首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The morphology and duration of contacts between cells and adhesive surfaces play a key role in several biological processes, such as cell migration, cell differentiation, and the immune response. The interaction of receptors on the cell membrane with ligands on the adhesive surface leads to triggering of signaling pathways, which allow cytoskeletal rearrangement, and large-scale deformation of the cell membrane, which allows the cell to spread over the substrate. Despite numerous studies of cell spreading, the nanometer-scale dynamics of the membrane during formation of contacts, spreading, and initiation of signaling are not well understood. Using interference reflection microscopy, we study the kinetics of cell spreading at the micron scale, as well as the topography and fluctuations of the membrane at the nanometer scale during spreading of Jurkat T cells on antibody-coated substrates. We observed two modes of spreading, which were characterized by dramatic differences in membrane dynamics and topography. Formation of signaling clusters was closely related to the movement and morphology of the membrane in contact with the activating surface. Our results suggest that cell membrane morphology may be a critical constraint on signaling at the cell-substrate interface.  相似文献   

2.
Cell-matrix adhesion plays a key role in controlling cell morphology and signaling. Stimuli that disrupt cell-matrix adhesion (e.g., myeloperoxidase and other matrix-modifying oxidants/enzymes released during inflammation) are implicated in triggering pathological changes in cellular function, phenotype and viability in a number of diseases. Here, we describe how cell-substrate impedance and live cell imaging approaches can be readily employed to accurately quantify real-time changes in cell adhesion and de-adhesion induced by matrix modification (using endothelial cells and myeloperoxidase as a pathophysiological matrix-modifying stimulus) with high temporal resolution and in a non-invasive manner. The xCELLigence cell-substrate impedance system continuously quantifies the area of cell-matrix adhesion by measuring the electrical impedance at the cell-substrate interface in cells grown on gold microelectrode arrays. Image analysis of time-lapse differential interference contrast movies quantifies changes in the projected area of individual cells over time, representing changes in the area of cell-matrix contact. Both techniques accurately quantify rapid changes to cellular adhesion and de-adhesion processes. Cell-substrate impedance on microelectrode biosensor arrays provides a platform for robust, high-throughput measurements. Live cell imaging analyses provide additional detail regarding the nature and dynamics of the morphological changes quantified by cell-substrate impedance measurements. These complementary approaches provide valuable new insights into how myeloperoxidase-catalyzed oxidative modification of subcellular extracellular matrix components triggers rapid changes in cell adhesion, morphology and signaling in endothelial cells. These approaches are also applicable for studying cellular adhesion dynamics in response to other matrix-modifying stimuli and in related adherent cells (e.g., epithelial cells).  相似文献   

3.
Cell movement is guided by the rigidity of the substrate   总被引:30,自引:0,他引:30       下载免费PDF全文
Directional cell locomotion is critical in many physiological processes, including morphogenesis, the immune response, and wound healing. It is well known that in these processes cell movements can be guided by gradients of various chemical signals. In this study, we demonstrate that cell movement can also be guided by purely physical interactions at the cell-substrate interface. We cultured National Institutes of Health 3T3 fibroblasts on flexible polyacrylamide sheets coated with type I collagen. A transition in rigidity was introduced in the central region of the sheet by a discontinuity in the concentration of the bis-acrylamide cross-linker. Cells approaching the transition region from the soft side could easily migrate across the boundary, with a concurrent increase in spreading area and traction forces. In contrast, cells migrating from the stiff side turned around or retracted as they reached the boundary. We call this apparent preference for a stiff substrate "durotaxis." In addition to substrate rigidity, we discovered that cell movement could also be guided by manipulating the flexible substrate to produce mechanical strains in the front or rear of a polarized cell. We conclude that changes in tissue rigidity and strain could play an important controlling role in a number of normal and pathological processes involving cell locomotion.  相似文献   

4.
Immunofluorescent labeling for fibronectin was largely excluded from sites of closest contact between spreading chicken gizzard fibroblasts and the substratum. This was observed by double immunofluorescent labeling of fixed cells for fibronectin and vinculin, a smooth muscle intracellular protein that is specifically associated with focal adhesion plaques, in conjunction with interference-reflection microscopy. When the cells were plated on a fibronectin-coated substratum they adhered to its surface and rapidly spread on it. The immunofluorescent labeling for fibronectin in those cultures (after fixation and triton permeabilization) was usually absent from the newly formed, vinculin-containing focal adhesion plaques. We have found, however, that the accessibility to the cell-substrate gap at the focal adhesion plaques is limited and therefore a more direct approach was adopted. We have found that cells spreading on a substrate coated with rhodamine-labeled fibronectin progressively removed the underlying protein from the substrate. The removal of fibronectin involved at least two distinct mechanisms. Part of the substrate-associated fibronectin was removed from small areas and displaced toward the cell center. The arrowhead-shaped areas from which fibronectin was removed often coincided with vinculin-rich focal contacts. We observed, however, many areas where focal contacts were found over unperturbed fibronectin carpet, as well as fibronectin-free areas with no overlapping focal contacts. The possibilities that fibronectin is actively displaced from areas of cell-substrate contact, that the focal adhesion plaques are transiently associated with these areas and their implications on the dynamics of cell spreading and locomotion are discussed. The second route of fibronectin removal from the substrate was endocytosis. The rhodamine-labeled fibronectin was found in the cells in a partial or transient association with clathrin-containing structures.  相似文献   

5.
Myosin rings and spreading in mouse blastomeres   总被引:3,自引:2,他引:1       下载免费PDF全文
《The Journal of cell biology》1984,99(3):1145-1150
The relationship between myosin organization and cell spreading in the preimplantation mouse embryo was studied by indirect immunofluorescence in embryos cultured on lectin-coated substrates. Binding of cell surface polysaccharides to substrate-bound concanavalin A and wheat germ agglutinin induced changes in myosin distribution that resembled those which occur during cell-cell contact interaction. This involved an initial loss of myosin from the contact region that was associated with the development of stable cell-substrate attachments. In addition, a ring of myosin was formed along the edge of the cells' contact to the substrate. The presence of such a ring may be related to the potential for subsequent cell spreading. A myosin ring was also identified in the apical junctional region of the outer morula cells where it similarly separated the cell periphery into contacted and free peripheral domains. Following these changes in myosin organization the embryos spread on the substrate by extension of lamellipodia. These movements were coupled to the dissolution of the myosin ring and the reorganization of myosin into filament bundles. The sequence of changes in the pattern of myosin distribution suggests that contact regulation of myosin organization plays an important role in controlling the spreading behavior of blastomeres and perhaps more generally in the organization of cells into epithelia.  相似文献   

6.
Bose S  Das SK  Karp JM  Karnik R 《Biophysical journal》2010,99(12):3870-3879
Cell rolling on the vascular endothelium plays an important role in trafficking of leukocytes, stem cells, and cancer cells. We describe a semianalytical model of cell rolling that focuses on the microvillus as the unit of cell-substrate interaction and integrates microvillus mechanics, receptor clustering, force-dependent receptor-ligand kinetics, and cortical tension that enables incorporation of cell body deformation. Using parameters obtained from independent experiments, the model showed excellent agreement with experimental studies of neutrophil rolling on P-selectin and predicted different regimes of cell rolling, including spreading of the cells on the substrate under high shear. The cortical tension affected the cell-surface contact area and influenced the rolling velocity, and modulated the dependence of rolling velocity on microvillus stiffness. Moreover, at the same shear stress, microvilli of cells with higher cortical tension carried a greater load compared to those with lower cortical tension. We also used the model to obtain a scaling dependence of the contact radius and cell rolling velocity under different conditions of shear stress, cortical tension, and ligand density. This model advances theoretical understanding of cell rolling by incorporating cortical tension and microvillus extension into a versatile, semianalytical framework.  相似文献   

7.
《Biophysical journal》2022,121(8):1381-1394
Phagocytic cells form the first line of defense in an organism, engulfing microbial pathogens. Phagocytosis involves cell mechanical changes that are not yet well understood. Understanding these mechanical modifications promises to shed light on the immune processes that trigger pathological complications. Previous studies showed that phagocytes undergo a sequence of spreading events around their target followed by an increase in cell tension. Seemingly in contradiction, other studies observed an increase in cell tension concomitant with membrane expansion. Even though phagocytes are viscoelastic, few studies have quantified viscous changes during phagocytosis. It is also unclear whether cell lines behave mechanically similarly to primary neutrophils. We addressed the question of simultaneous versus sequential spreading and mechanical changes during phagocytosis by using immunoglobulin-G-coated 8- and 20-μm-diameter beads as targets. We used a micropipette-based single-cell rheometer to monitor viscoelastic properties during phagocytosis by both neutrophil-like PLB cells and primary human neutrophils. We show that the faster expansion of PLB cells on larger beads is a geometrical effect reflecting a constant advancing speed of the phagocytic cup. Cells become stiffer on 20- than on 8-μm beads, and the relative timing of spreading and stiffening of PLB cells depends on target size: on larger beads, stiffening starts before maximal spreading area is reached but ends after reaching maximal area. On smaller beads, the stiffness begins to increase after cells have engulfed the bead. Similar to PLB cells, primary cells become stiffer on larger beads but start spreading and stiffen faster, and the stiffening begins before the end of spreading on both bead sizes. Our results show that mechanical changes in phagocytes are not a direct consequence of cell spreading and that models of phagocytosis should be amended to account for causes of cell stiffening other than membrane expansion.  相似文献   

8.
We have observed increases in assembled clathrin on the plasma membrane during "frustrated phagocytosis," the spreading of macrophages on immobilized immune complexes. Resident macrophages freshly harvested from the peritoneal cavity of mice and attached to bovine serum albumin (BSA)-anti-BSA-coated surfaces at 4 degrees C had almost no clathrin basketworks on their adherent plasma membrane (less than 0.01 coated patch/micron 2), as observed by immunofluorescence, immunoperoxidase, and platinum-carbon replica techniques, although abundant assembled clathrin was observed in the perinuclear Golgi region. When the cells were warmed to 37 degrees C they started to spread by 4 min and reached their maximum extent by 20 min. Spreading preceded clathrin assembly at the plasma membrane. Clathrin-coated patches were first observed on the adherent plasma membrane at 6 min. Between 12 and 20 min assembled clathrin coats appeared on both adherent and nonadherent plasma membranes with a concomitant decrease in identifiable clathrin in the perinuclear region. A new steady state emerged by 2 h, as perinuclear clathrin began to reappear. At 20 min at 37 degrees C the adherent plasma membranes of macrophages spreading on BSA alone had 0.9 coated patch/micron 2, whereas in cells spread on immune complex-coated surfaces, the clathrin patches increased, dependent on ligand concentration, to a maximum of 2.1 coated patches/micron 2. Because frustrated phagocytosis of immune complex-coated surfaces at 37 degrees C increased the area of adherent plasma membrane, the total area coated by clathrin basket-works increased 5-fold (28 micron 2/cell) as compared with cells plated on BSA alone (5.6 micron 2/cell) and 200-fold as compared with cells adhering to immune complexes at 4 degrees C. We then determined that macrophages cultured on BSA-coated coverslips for 24 h already have abundant surface clathrin. When immune complexes were formed by the addition of anti-BSA IgG to already spread macrophages cultured on BSA-coated coverslips for 24 h, clathrin assembled at the sites of ligand-receptor interaction even at 4 degrees C, before spreading, and a 2.6-fold increase in assembled clathrin was observed on the adherent plasma membrane of cells on immune complexes as compared with cells on BSA alone. Clathrin was reversibly redistributed to the Golgi region, returning to the steady state by 2 h.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
When mouse embryonic fibroblasts in suspension contact a matrix-coated surface, they rapidly adhere and spread. Using total internal reflection fluorescence microscopy of dye-loaded fibroblasts to quantify cell-substrate contact, we found that increasing the surface matrix density resulted in faster spreading initiation whereas lamellipodial dynamics during spreading were unaltered. After spreading initiation, most cells spread in an anisotropic manner through stochastic, transient extension periods (STEPs) with approximately 30 STEPs over 10 min to reach an area of 1300 micro m(2) +/- 300 micro m(2). A second mode of spreading, increased in serum-deprived cells, lacked STEPs and spread in a rapid, isotropic manner for 1-4 min. This isotropic mode was characterized by a high rate of area increase, 340 micro m(2)/min with 78% of the cell edge extending. Anisotropic cells spread slower via STEPs, 126 micro m(2)/min with 34% of the edge extending. During the initial 2-4 min of fast, isotropic spreading, centripetal flow of actin was low (0.8 micro m/min) whereas in anisotropic cells it was high from early times (4.7 micro m/min). After initial isotropic spreading, rearward actin movement increased and isotropic cells displayed STEPs similar to anisotropic cells. Thus, the two cell states display dramatically different spreading whereas long-term motility is based on STEPs.  相似文献   

10.
Wei Q  Hariharan V  Huang H 《PloS one》2011,6(10):e27064
Control over cell viability is a fundamental property underlying numerous physiological processes. Cell spreading on a substrate was previously demonstrated to be a major factor in determining the viability of individual cells. In multicellular organisms, cell-cell contact is likely to play a significant role in regulating cell vitality, but its function is easily masked by cell-substrate interactions, thus remains incompletely characterized. In this study, we show that suspended immortalized human keratinocyte sheets with persisting intercellular contacts exhibited significant contraction, junctional actin localization, and reinforcement of cell-cell adhesion strength. Further, cells within these sheets remain viable, in contrast to trypsinized cells suspended without either cell-cell or cell-substrate contact, which underwent apoptosis at high rates. Suppression of plakoglobin weakened cell-cell adhesion in cell sheets and suppressed apoptosis in suspended, trypsinized cells. These results demonstrate that cell-cell contact may be a fundamental control mechanism governing cell viability and that the junctional protein plakoglobin is a key regulator of this process. Given the near-ubiquity of plakoglobin in multicellular organisms, these findings could have significant implications for understanding cell adhesion, modeling disease progression, developing therapeutics and improving the viability of tissue engineering protocols.  相似文献   

11.
12.
Cell spreading is a critical component of numerous physiological phenomena including cancer metastasis, embryonic development, and mitosis. We have previously illustrated that cellular blebs appear after abrupt cell-substrate detachment and play a critical role in regulating membrane tension; however, the dynamics of bleb-substrate interactions during spreading remains unclear. Here we explore the role of blebs during endothelial cell spreading using chemical and osmotic modifications to either induce or inhibit bleb formation. We track cell-substrate dynamics as well as individual blebs using surface sensitive microscopic techniques. Blebbing cells (both control and chemically induced) exhibit increased lag times prior to fast growth. Interestingly, lamellae appear later for blebbing compared to non-blebbing cells, and in all cases, lamellae signal the start of fast spreading. Our results indicate that cellular blebs play a key role in the early stage of cell spreading, first by controling the initial cell adhesion and then by presenting a dynamic inhibition of cell spreading until a lamella appears and fast spreading ensues.  相似文献   

13.
We present experiments involving cancer cells adhering to microchannels, subjected to increasing shear stresses (0.1–30 Pa). Morphological studies were carried out at different shear stresses. Cells exhibit spreading patterns similar to those observed under static conditions, as long as the shear stress is not too high. At critical wall shear stresses (around 2−5 Pa), cell-substrate contact area decreases until detachment at the larger stresses. Critical shear stresses are found to be lower for higher confinements (i.e. smaller cell height to channel height ratio). Fluorescent techniques were used to locate focal adhesions (typically 1 μm2 in size) under various shearing conditions, showing that cells increase the number of focal contacts in the region facing the flow. To analyze such data, we propose a model to determine the critical stress, resulting from the competition between hydrodynamic forces and the adhesive cell resistance. With this model, typical adhesive stresses exerted at each focal contact can be determined and are in agreement with previous works.  相似文献   

14.
Focal adhesions (FAs) are essential structures for cell adhesion, migration, and morphogenesis. Integrin-linked kinase (ILK), which is capable of interacting with the cytoplasmic domain of beta1 integrin, seems to be a key component of FAs, but its exact role in cell-substrate interaction remains to be clarified. Here, we identified a novel ILK-binding protein, affixin, that consists of two tandem calponin homology domains. In CHOcells, affixin and ILK colocalize at FAs and at the tip of the leading edge, whereas in skeletal muscle cells they colocalize at the sarcolemma where cells attach to the basal lamina, showing a striped pattern corresponding to cytoplasmic Z-band striation. When CHO cells are replated on fibronectin, affixin and ILK but not FA kinase and vinculin concentrate at the cell surface in blebs during the early stages of cell spreading, which will grow into membrane ruffles on lamellipodia. Overexpression of the COOH-terminal region of affixin, which is phosphorylated by ILK in vitro, blocks cell spreading at the initial stage, presumably by interfering with the formation of FAs and stress fibers. The coexpression of ILK enhances this effect. These results provide evidence suggesting that affixin is involved in integrin-ILK signaling required for the establishment of cell-substrate adhesion.  相似文献   

15.
The presence of ACTH and beta-endorphin immunoreactive molecules in the cell-free hemolymph and in the hemocytes of the freshwater snail Planorbarius corneus were demonstrated by immunocytochemistry and RIA tests. Only spreading phagocytic hemocytes were positive, in contrast with other hemocytes devoid of phagocytic activity, i.e., round hemocytes. These data were confirmed by flow cytometry. Another cell type with marked phagocytic activity, i.e., digestive cells of digestive gland, were also positive to anti-ACTH. Corticotropin-releasing factor immunoreactive molecules were found in the cell-free hemolymph and hemocytes, by RIA. Our data suggest that cells with phagocytic activity, the oldest immune response, may represent a suitable model to unravel the tangled web of the common ancestor of the immune and the neuroendocrine systems.  相似文献   

16.
Neutrophils exhibit rapid cell spreading and phagocytosis, both requiring a large apparent increase in the cell surface area. The wrinkled surface topography of these cells may provide the membrane reservoir for this. Here, the effects of manipulation of the neutrophil cell surface topography on phagocytosis and cell spreading were established. Chemical expansion of the plasma membrane or osmotic swelling had no effects. However, osmotic shrinking of neutrophils inhibited both cell spreading and phagocytosis. Triggering a Ca2+ signal in osmotically shrunk cells (by IP3 uncaging) evoked tubular blebs instead of full cell spreading. Phagocytosis was halted at the phagocytic cup stage by osmotic shrinking induced after the phagocytic Ca2+ signalling. Restoration of isotonicity was able to restore complete phagocytosis. These data thus provide evidence that the wrinkled neutrophil surface topography provides the membrane reservoir to increase the available cell surface area for phagocytosis and spreading by neutrophils.  相似文献   

17.
This article describes the optimization of an experimental technique referred to as electric cell-substrate impedance sensing (ECIS) to monitor attachment and spreading of mammalian cells quantitatively and in real time. The method is based on measuring changes in AC impedance of small gold-film electrodes deposited on a culture dish and used as growth substrate. Based on experimental data and theoretical considerations we demonstrate that high-frequency capacitance measurements (f = 40 kHz) are most suited to follow the increasing surface coverage of the electrode due to cell spreading. The excellent time resolution of the method allowed an in-depth analysis of cell spreading kinetics under various experimental conditions. Using ECIS we studied the attachment and spreading of epithelial MDCK cells (strain II) on different protein coatings, and investigated the influence of divalent cations on spreading kinetics. We quantified the inhibitory effect of soluble peptides that mimic the recognition sequence of fibronectin and other extracellular matrix proteins (RGDS). We also applied the ECIS technique to monitor the detachment of confluent fibroblastic cell layers (WI38/VA-13) by means of these peptides.  相似文献   

18.
Transepithelial resistance (TER) measurement has often been used to study the paracellular transport properties of epithelia grown on permeable filters, especially the barrier function of tight junctions. However, the TER value includes another source, the resistance caused by cell-substrate contact, that may give rise to a high TER value if cell-substrate separation is small. In this study we use electric cell-substrate impedance sensing (ECIS) to measure both paracellular resistance and the average cell-substrate distance of MDCK (II), HEp-2, and WI-38 VA13 cells. Comparing ECIS data with those from TER measurements of cell layers cultured on polycarbonate filters, we can obtain the approximate extra resistance resulting from cell-substrate contact for each cell type. The value of cell-substrate resistance was also estimated by two theoretical calculations that bracket the true values. Our results demonstrate that cell-substrate contact substantially influences the TER data measured using polycarbonate filters and that the extra resistance due to cell-substrate spaces depends on both cell type and filter property.  相似文献   

19.
We develop a thermodynamic calculus for the modeling of cell adhesion. By means of this approach, we are able to compute the end results of competition between the formation of specific macromolecular bridges and nonspecific repulsion arising from electrostatic forces and osmotic (steric stabilization) forces. Using this calculus also allows us to derive in a straightforward manner the effects of cell deformability, the Young's modulus for stretching of bridges, diffusional mobility of receptors, heterogeneity of receptors, variation in receptor number, and the strength of receptor-receptor binding. The major insight that results from our analysis concerns the existence and characteristics of two phase transitions corresponding, respectively, to the onset of stable cell adhesion and to the onset of maximum cell-cell or cell-substrate contact. We are also able to make detailed predictions of the equilibrium contact area, equilibrium number of bridges, and the cell-cell or cell-substrate separation distance. We illustrate how our approach can be used to improve the analysis of experimental data, by means of two concrete examples.  相似文献   

20.
The adhesive properties of the mouse P388D1 macrophage-like line were explored. Cells were deposited in glass capillary tubes, and the kinetics of adhesion and spreading were studied. Binding involved the cell metabolism since it was decreased by cold, azide, or a divalent cation chelator. Glass-adherent cells were subjected to calibrated laminar shear flows with a highly viscous dextran solution. A tangential force of about 5 X 10(-3) dyn/cell was required to achieve substantial detachment. The duration of application of the shearing force strongly influenced cell-substrate separation when this was varied from 1-10 s. Further, this treatment resulted in marked cell deformation, with the appearance of an elongated shape. Hence, cell-substrate separation is a progressive process, and binding strength is expected to be influenced by cell deformability. The minimum time required for adhesion was also investigated by making cells adhere under flow conditions. The maximum flow rate compatible with adhesion was about 1000-fold lower than that required to detach glass-bound cells. A simple model was devised to provide a quantitative interpretation for the experimental results of kinetic studies. It is concluded that cell-to-glass adhesion required a cell-substrate contact longer than a few seconds. This first step of adhesion was rapidly followed by a large (about 1000-fold) increase of adhesion strength. It is therefore emphasized that adhesion is heavily dependent on the duration of cell-to-cell encounter, as well as the force used to remove so-called unbound cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号