共查询到20条相似文献,搜索用时 15 毫秒
1.
Plasmenylcholine and phosphatidylcholine membrane bilayers possess distinct conformational motifs 总被引:2,自引:0,他引:2
The conformation of plasmenylcholine near the hydrophobic-hydrophilic interface in membrane bilayers was deduced by determination of critical internuclear distances utilizing truncated driven nuclear Overhauser enhancement. These experiments demonstrated that the beta-vinyl ether proton in plasmenylcholine was in close spatial proximity and nearly equidistant (approximately 3 A) to both the alpha- and beta-methylene protons of the sn-2 aliphatic chain. In contrast, the distances between the alpha-vinyl ether proton and the alpha- and beta-methylene protons of the sn-2 aliphatic chain were greater than or equal to 5 A. Furthermore, the distance between the N-CH3 protons in the polar head group and the methylene protons of the glycerol backbone in plasmenylcholine vesicles is larger than that present in phosphatidylcholine vesicles. Although the proximal portion of the sn-2 acyl chain in phosphatidylcholine is bent, conformational analysis utilizing these distance constraints demonstrated that the carbon atoms which comprise the proximal portion of the sn-2 aliphatic chain in plasmenylcholine are nearly coplanar, in register, and parallel to the sn-1 aliphatic chain. Taken together, these observations indicate that modest covalent alterations in the proximal portion of the sn-1 aliphatic chain in choline glycerophospholipids result in substantial changes in the molecular conformation and packing of hydrated phospholipid bilayers. 相似文献
2.
Wei Xie Geoffrey D. Bothun Hans-Joachim Lehmler 《Chemistry and physics of lipids》2010,163(3):300-308
The chain length dependence of the interaction of PFOA, a persistent environmental contaminant, with dimyristoyl- (DMPC), dipalmitoyl- (DPPC) and distearoylphosphatidylcholine (DSPC) was investigated using steady-state fluorescence anisotropy spectroscopy, differential scanning calorimetry (DSC) and dynamic light scattering (DLS). PFOA caused a linear depression of the main phase transition temperature Tm while increasing the width of the phase transition of all three phosphatidylcholines. Although PFOA's effect on Tm and the transition width decreased in the order DMPC > DPPC > DSPC, its relative effect on the phase behavior was largely independent of the phosphatidylcholine. PFOA caused swelling of DMPC but not DPPC and DSPC liposomes at 37 °C in the DLS experiments, which suggests that PFOA partitions more readily into bilayers in the fluid phase. These findings suggest that PFOA's effect on the phase behavior of phosphatidylcholines depends on the cooperativity and state (i.e., gel versus liquid phase) of the membrane. DLS experiments are also consistent with partial liposome solubilization at PFOA/lipid molar ratios > 1, which suggests the formation of mixed PFOA–lipid micelles. 相似文献
3.
Lateral distribution of a pyrene-labeled phosphatidylcholine in phosphatidylcholine bilayers: fluorescence phase and modulation study 总被引:6,自引:0,他引:6
The lateral distribution of 1-palmitoyl-2-[10-(1-pyrenyl)decanoyl]phosphatidylcholine (PyrPC) was studied in small unilamellar vesicles of 1,2-dipalmitoyl-, 1,2-dimyristoyl-, and 1-palmitoyl-2-oleoyl-phosphatidylcholine (DPPC, DMPC, and POPC, respectively) under anaerobic conditions. The DPPC and DMPC experiments were carried out over temperature ranges above and below the matrix phospholipid phase transition temperature (Tm). The excimer to monomer fluorescence intensity ratio (E/M) was determined as a function of temperature for the three PyrPC/lipid mixtures. Phase and modulation data were used to determine the temperature dependence of pyrene fluorescence rate parameters in gel and in liquid-crystalline bilayers. These parameters were then used to provide information about excited-state fluorescence in phospholipid bilayers, calculate the concentration of the probe within liquid-crystalline and gel domains in the phase transition region of PyrPC in DPPC, and simulate E/M vs. temperature curves for three systems whose phase diagrams are different. From the simulated curves we could determine the relationship between the shape of the three simulated E/M vs. temperature curves and the lateral distribution of the probe. This information was then used to interpret the three experimentally derived E/M vs. temperature curves. Our results indicate that PyrPC is randomly distributed in pure gel and fluid phosphatidylcholine bilayers.(ABSTRACT TRUNCATED AT 250 WORDS) 相似文献
4.
As determined by freeze fracture electron microscopy, increasing levels of bovine brain galactosylceramide (GalCer) altered the surface structure of 1-palmitoyl-2-oleoyl-phosphatidylcholine (POPC) bilayers by inducing a striking "macro-ripple" phase in the larger, multilamellar lipid vesicles at GalCer mole fractions between 0.4 and 0.8. The term "macro-ripple" phase was used to distinguish it from the P beta' ripple phase observed in saturated, symmetric-chain length phosphatidylcholines. Whereas the P beta' ripple phase displays two types of corrugations, one with a wavelength of 12-15 nm and the other with a wavelength of 25-35 nm, the macro-ripple phase occurring in GalCer/POPC dispersions was of one type with a wavelength of 100-110 nm. Also, in contrast to the extended linear arrays of adjacent ripples observed in the P beta' ripple phase, the macro-ripple phase of GalCer/POPC dispersions was interrupted frequently by packing defects resulting from double dislocations and various disclinations and, thus, appeared to be continuously twisting and turning. Control experiments verified that the macro-ripple phase was not an artifact of incomplete lipid mixing or demixing during preparation. Three different methods of lipid mixing were compared: a spray method of rapid solvent evaporation, a sublimation method of solvent removal, and solvent removal using a rotary evaporation apparatus. Control experiments also revealed that the macro-ripple phase was observed regardless of whether lipid specimens were prepared by either ultra-rapid or manual plunge freezing methods as well as either in the presence or absence of the cryo-protectant glycerol. The macro-ripple phase was always observed in mixtures that were fully annealed by incubation above the main thermal transition of both POPC and bovine brain GalCer before rapid freezing. If the GalCer mixed with POPC contained only nonhydroxy acyl chains or only 2-hydroxy acyl chains, then the occurrence of macro-ripple phase decreased dramatically. 相似文献
5.
6.
《Biophysical journal》2022,121(15):2981-2993
When lipid membranes curve or are subjected to strong shear forces, the two apposed leaflets of the bilayer slide past each other. The drag that one leaflet creates on the other is quantified by the coefficient of interleaflet friction, b. Existing measurements of this coefficient range over several orders of magnitude, so we used a recently developed microfluidic technique to measure it systematically in supported lipid membranes. Fluid shear stress was used to force the top leaflet of a supported membrane to slide over the stationary lower leaflet. Here, we show that this technique yields a reproducible measurement of the friction coefficient and is sensitive enough to detect differences in friction between membranes made from saturated and unsaturated lipids. Adding cholesterol to saturated and unsaturated membranes increased interleaflet friction significantly. We also discovered that fluid shear stress can reversibly induce gel phase in supported lipid bilayers that are close to the gel-transition temperature. 相似文献
7.
Rózycka-Roszak B Pruchnik H 《Zeitschrift für Naturforschung. C, Journal of biosciences》2000,55(9-10):753-757
Effects of dodecyltrimethylammonium chloride (DTAC), dodecyltrimethylammonium bromide (DTAB) and dodecyltrimethylammonium iodide (DTAI) on thermotropic phase behaviour of phosphatidylcholine bilayers containing cholesterol as well as on 1H NMR spectra were studied. Two series of experiments were performed. In the first one the surfactants were added to the water phase while in the other directly to the lipid phase (a mixed film from cholesterol, surfactant and phosphatidylcholine was formed). The effects of particular surfactants on the main phase transition temperature, Tm, were more pronounced when added to the lipid phase (2nd method) than to the water phase (1st method); the opposite happened when cholesterol was absent (Rózycka-Roszak and Pruchnik 2000, Z. Naturforsch. 55c, 240-244). Furthermore, in the case of the first method the transitions were asymmetrical while in the second method nearly symmetrical. It is suggested that surfactant poor and surfactant rich domains are formed when surfactants are added to the water phase. 相似文献
8.
The location of ubiquinone-10 in phospholipid bilayers was analyzed using a variety of physical techniques. Specifically, we examined the hypothesis that ubiquinone localizes at the geometric center of phospholipid bilayers. Light microscopy of dipalmitoylphosphatidylcholine at room temperature in the presence of 0.05–0.5 mol fraction ubiquinone showed two separate phases, one birefringent lamellar phase and one phase that consisted of isotropic liquid droplets. The isotropic phase had a distinct yellow color, characteristic of melted ubiquinone. [13C]NMR spectroscopy of phosphatidylcholine liposomes containing added ubiquinone indicated a marked effect on the 13C-spin lattice relaxation times of the lipid hydrocarbon chain atoms near the polar head region of the bilayer, but almost no effect on those atoms nearest the center of the bilayer. X-ray diffraction experiments showed that for phosphatidylcholine bilayers, both in the gel and liquid-crystal-line phases, the presence of ubiquinone did not change either the lamellar repeat period or the wide-angle reflections from the lipid hydrocarbon chains. In electron micrographs, the hydrophobic freeze-fracture surfaces of bilayers in the rippled (Pβ′) phase were also unmodified by the presence of ubiquinone. These results indicate that the ubiquinone which does partition into the bilayer is not localized preferentially between the monolayers, and that an appreciable fraction of the ubiquinone forms a separate phase located outside the lipid bilayer. 相似文献
9.
The location of ubiquinone-10 in phospholipid bilayers was analyzed using a variety of physical techniques. Specifically, we examined the hypothesis that ubiquinone localizes at the geometric center of phospholipid bilayers. Light microscopy of dipalmitoylphosphatidylcholine at room temperature in the presence of 0.05-0.5 mol fraction ubiquinone showed two separate phases, one birefringent lamellar phase and one phase that consisted of isotropic liquid droplets. The isotropic phase had a distinct yellow color, characteristic of melted ubiquinone. [13C]NMR spectroscopy of phosphatidylcholine liposomes containing added ubiquinone indicated a marked effect on the 13C-spin lattice relaxation times of the lipid hydrocarbon chain atoms near the polar head region of the bilayer, but almost no effect on those atoms nearest the center of the bilayer. X-ray diffraction experiments showed that for phosphatidylcholine bilayers, both in the gel and liquid-crystal-line phases, the presence of ubiquinone did not change either the lamellar repeat period or the wide-angle reflections from the lipid hydrocarbon chains. In electron micrographs, the hydrophobic freeze-fracture surfaces of bilayers in the rippled (P beta') phase were also unmodified by the presence of ubiquinone. These results indicate that the ubiquinone which does partition into the bilayer is not localized preferentially between the monolayers, and that an appreciable fraction of the ubiquinone forms a separate phase located outside the lipid bilayer. 相似文献
10.
Rózycka-Roszak B Pruchnik H 《Zeitschrift für Naturforschung. C, Journal of biosciences》2000,55(3-4):240-244
Effects of dodecyltrimethylammonium chloride (DTAC), dodecyltrimethylammonium bromide (DTAB) and dodecyltrimethylammonium iodide (DTAI) on thermotropic phase behaviour of phosphatidylcholine bilayers as well as on 1H NMR spectra were studied. In order to enhance the effect of counterions on water structure two series of experiments were performed. In the first one the surfactants were added to the water phase and in the other one directly to lipid phase (a mixed film was formed). The effects of particular surfactants on the main phase-transition temperature were more pronounced when they were added to the water phase (1st method) instead of the lipid phase (2nd method). Furthermore, in the case of the first method the transitions were found asymmetrical while in the second method nearly symmetrical. It is suggested that surfactant-poor and surfactant-rich domains are formed when surfactants are added to the water phase. 相似文献
11.
Differential scanning calorimetry has been used to study the endothermic phase behaviour of some model biomembranes (i.e. phosphatidylcholine-water systems) in the presence of a wide range of alkaline, alkaline earth and heavy metal salts. Studies and comparisons were made of both cation and anion effects. Shifts occur in the temperatures of both the pre-transition and main transition endotherms. The observed shifts are smaller than those which have been reported for charged lipids, and no evidence has been found for the formation of specific complexes. Electron microscopic studies on freeze-fractured dispersions of phosphatidylcholine-water-salt systems show that with some salts the typical rippled surface observed with l-α-dimyristoyl phosphatidylcholine, when in the gel state, is replaced by a smooth surface. 相似文献
12.
Justyna Widomska Anna Kostecka-Gugaa Dariusz Latowski Wiesaw I. Gruszecki Kazimierz Strzaka 《Biophysical chemistry》2009,140(1-3):108-114
Carotenoid geometry is a factor that determines their solubility and orientation in the lipid membrane as well as antioxidant capacities and bioavailability. The effects of the cis-isomers of carotenoids (zeaxanthin and β-carotene) on the thermotropic properties of lipid membranes formed with dimyristoylphosphatidylcholine (DMPC) and dipalmitoylphosphatidylcholine (DPPC) were investigated by means of differential scanning calorimetry. The results were compared with the effects caused by the all-trans-isomer. Both the trans and cis isomers of zeaxanthin shifted the main phase transition temperature to lower values and decreased the cooperativity of the phase transition. The effect of all-trans zeaxanthin on the physical properties of the lipid bilayers has been shown to strongly depend on the hydrocarbon chain length of the membrane. In the case of cis-zeaxanthin this relationship is weaker. 相似文献
13.
《生物化学与生物物理学报:生物膜》1985,815(1):139-142
X-ray diffraction patterns have been obtained from the rippled phases of two pure synthetic phosphatidylcholines (dimyristoyl and dipalmitoyl) and mixtures of these phospholipids and cholesterol arranged in oriented multibilayer stacks. These show for the first time in an oriented specimen, a two-dimensionally resolved pattern near the meridian. For example, in pure dipalmitoylphosphatidylcholine the unit cell is two-dimensional and oblique. The ripples have a wavelength of 165.3 Å and are at least 1000 Å wide in the direction perpendicular to this, in the plane of the bilayer. The shape of the ripple is more complex than simply sinusoidal. 相似文献
14.
The structural and thermotropic properties of the hydrated mixed-chain phosphatidylcholines (PCs), C(8):C(18)-PC and C(10):C(18)-PC, have been studied by X-ray diffraction and differential scanning calorimetry. For fully hydrated C(8):C(18)-PC, the reversible chain melting transition is observed at 9.9 degrees C (delta H = 7.3 kcal/mol). X-ray diffraction at 0 degrees C (below the chain melting transition) shows a small bilayer repeat distance, d = 51.0 A, and a sharp, symmetric wide-angle reflection at 4.1 A, characteristic of a mixed interdigitated bilayer gel phase [see McIntosh, T. J., Simon, S. A., Ellington, J. C., Jr., & Porter, N. A. (1984) Biochemistry 23, 4038-4044; Hui, S. W., Mason, J. T., & Huang, C. (1984) Biochemistry 23, 5570-5577]. At 30 degrees C (above the chain melting transition), a diffuse band is observed at 4.5 A characteristic of an L alpha phase but with an increased bilayer periodicity, d = 61 A. Both the calculated lipid bilayer thickness (d1) and that determined directly from electron density profiles (dp-p) show unusual increases as a consequence of chain melting. In contrast, fully hydrated C(10):C(18)-PC shows an asymmetric endothermic transition at 11.8 degrees C. Below the chain melting transition, two lamellar phases are present, corresponding to coexisting interdigitated (d = 52.3 A) and noninterdigitated (d = 62.5 A) bilayer gel phases. The relative amounts of these phases depend upon the low-temperature incubation and/or hydration conditions, suggesting conversions, albeit kinetically complex, between metastable, and stable phases. The different behavior of C(8):C(18)-PC and C(10):C(18)-PC, as well as their positional isomers, is rationalized in terms of the molecular conformation of PC. 相似文献
15.
A comparative study on bilayers of diphytanoyl phosphatidylcholine (DPhPC) and bilayers of dimyristoyl phosphatidylcholine (DMPC) was made by X-ray lamellar diffraction as a function of temperature and the degree of hydration. An order-disorder phase transition of DPhPC reveals an interesting contrast to the standard model of DMPC. Electron density profiles allow us to deduce the conformational changes which occur in the headgroup-glycerol region and in the chain region. The important conclusion is that the lipid headgroup may have different conformational energetics in lipids of different chains. We explain why this is important to protein-membrane interactions. 相似文献
16.
It is postulated that biological membrane lipids are heterogeneously distributed into lipid microdomains. Recent evidence indicates that docosahexaenoic acid-containing phospholipids may be involved in biologically important lipid phase separations. Here we investigate the elastic and thermal properties of a model plasma membrane composed of egg sphingomyelin (SM), cholesterol and 1-stearoyl-2-docosahexaenoyl-sn-glycerophosphoethanolamine (SDPE). Two techniques are employed, pressure-area isotherms on monolayers to examine condensation and interfacial elasticity behavior, and differential scanning calorimetry (DSC) on bilayers to evaluate phase separations. Significant levels of condensation are observed for mixtures of SM and cholesterol. Surface elasticity measurements indicate that cholesterol decreases and SDPE increases the in-plane elasticity of SM monolayers. At X(SDPE)> or =0.15 in SM, a more horizontal region emerges in the pressure-area isotherms indicating 'squeeze out' of SDPE from the monolayers. Addition of cholesterol to equimolar amounts of SM and SDPE further increases the amount of 'squeeze out', supporting the concept of phase separation into a cholesterol- and SM-rich liquid ordered phase and a SDPE-rich liquid disordered phase. This conclusion is corroborated by DSC studies where as little as X(Chol)=0.0025 induces a phase separation between the two lipids. 相似文献
17.
We have developed a method to incorporate the membrane protein bacteriorhodopsin into polymerized bilayers composed of a diacetylenic phosphatidylcholine, 1,2-bis(tricosa-10,12-diynoyl)-sn-glycero-3-phosphocholine (DC8,9PC) and a non-polymerizable phospholipid, dinonanoylphosphatidylcholine (DNPC). The extent of DC8,9PC polymerization in the bilayer was significantly improved when 2:1 mole ratio DNPC-DC8,9PC was used. Octyl glucopyranoside-solubilized bacteriorhodopsin was inserted into the polymerized DNPC-DC8,9PC bilayers by overnight incubation at 4 degrees C followed by dialysis to remove the detergent. The protein was inserted into the membranes after photo-polymerization to avoid inactivation of the protein due to the UV irradiation. The insertion of bacteriorhodopsin into the polymerized DNPC-DC8,9PC membranes was confirmed by density gradient centrifugation, UV/visible spectroscopy, and freeze fracture electron microscopy. The polymerized DNPC-DC8,9PC membranes containing bacteriorhodopsin were about 10% protein by weight. These results suggest that mixed lipid systems such as the DNPC-DC8,9PC can be used to improve both the extent of polymerization and the efficiency of membrane protein incorporation in the polymerized bilayer. 相似文献
18.
Kinetin is shown to increase substantially the water permeability of liposomes composed of several types of phosphatidylcholines including the natural phospholipids egg lecithin and asolectin and the synthetic phospholipids dimyristoylphosphatidylcholine and dipalmitoylphosphatidylcholine. Kinetin effects were measured from 16.3 micromolar to 2.4 millimolar at temperatures from 10°C to 50°C and at pH 2.0, 7.0, and 11.0. Temperature studies indicate that kinetin produces a larger increase in water permeability with membranes in the more fluid liquid crystalline state. Kinetin is also shown to enhance [14C]glucose permeability and perhaps promotes membrane aggregation. From these experiments, we conclude that kinetin may produce its initial effect by altering the lipid bilayer portion of membranes. 相似文献
19.
Thomas J. McIntosh 《生物化学与生物物理学报:生物膜》1978,513(1):43-58
The effect of cholesterol on the structure of phosphatidylcholine bilayers was investigated by X-ray diffraction methods. Electron density profiles at 5 Å resolution along with chain tilt and chain packing parameters were obtained and compared for phosphatidylcholine/cholesterol bilayers and for pure phosphatidylcholine bilayers in both the gel and liquid crystalline states. The cholesterol in the bilayer was localized by noting the position of discrete elevations in the electron density profiles. Cholesterol can either increase or decrease the width of the bilayer depending on the physical state and chain length of the lipid before the introduction of cholesterol. For saturated phosphatidylcholines containing 12–16 carbons per chain, cholesterol increases the width of the bilayer as it removes the chain tilt from gel state lipids or increases the trans conformations of the chains for liquid crystalline lipids. However, cholesterol reduces the width of 18 carbon chain bilayers below the phase transition temperature as the long phospholipid chains must deform or kink to accomodate the significantly shorter cholesterol molecule. Although cholesterol has a marked effect on hydrocarbon chain organization, it was found that, within the resolution limits of the data, the phosphatidylcholine head group conformation is unchanged by the addition of cholesterol to the bilayer. The head group is oriented parallel to the plane of the bilayer for phosphatidylcholine in the gel and liquid crystalline states and this orientation is not changed by the addition of cholesterol. 相似文献
20.
Organization of ganglioside GM1 in phosphatidylcholine bilayers 总被引:3,自引:0,他引:3
T E Thompson M Allietta R E Brown M L Johnson T W Tillack 《Biochimica et biophysica acta》1985,817(2):229-237
Molecules of the ganglioside GM1 are randomly distributed in liquid-crystalline 1-palmitoyl-2-oleoyl phosphatidylcholine bilayers. This conclusion is based on a freeze-etch electron microscopic study using ferritin-conjugated cholera toxin and cholera toxin alone as ganglioside labels. The average number of GM1 molecules under a label is calculated by a novel method from the dependence of the fraction of bilayer area covered by the label on the mole fraction of GM1 in the bilayer. 相似文献