首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Biophysical journal》2020,118(7):1749-1768
Epithelial-mesenchymal transition (EMT) is a fundamental biological process that plays a central role in embryonic development, tissue regeneration, and cancer metastasis. Transforming growth factor-β (TGFβ) is a potent inducer of this cellular transition, which is composed of transitions from an epithelial state to intermediate or partial EMT state(s) to a mesenchymal state. Using computational models to predict cell state transitions in a specific experiment is inherently difficult for reasons including model parameter uncertainty and error associated with experimental observations. In this study, we demonstrate that a data-assimilation approach using an ensemble Kalman filter, which combines limited noisy observations with predictions from a computational model of TGFβ-induced EMT, can reconstruct the cell state and predict the timing of state transitions. We used our approach in proof-of-concept “synthetic” in silico experiments, in which experimental observations were produced from a known computational model with the addition of noise. We mimic parameter uncertainty in in vitro experiments by incorporating model error that shifts the TGFβ doses associated with the state transitions and reproduces experimentally observed variability in cell state by either shifting a single parameter or generating “populations” of model parameters. We performed synthetic experiments for a wide range of TGFβ doses, investigating different cell steady-state conditions, and conducted parameter studies varying properties of the data-assimilation approach including the time interval between observations and incorporating multiplicative inflation, a technique to compensate for underestimation of the model uncertainty and mitigate the influence of model error. We find that cell state can be successfully reconstructed and the future cell state predicted in synthetic experiments, even in the setting of model error, when experimental observations are performed at a sufficiently short time interval and incorporate multiplicative inflation. Our study demonstrates the feasibility and utility of a data-assimilation approach to forecasting the fate of cells undergoing EMT.  相似文献   

2.
3.
Transforming growth factor beta (TGFβ) receptor trafficking regulates many TGFβ-dependent cellular outcomes including epithelial to mesenchymal transition (EMT). EMT in A549 non-small cell lung cancer (NSCLC) cells has recently been linked to the regulation of cellular autophagy. Here, we investigated the role of the autophagy cargo receptor, p62/sequestosome 1 (SQSTM1), in regulating TGFβ receptor trafficking, TGFβ1-dependent Smad2 phosphorylation and EMT in A549 NSCLC cells. Using immunofluorescence microscopy, p62/SQSTM1 was observed to co-localize with TGFβ receptors in the late endosome. Small interfering RNA (SiRNA)-mediated silencing of p62/SQSTM1 resulted in an attenuated time-course of Smad2 phosphorylation but did not alter Smad2 nuclear translocation. However, p62/SQSTM1 silencing promoted TGFβ1-dependent EMT marker expression, actin stress fiber formation and A549 cell migration. We further observed that Smad4-independent TGFβ1 signaling decreased p62/SQSTM1 protein levels via a proteasome-dependent mechanism. Although p62/SQSTM1 silencing did not impede TGFβ-dependent autophagy, our results suggest that p62/SQSTM1 may aid in maintaining A549 cells in an epithelial state and TGFβ1 decreases p62/SQSTM1 prior to inducing EMT and autophagy.  相似文献   

4.
Epithelial-mesenchymal transition (EMT) refers to plastic changes in epithelial tissue architecture. Breast cancer stromal cells provide secreted molecules, such as transforming growth factor β (TGFβ), that promote EMT on tumor cells to facilitate breast cancer cell invasion, stemness and metastasis. TGFβ signaling is considered to be abnormal in the context of cancer development; however, TGFβ acting on breast cancer EMT resembles physiological signaling during embryonic development, when EMT generates or patterns new tissues. Interestingly, while EMT promotes metastatic fate, successful metastatic colonization seems to require the inverse process of mesenchymal-epithelial transition (MET). EMT and MET are interconnected in a time-dependent and tissue context-dependent manner and are coordinated by TGFβ, other extracellular proteins, intracellular signaling cascades, non-coding RNAs and chromatin-based molecular alterations. Research on breast cancer EMT/MET aims at delivering biomolecules that can be used diagnostically in cancer pathology and possibly provide ideas for how to improve breast cancer therapy.  相似文献   

5.
Proton radiotherapy has gained more favor among oncologists as a treatment option for localized and deep-seated tumors. In addition, protons are a major constituent of the space radiation astronauts receive during space flights. The potential for these exposures to lead to, or enhance cancer risk has not been well studied. Our objective is to study the biological effects of low energy protons on epithelial cells and its propensity to enhance transforming growth factor beta 1 (TGFβ1)-mediated epithelial-mesenchymal transition (EMT), a process occurring during tumor progression and critical for invasion and metastasis. Non-transformed mink lung epithelial cells (Mv1Lu) and hTERT- immortalized human esophageal epithelial cells (EPC) were used in this study. EMT was identified by alterations in cell morphology, EMT-related gene expression changes determined using real-time PCR, and EMT changes in specific cellular markers detected by immunostaining and western blotting. Although TGFβ1 treatment alone is able to induce EMT in both Mv1Lu and EPC cells, low energy protons (5 MeV) at doses as low as 0.1 Gy can enhance TGFβ1 induced EMT. Protons alone can also induce a mild induction of EMT. SD208, a potent TGFβ Receptor 1 (TGFβR1) kinase inhibitor, can efficiently block TGFβ1/Smad signaling and attenuate EMT induction. We suggest a model for EMT after proton irradiation in normal and cancerous tissue based on our results that showed that low and high doses of protons can sensitize normal human epithelial cells to mesenchymal transition, more prominently in the presence of TGFβ1, but also in the absence of TGFβ1.  相似文献   

6.
7.
Protein kinase CK2 participates in the regulation of fundamental cellular processes. Among these processes, cell polarity and cell morphology are controlled by this enzyme probably through the phosphorylation of key proteins. To further study the involvement of CK2 in these processes, we showed that in epithelial cells, the regulatory CK2β subunit was required for LKB1-dependent polarization and cell adhesion. Moreover, CK2β silencing in MCF10A mammary epithelial cells triggered changes in their morphology correlated with the acquisition of mesenchymal phenotype, which were reminiscent to TGFβ-induced epithelial-to-mesenchymal-transition (EMT). TGFβ has emerged as a major inducer of EMT both in vitro and in vivo. We found that among the TGFβ isoforms, TGFβ2 expression was strongly induced in CK2β-knockdown cells. However, the EMT phenotype induced in response to CK2β silencing was not abolished by blocking the TGFβ signaling pathway at TGFβ receptor level, suggesting that alternative pathways might be involved. Given the importance of CK2 in tumorigenesis, a dysregulation of CK2β expression might contribute to EMT induction during cancer progression.  相似文献   

8.
The epithelial-mesenchymal transition (EMT) has been associated with the acquisition of motility, invasiveness, and self-renewal traits. During both normal development and tumor pathogenesis, this change in cell phenotype is induced by contextual signals that epithelial cells receive from their microenvironment. The signals that are responsible for inducing an EMT and maintaining the resulting cellular state have been unclear. We describe three signaling pathways, involving transforming growth factor (TGF)-β and canonical and noncanonical Wnt signaling, that collaborate to induce activation of the EMT program and thereafter function in an autocrine fashion to maintain the resulting mesenchymal state. Downregulation of endogenously synthesized inhibitors of autocrine signals in epithelial cells enables the induction of the EMT program. Conversely, disruption of autocrine signaling by added inhibitors of these pathways inhibits migration and self-renewal in primary mammary epithelial cells and reduces tumorigenicity and metastasis by their transformed derivatives.  相似文献   

9.
10.
11.
12.
13.
Fibrosis affects an extensive range of organs and is increasingly acknowledged as a major component of many chronic disorders. It is now well accepted that the elevated expression of certain inflammatory cell-derived cytokines, especially transforming growth factor β (TGFβ), is involved in the epithelial-to-mesenchymal transition (EMT) leading to the pathogenesis of a diverse range of fibrotic diseases. In lens, aberrant TGFβ signaling has been shown to induce EMT leading to cataract formation. Sproutys (Sprys) are negative feedback regulators of receptor tyrosine kinase (RTK)-signaling pathways in many vertebrate systems, and in this study we showed that they are important in the murine lens for promoting the lens epithelial cell phenotype. Conditional deletion of Spry1 and Spry2 specifically from the lens leads to an aberrant increase in RTK-mediated extracellular signal-regulated kinase 1/2 phosphorylation and, surprisingly, elevated TGFβ-related signaling in lens epithelial cells, leading to an EMT and subsequent cataract formation. Conversely, increased Spry overexpression in lens cells can suppress not only TGFβ-induced signaling, but also the accompanying EMT and cataract formation. On the basis of these findings, we propose that a better understanding of the relationship between Spry and TGFβ signaling will not only elucidate the etiology of lens pathology, but will also lead to the development of treatments for other fibrotic-related diseases associated with TGFβ-induced EMT.  相似文献   

14.
The epithelial mesenchymal transition (EMT) is one step in the process through which carcinoma cells metastasize by gaining the cellular mobility associated with mesenchymal cells. This work examines the dual influence of the TGF-β pathway and intercellular contact on the activation of EMT in colon (SW480) and breast (MCF7) carcinoma cells. While the SW480 population revealed an intermediate state between the epithelial and mesenchymal states, the MC7 cells exhibited highly adhesive behavior. However, for both cell lines, an exogenous TGF-β signal and a reduction in cellular confluence can push a subgroup of the population towards the mesenchymal phenotype. Together, these results highlight that, while EMT is induced by the synergy of multiple signals, this activation varies across cell types.  相似文献   

15.
HGF signaling induces epithelial cells to disassemble cadherin-based adhesion and increase cell motility and invasion, a process termed epithelial–mesenchymal transition (EMT). EMT plays a major role in cancer metastasis, allowing individual cells to detach from the primary tumor, invade local tissue, and colonize distant tissues with new tumors. While invasion of vascular and lymphatic networks is the predominant route of metastasis, nerves also can act as networks for dissemination of cancer cell to distant sites in a process termed perineual invasion (PNI). Signaling between nerves and invasive cancer cells remains poorly understood, as does cellular decision making that selects the specific route of invasion. Here we examine how HGF signaling contributes to PNI using reductionist culture model systems. We find that TGFβ, produced by PC12 cells, enhances scattering in response to HGF stimulation, increasing both cell–cell junction disassembly and cell migration. Further, gradients of TGFβ induce migratory mesenchymal cells to undergo chemotaxis towards the source of TGFβ. Interestingly, VEGF suppresses TGFβ-induced enhancement of scattering. These results have broad implications for how combinatorial growth factor signaling contributes to cancer metastasis, suggesting that VEGF and TGFβ might modulate HGF signaling to influence route selection during cancer progression.  相似文献   

16.
17.
18.
19.
20.
Wang  Zhaotao  Liu  Zhi  Yu  Guoyong  Nie  Xiaohu  Jia  Weiqiang  Liu  Ru-en  Xu  Ruxiang 《Neurochemical research》2018,43(3):760-774

Paeoniflorin (PF) is a polyphenolic compound derived from Radix Paeoniae Alba thathas anti-cancer activities in a variety of human malignancies including glioblastoma. However, the underlying mechanisms have not been fully elucidated. Epithelial to mesenchymal transition (EMT), characterized as losing cell polarity, plays an essential role in tumor invasion and metastasis. TGFβ, a key member of transforming growth factors, has been demonstrated to contribute to glioblastoma aggressiveness through inducing EMT. Therefore, the present studies aim to investigate whether PF suppresses the expression of TGFβ and inhibits EMT that plays an important role in anti-glioblastoma. We found that PF dose-dependently downregulates the expression of TGFβ, enhances apoptosis, reduces cell proliferation, migration and invasion in three human glioblastoma cell lines (U87, U251, T98G). These effects are enhanced in TGFβ siRNA treated cells and abolished in cells transfected with TGFβ lentiviruses. In addition, other EMT markers such as snail, vimentin and N-cadherin were suppressed by PF in these cell lines and in BALB/c nude mice injected with U87 cells. The expression of MMP2/9, EMT markers, are also dose-dependently reduced in PF treated cells and in U87 xenograft mouse model. Moreover, the tumor sizes are reduced by PF treatment while there is no change in body weight. These results indicate that PF is a potential novel drug target for the treatment of glioblastoma by suppression of TGFβ signaling pathway and inhibition of EMT.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号