2 increases in an intermediate close to inward-facing state. LeuT harbors the two substrate-binding sites, and small displacements of second substrate near S2 are observed to induce concerted small translocations in the substrate bound to primary site S1, although complete release requires collective structural rearrangements that fully expose the intracellular vestibule to the cytoplasm.  相似文献   

15.
As the intracellular part of maltose transporter, MalK dimer utilizes the energy of ATP hydrolysis to drive protein conformational change, which then facilitates substrate transport. Free energy evaluation of the complete conformational change before and after ATP hydrolysis is helpful to elucidate the mechanism of chemical‐to‐mechanical energy conversion in MalK dimer, but is lacking in previous studies. In this work, we used molecular dynamics simulations to investigate the structural transition of MalK dimer among closed, semi‐open and open states. We observed spontaneous structural transition from closed to open state in the ADP‐bound system and partial closure of MalK dimer from the semi‐open state in the ATP‐bound system. Subsequently, we calculated the reaction pathways connecting the closed and open states for the ATP‐ and ADP‐bound systems and evaluated the free energy profiles along the paths. Our results suggested that the closed state is stable in the presence of ATP but is markedly destabilized when ATP is hydrolyzed to ADP, which thus explains the coupling between ATP hydrolysis and protein conformational change of MalK dimer in thermodynamics. Proteins 2017; 85:207–220. © 2016 Wiley Periodicals, Inc.  相似文献   

16.
Mishra S  Caflisch A 《Biochemistry》2011,50(43):9328-9339
The aspartic protease β-secretase (BACE) catalyzes the hydrolysis of the amyloid precursor protein (APP) which leads to amyloid-β aggregation and, ultimately, the perilous Alzheimer's disease. The conformational dynamics and free energy surfaces of BACE at three steps of the catalytic cycle are studied here by explicit solvent molecular dynamics simulations (multiple runs for a total of 2.2 μs). The overall plasticity of BACE is essentially identical for the three states of the substrate: the octapeptide reactant, gem-diol intermediate, and cleavage products. In contrast, the network of hydrogen bonds in the active site is more stable in the complex of BACE with the gem-diol intermediate than the other two states of the substrate. The spontaneous release of the C-terminal (P1'-P4') fragment of the product follows a single-exponential time dependence with a time constant of 50 ns and does not require the opening of the flap. The fast dissociation of the C-terminal fragment is consistent with the transmembrane location and orientation of APP and its further processing by γ-secretase. On the other hand, the N-terminal (P4-P1) fragment of the product does not exit the BACE active site within the simulation time scale of 80 ns. A unified network analysis of the complexes of BACE with the three states of the substrate provides an estimation of the activation free energy associated with the structural rearrangements that involve only noncovalent interactions. The estimated rearrangement barriers are not negligible (up to 3 kcal/mol) but are significantly smaller than the barrier of the peptide bond hydrolysis reaction.  相似文献   

17.
The serotonin (5-HT) transporter (SERT) plays an important role in the termination of 5-HT-mediated neurotransmission by transporting 5-HT away from the synaptic cleft and into the presynaptic neuron. In addition, SERT is the main target for antidepressant drugs, including the selective serotonin reuptake inhibitors (SSRIs). The three-dimensional (3D) structure of SERT has not yet been determined, and little is known about the molecular mechanisms of substrate binding and transport, though such information is very important for the development of new antidepressant drugs. In this study, a homology model of SERT was constructed based on the 3D structure of a prokaryotic homologous leucine transporter (LeuT) (PDB id: 2A65). Eleven tryptamine derivates (including 5-HT) and the SSRI (S)-citalopram were docked into the putative substrate binding site, and two possible binding modes of the ligands were found. To study the conformational effect that ligand binding may have on SERT, two SERT–5-HT and two SERT–(S)-citalopram complexes, as well as the SERT apo structure, were embedded in POPC lipid bilayers and comparative molecular dynamics (MD) simulations were performed. Our results show that 5-HT in the SERT–5-HTB complex induced larger conformational changes in the cytoplasmic parts of the transmembrane helices of SERT than any of the other ligands. Based on these results, we suggest that the formation and breakage of ionic interactions with amino acids in transmembrane helices 6 and 8 and intracellular loop 1 may be of importance for substrate translocation.  相似文献   

18.
Serotonergic neurotransmission is modulated by the membrane-embedded serotonin transporter (SERT). SERT mediates the reuptake of serotonin into the presynaptic neurons. Conformational changes in SERT occur upon binding of ions and substrate and are crucial for translocation of serotonin across the membrane. Our understanding of these conformational changes is mainly based on crystal structures of a bacterial homolog in various conformations, derived homology models of eukaryotic neurotransmitter transporters, and substituted cysteine accessibility method of SERT. However, the dynamic changes that occur in the human SERT upon binding of ions, the translocation of substrate, and the role of cholesterol in this interplay are not fully elucidated. Here we show that serotonin induces a dualistic conformational response in SERT. We exploited the substituted cysteine scanning method under conditions that were sensitized to detect a more outward-facing conformation of SERT. We found a novel high affinity outward-facing conformational state of the human SERT induced by serotonin. The ionic requirements for this new conformational response to serotonin mirror the ionic requirements for translocation. Furthermore, we found that membrane cholesterol plays a role in the dualistic conformational response in SERT induced by serotonin. Our results indicate the existence of a subpopulation of SERT responding differently to serotonin binding than hitherto believed and that membrane cholesterol plays a role in this subpopulation of SERT.  相似文献   

19.
K Kolmodin  P Nordlund  J Aqvist 《Proteins》1999,36(3):370-379
Substrate dephosphorylation by the low molecular weight protein tyrosine phosphatases proceeds via nucleophilic substitution at the phosphorous atom yielding a cysteinyl phosphate intermediate. However, several questions regarding the exact reaction mechanism remain unanswered. Starting from the crystal structure of the enzyme we study the energetics of this reaction, using the empirical valence bond method in combination with molecular dynamics and free energy perturbation simulations. The free energy profiles of two mechanisms corresponding to different protonation states of the reacting groups are examined along stepwise and concerted pathways. The activation barriers calculated relative to the enzyme-substrate complex are very similar for both monoanionic and dianionic substrates, but taking the substrate binding step into account shows that hydrolysis of monoanionic substrates is strongly favored by the enzyme, because a dianionic substrate will not bind when the reacting cysteine is ionized. The calculated activation barrier for dephosphorylation of monoanionic phenyl phosphate according to this novel mechanism is 14 kcal mol(-1), which is in good agreement with experimental data. Proteins 1999;36:370-379.  相似文献   

20.
Shan J  Javitch JA  Shi L  Weinstein H 《PloS one》2011,6(1):e16350

Background

The dopamine transporter (DAT), a member of the neurotransmitter:Na+ symporter (NSS) family, terminates dopaminergic neurotransmission and is a major molecular target for psychostimulants such as cocaine and amphetamine, and for the treatment of attention deficit disorder and depression. The crystal structures of the prokaryotic NSS homolog of DAT, the leucine transporter LeuT, have provided critical structural insights about the occluded and outward-facing conformations visited during the substrate transport, but only limited clues regarding mechanism. To understand the transport mechanism in DAT we have used a homology model based on the LeuT structure in a computational protocol validated previously for LeuT, in which steered molecular dynamics (SMD) simulations guide the substrate along a pathway leading from the extracellular end to the intracellular (cytoplasmic) end.

Methodology/Principal Findings

Key findings are (1) a second substrate binding site in the extracellular vestibule, and (2) models of the conformational states identified as occluded, doubly occupied, and inward-facing. The transition between these states involve a spatially ordered sequence of interactions between the two substrate-binding sites, followed by rearrangements in structural elements located between the primary binding site and the cytoplasmic end. These rearrangements are facilitated by identified conserved hinge regions and a reorganization of interaction networks that had been identified as gates.

Conclusions/Significance

Computational simulations supported by information available from experiments in DAT and other NSS transporters have produced a detailed mechanistic proposal for the dynamic changes associated with substrate transport in DAT. This allosteric mechanism is triggered by the binding of substrate in the S2 site in the presence of the substrate in the S1 site. Specific structural elements involved in this mechanism, and their roles in the conformational transitions illuminated here describe, a specific substrate-driven allosteric mechanism that is directly amenable to experiment as shown previously for LeuT.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号