首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Estrogen receptor signaling pathways in human non-small cell lung cancer   总被引:6,自引:0,他引:6  
Lung cancer is the most common cause of cancer mortality in male and female patients in the US. The etiology of non-small cell lung cancer (NSCLC) is not fully defined, but new data suggest that estrogens and growth factors promote tumor progression. In this work, we confirm that estrogen receptors (ER), both ERalpha and ERbeta, occur in significant proportions of archival NSCLC specimens from the clinic, with receptor expression in tumor cell nuclei and in extranuclear sites. Further, ERalpha in tumor nuclei was present in activated forms as assessed by detection of ER phosphorylation at serines-118 and -167, residues commonly modulated by growth factor receptor as well as steroid signaling. In experiments using small interfering RNA (siRNA) constructs, we find that suppressing expression of either ERalpha or ERbeta elicits a significant reduction in NSCLC cell proliferation in vitro. Estrogen signaling in NSCLC cells may also include steroid receptor coactivators (SRC), as SRC-3 and MNAR/PELP1 are both expressed in several lung cell lines, and both EGF and estradiol elicit serine phosphorylation of SRC-3 in vitro. EGFR and ER also cooperate in promoting early activation of p42/p44 MAP kinase in NSCLC cells. To assess new strategies to block NSCLC growth, we used Faslodex alone and with erlotinib, an EGFR kinase inhibitor. The drug tandem elicited enhanced blockade of the growth of NSCLC xenografts in vivo, and antitumor activity exceeded that of either agent given alone. The potential for use of antiestrogens alone and with growth factor receptor antagonists is now being pursued further in clinical trials.  相似文献   

4.
A Graziana  R Ranjeva  J Teissié 《Biochemistry》1990,29(36):8313-8318
External electric fields of low intensity stimulated calcium influx in protoplasts isolated from carrot cell suspension cultures in field intensity dependent and frequency-dependent ways. The field-induced calcium uptake involved a temperature-dependent system that was saturable by external calcium. The induction process appeared mainly cumulative as long as the morphology of the protoplasts did not change (up to 10 min). The stimulation elicited by the electric fields was effective even after switching the field off; the influx increased for 5 min and then slowed down to its initial value 15 min later. During electrostimulation, an additional amount of ATP was accumulated; on removal of the stimulatory field, the extra amount of ATP was consumed, whereas the plasma membrane was hyperpolarized and sodium ions were expelled from the protoplasts. Inhibition of either ATP accumulation or consumption results in the inhibition of both calcium influx and sodium efflux, demonstrating that these processes are coupled. From the data obtained in this work, it may be concluded that the electric field stimulates an ATP synthase like activity; the consumption of the ATP thus formed elicits an electric potential (probably due to the efflux of cations and more specifically sodium) that drives the influx of calcium.  相似文献   

5.
6.
7.
8.
Akunuru S  Palumbo J  Zhai QJ  Zheng Y 《PloS one》2011,6(2):e16951
The cancer stem cell (CSC) theory predicts that a small fraction of cancer cells possess unique self-renewal activity and mediate tumor initiation and propagation. However, the molecular mechanisms involved in CSC regulation remains unclear, impinging on effective targeting of CSCs in cancer therapy. Here we have investigated the hypothesis that Rac1, a Rho GTPase implicated in cancer cell proliferation and invasion, is critical for tumor initiation and metastasis of human non-small cell lung adenocarcinoma (NSCLA). Rac1 knockdown by shRNA suppressed the tumorigenic activities of human NSCLA cell lines and primary patient NSCLA specimens, including effects on invasion, proliferation, anchorage-independent growth, sphere formation and lung colonization. Isolated side population (SP) cells representing putative CSCs from human NSCLA cells contained elevated levels of Rac1-GTP, enhanced in vitro migration, invasion, increased in vivo tumor initiating and lung colonizing activities in xenografted mice. However, CSC activity was also detected within the non-SP population, suggesting the importance of therapeutic targeting of all cells within a tumor. Further, pharmacological or shRNA targeting of Rac1 inhibited the tumorigenic activities of both SP and non-SP NSCLA cells. These studies indicate that Rac1 represents a useful target in NSCLA, and its blockade may have therapeutic value in suppressing CSC proliferation and metastasis.  相似文献   

9.
Experiments assessed whether long term exposure to 50 Hz pulsed electromagnetic fields with a peak magnetic field of 3 mT can alter the dynamics of intracellular calcium in human astrocytoma U-373 MG cells. Pretreatment of cells with 1.2 microM substance P significantly increased the [Ca(2+)](i). The same effect was also observed when [Ca(2+)](i) was evaluated in the presence of 20 mM caffeine. After exposure to electromagnetic fields the basal [Ca(2+)](i) levels increased significantly from 143 +/- 46 nM to 278 +/- 125 nM. The increase was also evident after caffeine addition, but in cells treated with substance P and substance P + caffeine we observed a [Ca(2+)](i) decrease after exposure. When we substituted calcium-free medium for normal medium immediately before the [Ca(2+)](i) measurements, the [Ca(2+)](i) was similar to that measured in the presence of Ca(2+). In this case, after EMFs exposure of cells treated with substance P, the [Ca(2+)](i), measured without and with addition of caffeine, declined from 824 +/- 425 to 38 +/- 13 nM and from 1369 +/- 700 to 11 +/- 4 nM, respectively, indicating that electromagnetic fields act either on intracellular Ca(2+) stores or on the plasma membrane. Moreover the electromagnetic fields that affected [Ca(2+)](i) did not cause cell proliferation or cell death and the proliferation indexes remained unchanged after exposure.  相似文献   

10.
The role of oxygen radicals and lipid peroxidation in calcium-paradox injury in isolated perfused rat hearts was studied by examining the effects of mannitol and (or) allopurinol on this phenomenon. Myocardial changes due to calcium paradox were characterized by contractile failure, a rise in resting tension, and cell damage. These changes were also accompanied by increased lipid peroxidation, as indicated by an increase in malondialdehyde content. Mannitol (an effective quencher of hydroxyl radicals) treatment resulted in a dose-dependent decrease in lipid peroxidation but did not affect other changes due to calcium paradox. Allopurinol (an inhibitor of xanthine oxidase) neither affected lipid peroxidation nor modified any of the structure-function changes due to calcium paradox. These data demonstrate the occurrence of lipid peroxidation which, however, may not be involved in the observed structure-function changes due to calcium paradox. It is also suggested that in this experimental model, xanthine oxidase may not be the inducer of oxygen radicals or of lipid peroxidation.  相似文献   

11.
Aysun Ozkan 《Biologia》2007,62(2):232-237
The aim of this study was to evaluate that: (i) epirubicin-HCl (EPI) and lymphokine-activated killer (LAK) cells cytotoxicity may be mediated by free radical generation; and (ii) resistant H1299 cells may be more sensitive to combined treatment of LAK cells plus EPI than the LAK or EPI treatment alone. Viability of H1299 cells treated with EPI, LAK and LAK plus EPI was measured using the MTT test. Amount of glutathione (GSH), protein content and enzymatic activity were measured by spectrophotometer. Glutathione S-transferase (GST)-pi expression in the cells was determined by western blot analysis. LAK plus EPI combined treatment increased susceptibility of H1299 WT and H1299 EPI(R) (300-fold EPI resistant) cells to LAK cell cytotoxicity. The resistance of H1299 EPI(R) cells to EPI appears to be associated with a developed tolerance to free radicals, most likely because of a 2-fold increase in NADPH-dependent-cytochrome-P450 reductase (NADPH-CYP reductase) activity, 11-fold GST activity and 11-and 7-fold augmented selenium dependent and independent glutathione peroxidase (GSH-Px) activity, respectively. Amount of GST-pi in H1299 EPI(R) cells is statistically different from negative control and H1299 WT (p < 0.01). It is proposed that production of reactive oxygen species and hydrogen peroxide by the treatment of EPI and LAK cells can cause cytotoxicity of H1299 WT and H1299 EPI(R) cells. Superoxide dismutase, catalase, GSH-Px, GST, NADPH-CYP reductase and GSH must be considered as part of the intracellular antioxidant defense mechanism of H1299 WT and H1299 EPI(R) cells against reactive oxygen species. Combined treatment of EPI plus LAK cells caused the increasing cytotoxicity on the H1299 EPI(R) cells.  相似文献   

12.
Epithelial neutrophil-activating peptide-78 (CXCL5), a member of the subgroup of CXC-type chemokine family, is an inflammatory factor involved in the progression of lung cancer, but the underlying mechanism remains unclear. In this study, we investigated the effects of CXCL5 on proliferation and migration in non-small cell lung cancer (NSCLC) using tissue microarrays from NSCLC patients and H460 cells transfected with a CXCL5-interfered lentivirus vector or stimulated with recombinant CXCL5. We observed that the expression of CXCL5 was significantly higher in lung cancer cell lines, and high CXCL5 was associated with high chemokine (C-X-C motif) receptor 2 expression and was significantly associated with poor differentiation. The high expression of CXCL5 was associated with poor NSCLC prognosis and was an independent predictive factor. Furthermore, downregulation of CXCL5 in H460 cells significantly reduced proliferation and migration. Recombinant CXCL5 promoted H460 cell proliferation and movement by activating MAPK/ERK1/2 and PI3K/AKT signaling. Our study elucidates the important role of CXCL5 in the progression and prognosis of NSCLC. These findings suggested that CXCL5 might be a potential biomarker and novel therapeutic target for lung cancer.  相似文献   

13.
Cyclin Y (CCNY) is a key cell cycle regulator that acts as a growth factor sensor to integrate extracellular signals with the cell cycle machinery. The expression status of CCNY in lung cancer and its clinical significance remain unknown. The data indicates that CCNY may be deregulated in non-small cell lung cancer, where it may act to promote cell proliferation. These studies suggest that CCNY may be a candidate biomarker of NSCLC and a possible therapeutic target for lung cancer treatment.  相似文献   

14.
A high incidence of cancer has been correlated with chronic iron overload, and carotenoids are of interest as possible anticarcinogens. We have investigated the effect of lycopene on lipid peroxidation and on the formation of 8-oxo-7,8-dihydro-2'-deoxyguanosine (8-oxodGuo) in CV1-P monkey cells exposed to ferric nitrilotriacetate (Fe-NTA) plus ascorbate. Cells supplemented with lycopene (20 pmol/10(6) cells) showed a reduction of 86% in Fe-NTA/ascorbate-induced lipid peroxidation (TBARS). Levels of 8-oxodGuo rose from 1.59+/-0.09 residues/10(6) dGuo in the control cells to 14.02+/-0.41 residues/10(6) dGuo after incubation with (1:4 mM) Fe-NTA/ascorbate (40 microM). Lycopene supplementation decreased in 77% the 8-oxodGuo levels in Fe-NTA/ascorbate-treated cells. These results indicate that lycopene can protect mammalian cells against membrane and DNA damage and possibly play a protective role against tumor promotion associated with oxidative damage.  相似文献   

15.
Deleted in liver cancer (DLC1), a tumor suppressor gene in multiple cancers, is recurrently down regulated or inactivated by epigenetic mechanisms in primary prostate carcinomas (PCAs). In this study the methylation and acetylation profile of the DLC1 promoter region was examined in three PCA cell lines with low or undetectable DLC1 expression: LNCaP, its derivative C4-2B-2, and 22Rv1. Two histone deacetylase inhibitors (HDAC), suberoylanilide hydroxamic acid (SAHA) and trichostatin A (TSA) induced histone acetylation of the DLC1 promoter in all three lines. DLC1 promoter methylation and deacetylation were detected in LNCaP and C4-2B-2 cells while in 22Rv1 cells DLC1 is silenced by deacetylation. Treatment with SAHA or TSA efficiently increased DLC1 expression in all lines, particularly in 22Rv1 cells, and activated the DLC1 promoter through the same Sp1 sites. The 22Rv1 cell line was selected to evaluate the efficacy of combined DLC1 transduction and SAHA treatment on tumor growth in athymic mice. Individually, DLC1 transduction and SAHA exposure reduced the tumor size by 75-80% compared to controls and in combination almost completely inhibited tumor growth. The antitumor effect was associated with the induction of apoptosis and inhibition of RhoA activity. SAHA alone significantly reduced RhoA activity, showing that this RhoGTPase is a target for SAHA. These results, obtained with a reliable preclinical in vivo test, predict that combined therapeutic agents targeting the pathways governing DLC1 function and HDAC inhibitors may be beneficial in management of prostate cancer.  相似文献   

16.
17.
《Epigenetics》2013,8(5):502-513
This study aimed to clarify genetic and epigenetic alterations that occur during lung carcinogenesis and to design perspective sets of newly identified biomarkers. The original method includes chromosome 3 specific NotI-microarrays containing 180 NotI clones associated with genes for hybridization with 40 paired normal/tumor DNA samples of primary lung tumors: 28 squamous cell carcinomas (SCC) and 12 adenocarcinomas (ADC). The NotI-microarray data were confirmed by qPCR and bisulfite sequencing analyses. Forty-four genes showed methylation and/or deletions in more than 15% of non–small cell lung cancer (NSCLC) samples. In general, SCC samples were more frequently methylated/deleted than ADC. Moreover, the SCC alterations were observed already at stage I of tumor development, whereas in ADC many genes showed tumor progression specific methylation/deletions. Among genes frequently methylated/deleted in NSCLC, only a few were already known tumor suppressor genes: RBSP3 (CTDSPL), VHL and THRB. The RPL32, LOC285205, FGD5 and other genes were previously not shown to be involved in lung carcinogenesis. Ten methylated genes, i.e., IQSEC1, RBSP3, ITGA9, FOXP1, LRRN1, GNAI2, VHL, FGD5, ALDH1L1 and BCL6 were tested for expression by qPCR and were found downregulated in the majority of cases. Three genes (RBSP3, FBLN2 and ITGA9) demonstrated strong cell growth inhibition activity. A comprehensive statistical analysis suggested the set of 19 gene markers, ANKRD28, BHLHE40, CGGBP1, RBSP3, EPHB1, FGD5, FOXP1, GORASP1/TTC21, IQSEC1, ITGA9, LOC285375, LRRC3B, LRRN1, MITF, NKIRAS1/RPL15, TRH, UBE2E2, VHL, WNT7A, to allow early detection, tumor progression, metastases and to discriminate between SCC and ADC with sensitivity and specificity of 80–100%.  相似文献   

18.
To observe in vivo cell cycle perturbation in the chemotherapy of lung cancer, tumour cell kinetics during the first course of chemotherapy were measured in seven patients with histologically-verified non-small cell lung cancer. The tumour cells were aspirated from six lymph nodes and one subcutaneous nodule both prior to treatment and twice weekly after the administration of chemotherapeutic agents. The nuclear DNA content of aspirated tumour cells was measured with a scanning microdensitometer at a wavelength of 550 nm after the modified Feulgen reaction. The cell population in cell cycle was estimated with a cumulated percentage scale. Marked cell cycle perturbation occurred within one week after initiation of chemotherapy. There was a decrease in the G1 cell population, from 70.6 +/- 9.1% to 26.1 +/- 11.4%, and a corresponding increase of cells in G2-M phase, from 21.4 +/- 8.7% to 63.7 +/- 10.0%. The proportion of cells in S phase was slightly increased from 8.0 +/- 1.5% to 10.1 +/- 3.2% during this period. The degree of cell cycle changes was unrelated to the clinical response to chemotherapy.  相似文献   

19.
Extranuclear estrogen receptors may mediate rapid effects of estradiol that communicate with nuclear receptors and contribute to proliferation of human cancers bearing these signaling proteins. To assess these growth-promoting pathways, we undertook controlled homogenization and fractionation of NIH-H23 non-small cell lung cancer cells. As many breast tumors, NIH-H23 cells express estrogen receptors (ER), with the bulk of specific estradiol binding in nuclear fractions. However, as in breast cells, a significant portion of specific, high-affinity estradiol-17beta binding-sites are also enriched in plasma membranes of lung tumor cells. These estrogen binding-sites co-purify with plasma membrane-marker enzymes and are not significantly contaminated by cytosol or nuclei. On further purification of membrane caveolae from lung tumor cells, proteins recognized by monoclonal antibodies to nuclear ER-alpha and to ER-beta were identified in close association with EGF receptor in caveolae. In parallel studies, ER-alpha and ER-beta are also detected in nuclear and extranuclear sites in archival human breast and lung tumor samples and are noted to occur in clusters at the cell membrane by using confocal microscopy to visualize fluorescent-labeled monoclonal antibodies to ER-alpha. Data on site-directed mutagenesis of cysteine-447 in ER-alpha suggest that association of ER forms with membrane sites may depend on acylation of cysteine by palmitate. Estrogen-induced growth of MCF-7 breast cancer and NIH-H23 lung cancer cells in vitro correlated closely with acute hormonal activation of mitogen-activated protein kinase signaling and was significantly reduced by treatment with Faslodex, a pure anti-estrogen. Further, combination of Faslodex with selected growth factor receptor inhibitors elicited a more pronounced inhibiton of tumor cell growth. Thus, extranuclear forms of ER play a role in promoting downstream signaling for hormone-mediated proliferation and survival of breast, as well as lung, cancers and offer a new target for anti-tumor therapy.  相似文献   

20.
Aging of cell-free chloroplasts at pH 7.0 and 9.0 causes a decline in the level of photosynthetic pigments, quenching of chlorophyll a fluorescence and enhancement in fluorescence polarization. These changes are correlated with photoinduced enhancement of thylakoid lipid peroxidation. The alkaline earth metal cations, namely magnesium and calcium, show opposite actions on lipid peroxidation and modulate thylakoid disorganisation differently. Magnesium ion may stabilise thylakoid membrane by retarding lipid peroxidation. It lowers aging-induced quenching of fluorescence intensity and enhancement of fluorescence polarization. Calcium ion, on the other hand, stimulates disorganisation of thylakoid membranes. It enhances membrane lipid peroxidation, quenching of chlorophyll a fluorescence intensity and fluorescence polarization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号