首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The importance of actin hydrophobic loop 262-274 dynamics to actin polymerization and filament stability has been shown recently with the use of the yeast mutant actin L180C/L269C/C374A, in which the hydrophobic loop could be locked in a “parked” conformation by a disulfide bond between C180 and C269. Such a cross-linked globular actin monomer does not form filaments, suggesting nucleation and/or elongation inhibition. To determine the role of loop dynamics in filament nucleation and/or elongation, we studied the polymerization of the cross-linked actin in the presence of cofilin, to assist with actin nucleation, and with phalloidin, to stabilize the elongating filament segments. We demonstrate here that together, but not individually, phalloidin and cofilin co-rescue the polymerization of cross-linked actin. The polymerization was also rescued by filament seeds added together with phalloidin but not with cofilin. Thus, loop immobilization via cross-linking inhibits both filament nucleation and elongation. Nevertheless, the conformational changes needed to catalyze ATP hydrolysis by actin occur in the cross-linked actin. When actin filaments are fully decorated by cofilin, the helical twist of filamentous actin (F-actin) changes by ∼ 5° per subunit. Electron microscopic analysis of filaments rescued by cofilin and phalloidin revealed a dense contact between opposite strands in F-actin and a change of twist by ∼ 1° per subunit, indicating either partial or disordered attachment of cofilin to F-actin and/or competition between cofilin and phalloidin to alter F-actin symmetry. Our findings show an importance of the hydrophobic loop conformational dynamics in both actin nucleation and elongation and reveal that the inhibition of these two steps in the cross-linked actin can be relieved by appropriate factors.  相似文献   

2.
《Biophysical journal》2021,120(20):4442-4456
Formins stimulate actin polymerization by promoting both filament nucleation and elongation. Because nucleation and elongation draw upon a common pool of actin monomers, the rate at which each reaction proceeds influences the other. This interdependent mechanism determines the number of filaments assembled over the course of a polymerization reaction, as well as their equilibrium lengths. In this study, we used kinetic modeling and in vitro polymerization reactions to dissect the contributions of filament nucleation and elongation to the process of formin-mediated actin assembly. We found that the rates of nucleation and elongation evolve over the course of a polymerization reaction. The period over which each process occurs is a key determinant of the total number of filaments that are assembled, as well as their average lengths at equilibrium. Inclusion of formin in polymerization reactions speeds filament nucleation, thus increasing the number and shortening the lengths of filaments that are assembled over the course of the reaction. Modulation of the elongation rate produces modest changes in the equilibrium lengths of formin-bound filaments. However, the dependence of filament length on the elongation rate is limited by the number of filament ends generated via formin’s nucleation activity. Sustained elongation of small numbers of formin-bound filaments, therefore, requires inhibition of nucleation via monomer sequestration and a low concentration of activated formin. Our results underscore the mechanistic advantage for keeping formin’s nucleation efficiency relatively low in cells, where unregulated actin assembly would produce deleterious effects on cytoskeletal dynamics. Under these conditions, differences in the elongation rates mediated by formin isoforms are most likely to impact the kinetics of actin assembly.  相似文献   

3.
The mechanism of salt-induced actin polymerization involves the energetically unfavorable nucleation step, followed by filament elongation by the addition of monomers. The use of a bifunctional cross-linker, N,N′-(1,4-phenylene)dimaleimide, revealed rapid formation of the so-called lower dimers (LD) in which actin monomers are arranged in an antiparallel fashion. The filament elongation phase is characterized by a gradual LD decay and an increase in the yield of “upper dimers” (UD) characteristic of F-actin. Here we have used 90° light scattering, electron microscopy, and N,N′-(1,4-phenylene)dimaleimide cross-linking to reinvestigate relationships between changes in filament morphology, LD decay, and increase in the yield of UD during filament growth in a wide range of conditions influencing the rate of the nucleation reaction. The results show irregularity and instability of filaments at early stages of polymerization under all conditions used, and suggest that an earlier documented coassembling of LD with monomeric actin contributes to the initial disordering of the filaments rather than to the nucleation of polymerization. The effects of the type of G-actin-bound divalent cation (Ca2+/Mg2+), nucleotide (ATP/ADP), and polymerizing salt on the relation between changes in filament morphology and progress in G-actin-to-F-actin transformation show that ligand-dependent alterations in G-actin conformation determine not only the nucleation rate but also the kinetics of ordering of the filament structure in the elongation phase. The time courses of changes in the yield of UD suggest that filament maturation involves cooperative propagation of “proper” interprotomer contacts. Acceleration of this process by the initially bound MgATP supports the view that the filament-destabilizing conformational changes triggered by ATP hydrolysis and Pi liberation during polymerization are constrained by the intermolecular contacts established between MgATP monomers prior to ATP hydrolysis. An important role of contacts involving the DNase-I-binding loop and the C-terminus of actin is proposed.  相似文献   

4.
The ActA protein of Listeria monocytogenes induces actin nucleation on the bacterial surface. The continuous process of actin filament elongation provides the driving force for bacterial propulsion in infected cells or cytoplasmic extracts. Here, by fusing the N-terminus of ActA (residues 1-234) to the omega fragment of beta-galactosidase, we present the first evidence that this domain contains all the necessary elements for actin tail formation. A detailed analysis of ActA variants, in which small fragments of the N-terminal region were deleted, allowed the identification of two critical regions. Both are required to initiate the actin polymerization process, but each has in addition a specific role to maintain the dynamics of the process. The first region (region T, amino acids 117-121) is critical for filament elongation, as shown by the absence of actin tail in a 117-121 deletion mutant or when motility assays are performed in the presence of anti-region T antibodies. The second region (region C, amino acids 21-97), is more specifically involved in maintenance of the continuity of the process, probably by F-actin binding or prevention of barbed end capping, as strongly suggested by both a deletion (21-97) leading to 'discontinuous' actin tail formation and in vitro experiments showing that a synthetic peptide covering residues 33-74 can interact with F-actin. Our results provide the first insights in the molecular dissection of the actin polymerization process induced by the N-terminal domain of ActA.  相似文献   

5.
Dendritic spines are small protrusions along dendrites where the postsynaptic components of most excitatory synapses reside in the mature brain. Morphological changes in these actin-rich structures are associated with learning and memory formation. Despite the pivotal role of the actin cytoskeleton in spine morphogenesis, little is known about the mechanisms regulating actin filament polymerization and depolymerization in dendritic spines. We show that the filopodia-like precursors of dendritic spines elongate through actin polymerization at both the filopodia tip and root. The small GTPase Rif and its effector mDia2 formin play a central role in regulating actin dynamics during filopodia elongation. Actin filament nucleation through the Arp2/3 complex subsequently promotes spine head expansion, and ADF/cofilin-induced actin filament disassembly is required to maintain proper spine length and morphology. Finally, we show that perturbation of these key steps in actin dynamics results in altered synaptic transmission.  相似文献   

6.
《Biophysical journal》2021,120(20):4399-4417
We used computational methods to analyze the mechanism of actin filament nucleation. We assumed a pathway where monomers form dimers, trimers, and tetramers that then elongate to form filaments but also considered other pathways. We aimed to identify the rate constants for these reactions that best fit experimental measurements of polymerization time courses. The analysis showed that the formation of dimers and trimers is unfavorable because the association reactions are orders of magnitude slower than estimated in previous work rather than because of rapid dissociation of dimers and trimers. The 95% confidence intervals calculated for the four rate constants spanned no more than one order of magnitude. Slow nucleation reactions are consistent with published high-resolution structures of actin filaments and molecular dynamics simulations of filament ends. One explanation for slow dimer formation, which we support with computational analysis, is that actin monomers are in a conformational equilibrium with a dominant conformation that cannot participate in the nucleation steps.  相似文献   

7.
Baum B  Kunda P 《Current biology : CB》2005,15(8):R305-R308
The rate limiting step for actin filament polymerisation is nucleation, and two types of nucleator have been described: the Arp2/3 complex and the formins. A recent study has now identified in Spire a third class of actin nucleator. The four short WH2 repeats within Spire bind four consecutive actin monomers to form a novel single strand nucleus for 'barbed end' actin filament elongation.  相似文献   

8.
Filopodia are prominent cell surface projections filled with bundles of linear actin filaments that drive their protrusion. These structures are considered important sensory organelles, for instance in neuronal growth cones or during the fusion of sheets of epithelial tissues. In addition, they can serve a precursor function in adhesion site or stress fibre formation. Actin filament assembly is essential for filopodia formation and turnover, yet the precise molecular mechanisms of filament nucleation and/or elongation are controversial. Indeed, conflicting reports on the molecular requirements of filopodia initiation have prompted researchers to propose different types and/or alternative or redundant mechanisms mediating this process. However, recent data shed new light on these questions, and they indicate that the balance of a limited set of biochemical activities can determine the structural outcome of a given filopodium. Here we focus on discussing our current view of the relevance of these activities, and attempt to propose a molecular mechanism of filopodia assembly based on a single core machinery.  相似文献   

9.
10.
Formin is a major protein responsible for regulating the nucleation of actin filaments, and as such, it permits the cell to control where and when to assemble actin arrays. It is encoded by a multigene family comprising 21 members in Arabidopsis thaliana. The Arabidopsis formins can be separated into two phylogenetically-distinct classes: there are 11 class I formins and 10 class II formins. Significant questions remain unanswered regarding the molecular mechanism of actin nucleation and elongation stimulated by each formin isovariant, and how the different isovariants coordinate to regulate actin dynamics in cells. Here, we characterize a class II formin, AtFH19, biochemically. We found that AtFH19 retains all general properties of the formin family, including nucleation and barbed end capping activity. It can also generate actin filaments from a pool of actin monomers bound to profilin. However, both the nucleation and barbed end capping activities of AtFH19 are less efficient compared to those of another well-characterized formin, AtFH1. Interestingly, AtFH19 FH1FH2 competes with AtFH1 FH1FH2 in binding actin filament barbed ends, and inhibits the effect of AtFH1 FH1FH2 on actin. We thus propose a mechanism in which two quantitatively different formins coordinate to regulate actin dynamics by competing for actin filament barbed ends.  相似文献   

11.
Actin and myosin function in acanthamoeba   总被引:1,自引:0,他引:1  
We have studied the functions of contractile proteins in Acanthamoeba by a combination of structural, biochemical and physiological approaches. We used electron microscopy and image processing to determine the three-dimensional structure of actin and the orientation of the molecule in the actin filament. We measured the rate constants for actin filament elongation and re-evaluated the effect of MgCl2 on the filament nucleation process. In Acanthamoeba actin polymerization is regulated, at least in part, by profilin, which binds to actin monomers, and by capping protein, which both nucleates polymerization and blocks monomer addition at the 'barbed' end of the filament. To test for physiological functions of myosin-II, we produced a monoclonal antibody that inhibits the actin-activated ATPase. When microinjected into living cells, this active-site-specific antibody inhibits amoeboid locomotion. We expect that similar experiments can be used to test for the physiological functions of the other components of the Acanthamoeba contractile system.  相似文献   

12.
Profilin controls actin nucleation and assembly processes in eukaryotic cells. Actin nucleation and elongation promoting factors (NEPFs) such as Ena/VASP, formins, and WASP-family proteins recruit profilin:actin for filament formation. Some of these are found to be microtubule associated, making actin polymerization from microtubule-associated platforms possible. Microtubules are implicated in focal adhesion turnover, cell polarity establishment, and migration, illustrating the coupling between actin and microtubule systems. Here we demonstrate that profilin is functionally linked to microtubules with formins and point to formins as major mediators of this association. To reach this conclusion, we combined different fluorescence microscopy techniques, including superresolution microscopy, with siRNA modulation of profilin expression and drug treatments to interfere with actin dynamics. Our studies show that profilin dynamically associates with microtubules and this fraction of profilin contributes to balance actin assembly during homeostatic cell growth and affects micro­tubule dynamics. Hence profilin functions as a regulator of microtubule (+)-end turnover in addition to being an actin control element.  相似文献   

13.
The zebrafish cardiofunk actin mutation, R177H, causes abnormal heart development. We have introduced this mutation into yeast actin to assess its biochemical consequences. R177H G-actin exhibited reduced thermal stability and an accelerated nucleotide exchange rate. R177H actin has an increased critical concentration and polymerizes with a greatly extended nucleation phase but a faster elongation process, suggesting that significant fragmentation accompanies filament formation. Pi release from R177H actin is tightly coupled to polymerization, as with wild type (WT) actin, suggesting that the R177H mutation does not affect ATPase activity and Pi release. R177H actin shows no polymerization-dependent decrease in intrinsic Trp fluorescence, and the fluorescence yield of a pyrene at Cys374 is decreased. An equivalent amount of WT actin significantly but not completely rescues the mutant's polymerization defect. Tropomyosin greatly exacerbates the elongation of the nucleation phase of R177H actin but slightly decreases its critical concentration. It has only a slight effect on a 1:1 WT/mutant mixture. The defects we observed with R177H actin in vitro indicate that Arg177 is crucial for the control of the structural integrity of the actin monomer and the actin filament and provide insight into the defects caused by this mutation in zebrafish cardiogenesis.  相似文献   

14.
We have re-examined the Ca(++)-dependent interaction of an intestinal microvillar 95- kdalton protein (MV-95K) and actin using the isolated acrosomal process bundles from limulus sperm. Making use of the processes as nuclei for assembling actin filaments, we quantitatively and qualitatively examined MV-95K’s effect on filament assembly and on F- actin, both in the presence and in the absence of Ca(++). The acrosomal processes are particularly advantageous for this approach because they nucleate large numbers of filaments, they are extremely stable, and their morphology can be used to determine the polarity of any nucleated filaments. When filament nucleation was initiated in the presence of MV-95K and the absence of Ca(++), there was biased filament assembly from the bundle ends. The calculated elongation rates from both the barbed and pointed filament ends were virtually indistinguishable from control preparations. In the presence of Ca(++), MV-95K completely inhibited filament assembly from the barbed filament end without affecting the initial rate of assembly from the pointed filament end. The inhibition of assembly results from MV-95K binding to and capping the barbed filament end, thereby preventing monomer addition. This indicates that, while MV-95K is a potent nucleator of actin assembly, it is also a potent inhibitor of actin filament elongation. To examine the effects of MV-95K on F-actin in the presence of Ca(++), we developed an assay where MV-95K is added to filaments previously assembled from acrosomal processes without causing filament breakage during mixing. These results clearly demonstrated that rapid filament shortening by MV-95K results through a mechanism of disrupting intrafilament monomer-monomer interactions. Finally, we show that tropomyosin-containing actin filaments are insensitive to cutting, but not to capping, by MV-95K in the presence of Ca(++).  相似文献   

15.
Arp2/3 complex is an important actin filament nucleator that creates branched actin filament networks required for formation of lamellipodia and endocytic actin structures. Cellular assembly of branched actin networks frequently requires multiple Arp2/3 complex activators, called nucleation promoting factors (NPFs). We recently presented a mechanism by which cortactin, a weak NPF, can displace a more potent NPF, N-WASP, from nascent branch junctions to synergistically accelerate nucleation. The distinct roles of these NPFs in branching nucleation are surprising given their similarities. We biochemically dissected these two classes of NPFs to determine how their Arp2/3 complex and actin interacting segments modulate their influences on branched actin networks. We find that the Arp2/3 complex-interacting N-terminal acidic sequence (NtA) of cortactin has structural features distinct from WASP acidic regions (A) that are required for synergy between the two NPFs. Our mutational analysis shows that differences between NtA and A do not explain the weak intrinsic NPF activity of cortactin, but instead that cortactin is a weak NPF because it cannot recruit actin monomers to Arp2/3 complex. We use TIRF microscopy to show that cortactin bundles branched actin filaments using actin filament binding repeats within a single cortactin molecule, but that N-WASP antagonizes cortactin-mediated bundling. Finally, we demonstrate that multiple WASP family proteins synergistically activate Arp2/3 complex and determine the biochemical requirements in WASP proteins for synergy. Our data indicate that synergy between WASP proteins and cortactin may play a general role in assembling diverse actin-based structures, including lamellipodia, podosomes, and endocytic actin networks.  相似文献   

16.
Cellular viability requires tight regulation of actin cytoskeletal dynamics. Distinct families of nucleation-promoting factors enable the rapid assembly of filament nuclei that elongate and are incorporated into diverse and specialized actin-based structures. In addition to promoting filament nucleation, the formin family of proteins directs the elongation of unbranched actin filaments. Processive association of formins with growing filament ends is achieved through continuous barbed end binding of the highly conserved, dimeric formin homology (FH) 2 domain. In cooperation with the FH1 domain and C-terminal tail region, FH2 dimers mediate actin subunit addition at speeds that can dramatically exceed the rate of spontaneous assembly. Here, I review recent biophysical, structural, and computational studies that have provided insight into the mechanisms of formin-mediated actin assembly and dynamics.  相似文献   

17.
Actin dynamics drive morphological remodeling of neuronal dendritic spines and changes in synaptic transmission. Yet, the spatiotemporal coordination of actin regulators in spines is unknown. Using single protein tracking and super‐resolution imaging, we revealed the nanoscale organization and dynamics of branched F‐actin regulators in spines. Branched F‐actin nucleation occurs at the PSD vicinity, while elongation occurs at the tip of finger‐like protrusions. This spatial segregation differs from lamellipodia where both branched F‐actin nucleation and elongation occur at protrusion tips. The PSD is a persistent confinement zone for IRSp53 and the WAVE complex, an activator of the Arp2/3 complex. In contrast, filament elongators like VASP and formin‐like protein‐2 move outwards from the PSD with protrusion tips. Accordingly, Arp2/3 complexes associated with F‐actin are immobile and surround the PSD. Arp2/3 and Rac1 GTPase converge to the PSD, respectively, by cytosolic and free‐diffusion on the membrane. Enhanced Rac1 activation and Shank3 over‐expression, both associated with spine enlargement, induce delocalization of the WAVE complex from the PSD. Thus, the specific localization of branched F‐actin regulators in spines might be reorganized during spine morphological remodeling often associated with synaptic plasticity.  相似文献   

18.
EPLIN regulates actin dynamics by cross-linking and stabilizing filaments   总被引:2,自引:0,他引:2  
Epithelial protein lost in neoplasm (EPLIN) is a cytoskeleton-associated protein encoded by a gene that is down-regulated in transformed cells. EPLIN increases the number and size of actin stress fibers and inhibits membrane ruffling induced by Rac. EPLIN has at least two actin binding sites. Purified recombinant EPLIN inhibits actin filament depolymerization and cross-links filaments in bundles. EPLIN does not affect the kinetics of spontaneous actin polymerization or elongation at the barbed end, but inhibits branching nucleation of actin filaments by Arp2/3 complex. Side binding activity may stabilize filaments and account for the inhibition of nucleation mediated by Arp2/3 complex. We propose that EPLIN promotes the formation of stable actin filament structures such as stress fibers at the expense of more dynamic actin filament structures such as membrane ruffles. Reduced expression of EPLIN may contribute to the motility of invasive tumor cells.  相似文献   

19.
Mammalian Diaphanous-related (mDia) formins are well known for their actin nucleation and filament elongation activities. They have since emerged as microtubule-binding proteins, and a recent study shows that mDia2 stabilizes microtubules independently of its actin nucleation activity.  相似文献   

20.
《Biophysical journal》2022,121(12):2436-2448
Actin is one of the key structural components of the eukaryotic cytoskeleton that regulates cellular architecture and mechanical properties. Dynamic regulation of actin filament length and organization is essential for the control of many physiological processes including cell adhesion, motility and division. While previous studies have mostly focused on the mechanisms controlling the length of single actin filaments, it remains poorly understood how distinct actin filament populations in cells maintain different lengths using the same set of molecular building blocks. Here, we develop a theoretical model for the length regulation of multiple actin filaments by nucleation and growth-rate modulation by actin-binding proteins in a limiting pool of monomers. We first show that spontaneous nucleation of actin filaments naturally leads to heterogeneities in filament length distribution. We then investigate the effects of filament growth inhibition by capping proteins and growth promotion by formin proteins on filament length distribution. We find that filament length heterogeneity can be increased by growth inhibition, whereas growth promoters do not significantly affect length heterogeneity. Interestingly, a competition between filament growth inhibitors and growth promoters can give rise to bimodal filament length distribution as well as a highly heterogeneous length distribution with large statistical dispersion. We quantitatively predict how heterogeneity in actin filament length can be modulated by tuning filamentous actin nucleation and growth rates in order to create distinct filament subpopulations with different lengths.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号