首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
To examine the role of endothelin ETA and ETB receptors in congestive heart failure due to cardiomyopathy, the effect of chronic treatment with selective ETA- and ETB-receptor antagonists (atrasentan and A-192621, respectively), alone and in combination, was assessed on functional and biochemical parameters of 52-week-old Bio 14.6 cardiomyopathic hamsters. Compared with control animals, cardiomyopathic hamsters treated for 9 weeks with atrasentan showed no variation in MAP; however, selective ETB- and combined nonselective ETA- and ETB-receptor antagonists increased systemic blood pressure. After selective ETB-receptor blockade, plasma endothelin levels were augmented. Importantly, this increase was highly enhanced (more than 8-fold) by concomitant ETA-receptor antagonism. Furthermore, the left ventricle:body weight ratio of cardiomyopathic hamsters treated with A-192621, alone or in combination with atrasentan, was significantly increased. On the other hand, decreased left ventricular end-diastolic pressure was observed in cardiomyopathic hamsters after selective ETA- or combined nonselective ETA/ETB-receptor antagonism, while only selective ETA-receptor blockade reduced left ventricular endothelin levels. Our results suggest that, in congestive heart failure, ETB receptors are essential to limit circulating endothelin levels, which may argue for improved cardiac benefits after long-term treatment with highly selective ETA-receptor antagonists.  相似文献   

2.
The role of endothelin (ET)A and ETB receptor function in experimental pancreatitis is still not fully understood. Using a rat model of sodium taurocholate-induced pancreatitis and intravital microscopy, we therefore studied whether selective inhibition of ETA receptor function or combined ETA and ETB receptor blockade affects the development of pancreatitis-associated microcirculatory failure, inflammation, and parenchymal injury. Pretreatment with 10 mg/kg body wt of a combined ETA/B receptor antagonist, which is thought to mediate a simultaneous inhibition of both receptors, did not attenuate the pancreatitis-induced microcirculatory failure, inflammatory response, and parenchymal tissue injury. In contrast, pretreatment with a low concentration of the combined ETA/B receptor antagonist (4 mg/kg body wt), which predominantly inhibits the ETA receptor, revealed an improvement of some microcirculatory disorders and a significant attenuation of leukocyte recruitment and tissue injury. Furthermore, pretreatment with a selective ETA receptor antagonist (1 microg/kg body wt) almost abolished pancreatitis-associated capillary constriction, restored functional capillary density, and, consequently, improved overall nutritive perfusion. Importantly, the maintenance of an appropriate microcirculation by selective ETA receptor inhibition was accompanied by a significant attenuation of the inflammation-associated leukocytic response and by a marked reduction of parenchymal injury. Thus our study indicates that pancreatitis-associated development of microcirculatory failure, inflammation, and parenchymal injury is caused by ETs coupling onto the ETA receptor, which therefore may represent a promising target for novel strategies in the treatment of pancreatitis.  相似文献   

3.
Diabetes increases the risk of stroke and contributes to poor clinical outcomes in this patient population. Myogenic tone of the cerebral vasculature, including basilar arteries, plays a key role in controlling cerebral blood flow. Increased myogenic tone is ameliorated with ET receptor antagonism in Type 1 diabetes. However, the role of endothelin-1 (ET-1) and its receptors in cerebrovascular dysfunction in Type 2 diabetes, a common comorbidity in stroke patients, remains poorly elucidated. Therefore, we hypothesized that 1) cerebrovascular dysfunction occurs in the Goto-Kakizaki (GK) model of Type 2 diabetes, and 2) pharmacological antagonism of ETA receptors ameliorates, while ETB receptor blockade augments vascular dysfunction. GK or control rats were treated with antagonists to either ETA (atrasentan, 5 mg.kg(-1).day(-1)) or ETB (A-192621, 15 or 30 mg.kg(-1).day(-1)) receptors for 4 wk and vascular function of basilar arteries was assessed using a wire myograph. GK rats exhibited increased sensitivity to ET-1. ET(A) receptor antagonism caused a rightward shift, indicating decreased sensitivity in diabetes, while it increased sensitivity to ET-1 in control rats. Endothelium-dependent relaxation was impaired in diabetes. ETA receptor blockade restored relaxation to control values in the GK animals with no significant effect in Wistar rats and ETB blockade with 30 mg.kg(-1).day(-1) A-192621 caused paradoxical constriction in diabetes. These studies demonstrate that cerebrovascular dysfunction occurs and may contribute to altered regulation of myogenic tone and cerebral blood flow in diabetes. While ETA receptors mediate vascular dysfunction, ETB receptors display differential effects. These results underscore the importance of ETA/ETB receptor balance and interactions in cerebrovascular dysfunction in diabetes.  相似文献   

4.
Vascular dysfunction, which presents either as an increased response to vasoconstrictors or an impaired relaxation to dilator agents, results in worsened cardiovascular outcomes in diabetes. We have established that the mesenteric circulation in Type 2 diabetes is hyperreactive to the potent vasoconstrictor endothelin-1 (ET-1) and displays increased nitric oxide-dependent vasodilation. The current study examined the individual and/or the relative roles of the ET receptors governing vascular function in the Goto-Kakizaki rat, a mildly hyperglycemic, normotensive, and nonobese model of Type 2 diabetes. Diabetic and control rats received an antagonist to either the ET type A (ETA; atrasentan; 5 mg x kg(-1) x day(-1)) or type B (ET(B); A-192621; 15 or 30 mg x kg(-1) x day(-1)) receptors for 4 wk. Third-order mesenteric arteries were isolated, and vascular function was assessed with a wire myograph. Maximum response to ET-1 was increased in diabetes and attenuated by ETA antagonism. ETB blockade with 15 mg/kg A-192621 augmented vasoconstriction in controls, whereas it had no further effect on ET-1 hyperreactivity in diabetes. The higher dose of A-192621 showed an ETA-like effect and decreased vasoconstriction in diabetes. Maximum relaxation to acetylcholine (ACh) was similar across groups and treatments. ETB antagonism at either dose had no effect on vasorelaxation in control rats, whereas in diabetes the dose-response curve to ACh was shifted to the right, indicating a decreased relaxation at 15 mg/kg A-192621. These results suggest that ETA receptor blockade attenuates vascular dysfunction and that ETB receptor antagonism exhibits differential effects depending on the dose of the antagonists and the disease state.  相似文献   

5.
The penis is kept in the flaccid state mainly via a tonic activity of norepinephrine and endothelins (ETs). ET-1 is important in salt-sensitive forms of hypertension. We hypothesized that cavernosal responses to ET-1 are enhanced in deoxycorticosterone acetate (DOCA)-salt mice and that blockade of ETA receptors prevents abnormal responses of the corpus cavernosum in DOCA-salt hypertension. Male C57BL/6 mice were unilaterally nephrectomized and treated for 5 weeks with both DOCA and water containing 1% NaCl and 0.2% KCl. Control mice were uninephrectomized and received tap water with no added salt. Animals received either the ETA antagonist atrasentan (5 mg x day(-1) x kg(-1) body weight) or vehicle. DOCA-salt mice displayed increased systolic blood pressure (SBP), and treatment with atrasentan decreased SBP in DOCA-salt mice. Contractile responses in cavernosal strips from DOCA-salt mice were enhanced by ET-1, phenylephrine, and electrical field stimulation (EFS) of adrenergic nerves, whereas relaxations were not altered by IRL-1620 (an ETB agonist), acetylcholine, sodium nitroprusside, and EFS of nonadrenergic noncholinergic nerves. PD59089 (an ERK1/2 inhibitor), but not Y-27632 (a Rho-kinase inhibitor), abolished enhanced contractions to ET-1 in cavernosum from DOCA-salt mice. Treatment of DOCA-salt mice with atrasentan did not normalize cavernosal responses. In summary, DOCA-salt treatment in mice enhances cavernosal reactivity to contractile, but not to relaxant, stimuli, via ET-1/ETA receptor-independent mechanisms.  相似文献   

6.
The effects of endothelin (ET) receptor blockade on energy utilization in heart failure (HF) are unknown. We administered ET type A (ETA), ET type B (ETB), and ETA/ETB antagonists to isolated hearts from Dahl salt-sensitive (DS) rats with HF and controls. Contractile efficiency was assessed as slope-1 of myocardial O consumption (VO2)-pressure-volume area relation. In HF, ETA and ETA/ETB but not ETB blockade decreased the contractility index (Emax)(-15 +/- 3% and -17 +/- 2%, P < 0.05), excitation-contraction (E-C) coupling VO2 (-39 +/- 4% and -37 +/- 5%, P < 0.01), and efficiency (-15 +/- 4% and -17 +/- 2%, P < 0.05). Despite decreased efficiency, ETA and ETA/ETB blockade decreased total VO2 (-24 +/- 3% and -22 +/- 2%, P < 0.05). Na+/H+ exchanger inhibition decreased Emax and E-C coupling VO2 similar to ETA and ETA/ETB blockade, but did not alter efficiency. In HF, endogenous ET-1 maintains contractility at expense of increased VO2 through ETA receptor activation, likely mediated by Na+/H+ exchange.  相似文献   

7.
The effects of endothelin receptor subtype A (ETA) blockade on hemodynamics and hormonal adaptation during hemorrhage were studied in xenon/remifentanil-anesthetized dogs (n=6) pretreated with an angiotensin II type 1 (AT1)-receptor blocker. Controls: after a baseline awake period, anesthesia was induced in the dogs with propofol and maintained with xenon/remifentanil (baseline anesthesia). Sixty minutes later, 20 mL x kg(-1) of blood was withdrawn within 5 min and the dogs observed for another hour (hemorrhage). AT1 group followed the same protocol as controls except the AT1-receptor blocker losartan (i.v. 100 microg x kg(-1) x min(-1)) was started at the beginning of the experiment. AT1+ETA group was the same as AT1 group but with the addition of the ETA-receptor blocker atrasentan (i.v. 1 mg x kg(-1), then 0.01 mg x kg(-1) x min(-1)). In controls, mean arterial pressure (MAP) remained unchanged during baseline anesthesia, whereas systemic vascular resistance (SVR) increased from 3282+/-281 to 7321+/-803 dyn.s.cm-5, heart rate (HR) decreased from 86+/-4 to 40+/-3 beats x min(-1), and cardiac output (CO) decreased from 2.3+/-0.2 to 0.9+/-0.1 L x min(-1) (p<0.05), with no further changes after hemorrhage. In AT1-inhibited dogs, MAP (71+/-6 mm Hg) and SVR (5939+/-611 dyn x s x cm(-5)) were lower during baseline anesthesia and after hemorrhage, but greater than those in AT1+ETA (66+/-7 mm Hg, 5034+/-658 dyn x s x cm(-5)) (p<0.05). HR and CO were not different between groups. Plasma concentration of vasopressin was highest with AT1+ETA inhibition after hemorrhage. Combined AT1+ETA-receptor blockade impaired vasoconstriction more than did AT1-receptor blockade alone, both during baseline xenon anesthesia and after hemorrhage. Even a large increase in vasoconstrictor hormones could not prevent the decrease in blood pressure and the smaller increase in SVR. Thus, endothelin is an important vasoconstrictor during hemorrhage, and both endothelin and angiotensin II are essential hormones for cardiovascular stabilization after hemorrhage.  相似文献   

8.
We hypothesized that constitutive endothelial NO synthase (eNOS) and inducible NO synthase (iNOS) have opposite effects on the regulation of endothelin and its receptors. We therefore sought to determine whether deletions of iNOS or eNOS genes in mice modulate pressor responses to endothelin and the expression of ETA and ETB receptors in a similar fashion. Despite unchanged baseline hemodynamic parameters, anesthetized iNOS-/- mice displayed reduced pressor responses to endothelin-1, but not to that of IRL-1620, a selective ETB agonist. Protein content of cardiac ETA receptors was reduced in iNOS-/- mice compared with wild-type mice, but that of ETB receptors was unchanged. Anesthetized eNOS-/- mice presented a hypertensive state, accompanied by an enhanced pressor response to intravenous endothelin-1, whereas the pressor response to IRL-1620 was reduced. Protein levels were also found to be increased for ETA receptors, but reduced for ETB receptors, in cardiac tissues of eNOS-/- mice. In conscious animals, both strains responded equally to the hypotensive effect of an ETA antagonist, ABT-627, whereas orally administered A-192621, an ETB antagonist, increased MAP to a greater extent in eNOS-/- than in wild-type mice. Furthermore, significant levels of immunoreactive endothelin were found in mesenteric arteries in eNOS-/- but not in iNOS-/- or wild-type congeners. Our study shows that repression of iNOS or eNOS has differential effects on endothelin-1 and its receptors. We have also shown that the heart is the main organ in which iNOS or eNOS repression induces important alterations in protein content of endothelin receptors in adult mice.  相似文献   

9.
Collecting duct (CD)-derived endothelin-1 (ET-1) acting via endothelin B (ETB) receptors promotes Na(+) excretion. Compromise of ET-1 signaling or ETB receptors in the CD cause sodium retention and increase blood pressure. Activity of the epithelial Na(+) channel (ENaC) is limiting for Na(+) reabsorption in the CD. To test for ETB receptor regulation of ENaC, we combined patch-clamp electrophysiology with CD-specific knockout (KO) of endothelin receptors. We also tested how ET-1 signaling via specific endothelin receptors influences ENaC activity under differing dietary Na(+) regimens. ET-1 significantly decreased ENaC open probability in CD isolated from wild-type (WT) and CD ETA KO mice but not CD ETB KO and CD ETA/B KO mice. ENaC activity in WT and CD ETA but not CD ETB and CD ETA/B KO mice was inversely related to dietary Na(+) intake. ENaC activity in CD ETB and CD ETA/B KO mice tended to be elevated under all dietary Na(+) regimens compared with WT and CD ETA KO mice, reaching significance with high (2%) Na(+) feeding. These results show that the bulk of ET-1 inhibition of ENaC activity is mediated by the ETB receptor. In addition, they could explain the Na(+) retention and elevated blood pressure observed in CD ET-1 KO, CD ETB KO, and CD ETA/B KO mice consistent with ENaC regulation by ET-1 via ETB receptors contributing to the antihypertensive and natriuretic effects of the local endothelin system in the mammalian CD.  相似文献   

10.
A competitive endothelin (ET) antagonist, BE-18257B, was isolated from the fermentation products of Streptomyces misakiensis. It is a novel cyclic pentapeptide, cyclo(-D-Glu-L-Ala-allo-D-Ile-L-Leu-D-Trp-), and binds to ETA receptors (ET-1 selective) in cardiovascular tissues, but not to ETB receptors (equally sensitive to isopeptides of ET family) in kidney, adrenal gland and cerebellum tissues. BE-18257B also antagonizes ET-1-induced vasoconstriction in rabbit iliac artery and pressor action in rats. Thus it is a selective ETA antagonist and should provide a valuable tool for elucidation of the pharmacological and pathophysiological roles of ET-1.  相似文献   

11.
We have investigated the role of NAADP-mediated Ca(2+) mobilization in endothelin (ET) signaling via endothelin receptor subtype A (ETA) and endothelin receptor subtype B (ETB) in rat peritubular smooth muscle cells. Microinjection and extracellular application of NAADP were both able to elicit Ca(2+) release which was blocked by inhibitory concentrations of NAADP, by impairing Ca(2+) uptake in acidic stores with bafilomycin, and by thapsigargin. Ca(2+) release in response to selective ETB stimulation was abolished by inhibition of NAADP signaling through the same strategies, while these treatments only partially impaired ETA-dependent Ca(2+) signaling, showing that transduction of the ETB signal is dependent on NAADP. In addition, we show that lipid rafts/caveolae contain ETA, ETB, and NAADP/cADPR generating enzyme CD38 and that stimulation of ETB receptors results in increased CD38 activity; interestingly, ETB- (but not ETA-) mediated Ca(2+) responses were antagonized by disruption of lipid rafts/caveolae with methyl-beta-cyclodextrin. These data demonstrate a primary role of NAADP in ETB-mediated Ca(2+) signaling and strongly suggest a novel role of lipid rafts/caveolae in triggering ET-induced NAADP signaling.  相似文献   

12.
The net contribution of endothelin type A (ET(A)) and type B (ET(B)) receptors in blood pressure regulation in humans and experimental animals, including the conscious mouse, remains undefined. Thus we assessed the role of ET(A) and ET(B) receptors in the control of basal blood pressure and also the role of ET(A) receptors in maintaining the hypertensive effects of systemic ET(B) blockade in telemetry-instrumented mice. Mean arterial pressure (MAP) and heart rate were recorded continuously from the carotid artery and daily (24 h) values determined. At baseline, MAP ranged from 99 +/- 1 to 101 +/- 1 mmHg and heart rate ranged between 547 +/- 15 and 567 +/- 19 beats/min (n = 6). Daily oral administration of the ET(B) selective antagonist A-192621 [10 mg/kg twice daily] increased MAP to 108 +/- 1 and 112 +/- 2 mmHg on days 1 and 5, respectively. Subsequent coadministration of the ET(A) selective antagonist atrasentan (5 mg/kg twice daily) in conjunction with A-192621 (10 mg/kg twice daily) decreased MAP to baseline values on day 6 (99 +/- 2 mmHg) and to below baseline on day 8 (89 +/- 3 mmHg). In a separate group of mice (n = 6) in which the treatment was reversed, systemic blockade of ET(B) receptors produced no hypertension in animals pretreated with atrasentan, underscoring the importance of ET(A) receptors to maintain the hypertension produced by ET(B) blockade. In a third group of mice (n = 10), ET(A) blockade alone (atrasentan; 5 mg/kg twice daily) produced an immediate and sustained decrease in MAP to values below baseline (baseline values = 101 +/- 2 to 103 +/- 2 mmHg; atrasentan decreased pressure to 95 +/- 2 mmHg). Thus these data suggest that ET(A) and ET(B) receptors play a physiologically relevant role in the regulation of basal blood pressure in normal, conscious mice. Furthermore, systemic ET(B) receptor blockade produces sustained hypertension in conscious telemetry-instrumented mice that is absent in mice pretreated with an ET(A) antagonist, suggesting that ET(A) receptors maintain the hypertension produced by ET(B) blockade.  相似文献   

13.
A series of C-terminal linear peptides of endothelin (ET)-1 and their N alpha-succinyl (Suc) analogs were synthesized and their binding affinities for the two subtypes of ET receptor, ETA and ETB, in porcine lung membranes were examined. Among the synthetic analogs, Suc-[Glu9,Ala11,15]-ET-1(8-21), IRL 1620, was the most potent and specific ligand for the ETB receptor (KiETA/KiETB approximately equal to 120,000) as judged by the Ki values for ETA (1.9 microM) and ETB (16 pM) receptors. IRL 1620 was 60 times more selective for the ETB receptor than ET-3 (KiETA/KiETB approximately equal to 1,900). IRL 1620 (10(-9)-10(-7) M) induced contractions of the guinea pig trachea with a comparable potency to those of ET-1 or ET-3, suggesting that IRL 1620 is a potent ETB receptor agonist.  相似文献   

14.
BACKGROUND/AIMS: Knowledge of renal toxicity of cyclosporine-A (CyA) is clouded by multiple effects on different glomerular and tubular cells and on kidney and systemic hemodynamics. To focus on glomerular action of CyA we used glomeruli isolated in vitro, with the aim of dissecting the effects on recruitment of glomerular vasoconstricting systems, like endothelin-1 (ET) and angiotensins (AI and AII). METHODS: We studied the pathways of CyA damage on pig glomeruli isolated in vitro with the technique of sieving through mesh filters of different sizes, and incubated in an appropriate culture medium. The supernatant was sampled at different time intervals to measure ET, AI and AII concentrations upon addition of ET 10(-12) or CyA 4x10(-7)M, with or without either selective endothelin receptor A (ETA) or B (ETB), or unselective ETA-ETB receptor inhibitors. RESULTS: CyA increased ET concentration (from 9.7+/-0.3 to 11.4+/-0.4 pgxml-1, p<0.002), and the added ET released AI in the medium (from 26.6+/-4.7 to 39.1+/-4.6 pgxml-1, p<0.05) when ETB receptors were blocked. In contrast, CyA stimulated angiotensins release independent of ET receptors blockade, hence, irrespective of ET concentration in the medium, from 26.6+/-4.7 to 38.0+/-2.1 pgxml-1 for AI, p<0.05, and from 12.3+/-1.0 to 14.8+/-0.9 pgxml-1 for AII, p<0.05. CONCLUSION: CyA releases ET and angiotensins independently by a direct action. Glomerular CyA toxicity might be mediated by recruitment of vasoconstricting peptides and modulated by relative ETA and ETB receptor occupancy.  相似文献   

15.
Venous smooth muscle contains vasoconstrictor ETB-like receptors.   总被引:30,自引:0,他引:30  
Two endothelin (ET) receptor subtypes have been identified to date: the ETA receptor which preferentially binds ET-1 over ET-3, and the ETB receptor which is non-selective. This study characterized the ET receptor subtypes present in several vascular smooth muscle preparations using standard in vitro techniques. In all but one of the arteries tested, ET-3 was significantly less potent than ET-1. In contrast, the potency of ET-3 was very similar to that of ET-1 in all of the veins. The selective ETA receptor antagonist BQ-123 blunted the ET-1 contractions in rabbit carotid artery, but not in saphenous vein. The selective ETB receptor ligand sarafotoxin S6c contracted the rabbit saphenous vein, but not the carotid artery. These data suggest that vascular smooth muscle cells express ETA and ETB receptors. Stimulation of either receptor subtype can result in force development.  相似文献   

16.
The objective of this study was to investigate whether circulatory and hormonal changes during xenon plus remifentanil or isoflurane plus remifentanil anesthesia are altered by endothelin-A (ET(A)) receptor blockade. Eight beagle dogs were studied in four protocols (n = 7 each). After a 30-min awake period, anesthesia was induced with 8 mg/kg propofol, administered intravenously (iv), and maintained with either 0.8% +/- 0.01% (vol/vol) isoflurane plus 0.5 microg/kg/min remifentanil (Protocol 1) or 63% +/- 1% (vol/vol) xenon plus 0.5 microg/kg/min remifentanil (Protocol 2) for 1 hr. Protocols 3 and 4 were preceded by ET(A) blockade with ABT-627 (Atrasentan; iv bolus of 1 mg/kg, then 100 microg/kg/h continuously). Irrespective of Atrasentan administration, the mean arterial blood pressure (MAP) ranged between 92 and 96 mm Hg in the awake state and fell to 67 +/- 3 mm Hg in controls (mean +/- SEM) and to 64 +/- 2 mm Hg in the Atrasentan group during isoflurane plus remifentanil anesthesia, whereas MAP remained constant during xenon plus remifentanil anesthesia. A decrease in heart rate was observed during either kind of anesthesia, but bradycardia was most prominent during xenon plus remifentanil anesthesia. In the control groups, and in the Atrasentan-treated dogs, a decrease in cardiac output and an increase in systemic vascular resistance were more prominent during xenon plus remifentanil than during isoflurane plus remifentanil anesthesia. Hormonal alterations during anesthesia remained unaffected by ET(A) receptor blockade. Angiotensin II and vasopressin increased in all protocols, and adrenaline and noradrenaline concentrations rose only during xenon plus remifentanil anesthesia. We conclude that the hemodynamic and hormonal adaptation after xenon plus remifentanil and isoflurane plus remifentanil anesthesia does not depend on the endothelin system, because it is unaffected by ET(A) receptor inhibition. Therefore, the use of Atrasentan does not impair cardiovascular stability during xenon- or isoflurane-based anesthesia in our dog model. However, the way anesthesia is performed is of crucial importance for hemodynamic and hormonal reactions observed during research in animals because the release of vasopressin and catecholamines may be intensified by xenon plus remifentanil anesthesia.  相似文献   

17.
Proteinuria is a hallmark of chronic kidney disease (CKD) and cardiovascular disease (CVD), and a good predictor of clinical outcome. Selective endothelin A (ETA) receptor antagonist used with renin-angiotensin system (RAS) inhibitors prevents development of proteinuria in CKD. However, whether the improvement in proteinuria would have beneficial effects on CVD, independent of RAS inhibition, is not well understood. In this study, we investigated whether atrasentan, an ETA receptor antagonist, has renal and cardiovascular effects independent of RAS inhibition. Male Dahl salt sensitive (DSS) rats, at six weeks of age, received water with or without different doses of atrasentan and/or enalapril under high salt (HS) diet or normal diet (ND) for 6 weeks. At the end of 12th week, atrasentan at a moderate dose significantly attenuated proteinuria and serum creatinine without reducing mean arterial pressure (MAP), thereby preventing cardiac hypertrophy and improving cardiac function. ACE inhibitor enalapril at a dose that did not significantly lowered BP, attenuated cardiac hypertrophy while moderately improving cardiac function without reducing proteinuria and serum creatinine level. Nonetheless, combined therapy of atrasentan and enalapril that does not altering BP exerted additional cardioprotective effect. Based on these findings, we conclude that BP independent monotherapy of ETA receptor antagonist attenuates the progression of CKD and significantly mitigates CVD independent of RAS inhibition.  相似文献   

18.
Trigeminal neuropathic pain, which is associated with marked orofacial mechanical allodynia, is frequently refractory to currently available drugs. Because endothelins (ETs) can contribute to nociceptive changes in animal models of inflammatory, cancer, and diabetic neuropathic pain, the present study evaluated the influence of ET(A) and ET(B) receptor antagonists on orofacial mechanical allodynia in a rat model of trigeminal neuropathic pain. Unilateral constriction (C) of the infraorbital nerve (ION) caused pronounced and sustained bilateral mechanical allodynia, evaluated by application of von Frey hairs to the vibrissal pad. Mechanical allodynia on postoperative days 12-15 after nerve injury was abolished for up to 90 mins by subcutaneous administration of 2.5 mg/kg morphine, but was fully refractory to intravenous (iv) administration of 10 mg/kg of the dual ET(A) plus ET(B) or selective ET(A) receptor antagonists, bosentan and atrasentan, respectively. In sharp contrast, iv administration of 20 mg/kg of the selective ET(B) receptor antagonist, A-192621, caused a net 61 +/- 15% reduction of mechanical threshold, lasting 2 hrs. Co-injection of atrasentan plus A-192621 did not modify ION injury-induced mechanical allodynia. Injection of 10 pmol ET-1 into the upper lip of naive rats caused ipsilateral mechanical allodynia lasting up to 5 hrs. Thus, ET(B) receptor-mediated mechanisms contribute to orofacial mechanical allodynia induced by CION injury, but, some-how, functional ET(A) receptors are required for expression of the antiallodynic effect of ET(B) receptor blockade.  相似文献   

19.
The endothelin system is composed of three endothelin isoforms (ET-1, ET-2, and ET-3), the endothelin receptors ETA and ETB, and the endothelin-converting enzyme (ECE). Besides having a major vasoactive role, endothelins have roles in different cell types at a local level. We investigated the presence of the different components of the endothelin system in primate ovaries. Human ovaries and gonadotropin-stimulated monkey ovaries were studied using immunohistochemistry for endothelin, and in situ hybridization with probes for ET-1, ET-2, ET-3, ETA and ETB receptors, and ECE. ET-1 and ETA receptors were detected in endothelial cells and vascular smooth muscle cells, respectively, in stromal vessels adjacent to follicles and corpora lutea. ETB receptors and ET-1 were found in the endothelial cells of capillaries of corpora lutea. ECE was present in internal theca cells of secondary, de Graaf, atretic follicles, and in luteinized granulosa cells of the corpora lutea. The endothelin system components are present in or around the follicles of human and monkey ovaries. Although the components are not expressed in the same cell types, they are synthesized, mainly in follicles, by cells that are in close proximity. Thus, the endothelin system could act in a paracrine manner. ECE expression in steroid-producing cells changes its compartmentalization during follicle maturation.  相似文献   

20.
We showed recently that endothelin (ET)A receptors are involved in the salt sensitivity of ANG II-induced hypertension. The objective of this current study was to characterize the role of endothelin ETB receptor activation in the same model. Male rats on fixed normal (2 meq/day) or high (6 meq/day) salt intake received a continuous intravenous infusion of ANG II or salt only for 15 days. During the middle 5 days of the infusion period, rats were given either the selective ETB receptor antagonist A-192621 or the nonselective endothelin receptor antagonist A-182086 (both at 24 mg x kg(-1) x day(-1) intra-arterially). Infusion of ANG II caused a greater rise in arterial pressure in rats on high-salt intake. The administration of A-192621 increased arterial pressure further in all rats. The chronic hypertensive effect of A-192621 was not significantly affected by salt intake or ANG II. The administration of A-182086 lowered arterial pressure chronically only in rats on normal salt intake receiving ANG II. Thus the salt sensitivity of ANG II-induced hypertension is not caused by changes in ETB receptor function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号