首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
During daffodil flower development, chloroplasts differentiate into photosynthetically inactive chromoplasts having lost functional photosynthetic reaction centers. Chromoplasts exhibit a respiratory activity reducing oxygen to water and generating ATP. Immunoblots revealed the presence of the plastid terminal oxidase (PTOX), the NAD(P)H dehydrogenase (NDH) complex, the cytochrome b6f complex, ATP synthase and several isoforms of ferredoxin‐NADP+ oxidoreductase (FNR), and ferredoxin (Fd). Fluorescence spectroscopy allowed the detection of chlorophyll a in the cytochrome b6f complex. Here we characterize the electron transport pathway of chromorespiration by using specific inhibitors for the NDH complex, the cytochrome b6f complex, FNR and redox‐inactive Fd in which the iron was replaced by gallium. Our data suggest an electron flow via two separate pathways, both reducing plastoquinone (PQ) and using PTOX as oxidase. The first oxidizes NADPH via FNR, Fd and cytochrome bh of the cytochrome b6f complex, and does not result in the pumping of protons across the membrane. In the second, electron transport takes place via the NDH complex using both NADH and NADPH as electron donor. FNR and Fd are not involved in this pathway. The NDH complex is responsible for the generation of the proton gradient. We propose a model for chromorespiration that may also be relevant for the understanding of chlororespiration and for the characterization of the electron input from Fd to the cytochrome b6f complex during cyclic electron transport in chloroplasts.  相似文献   

2.
In this study, we have compared three isolation methods of cytochrome b6f complex, obtained from spinach (Spinacia oleracea), differing in the preservation of the cytochrome b6f‐associated ferredoxin:NADP+ oxidoreductase (FNR). Although the complexes isolated by all the methods showed the presence of the FNR peptide(s), when incorporated into liposome membranes, the NADPH‐PQ (plastoquinone) oxidoreductase activity was not detected for the cytochrome b6f complex isolated with the original method including a NaBr wash. Some activity was found for the complex isolated with the omission of the wash, but the highest activity was detected for the complex isolated with the use of digitonin. The reaction rate of PQ reduction of the investigated complexes in liposomes was not significantly influenced by the addition of free FNR or ferredoxin. The reaction was inhibited by about 60% in the presence of 2 µM 2‐n‐nonyl‐4‐hydroxyquinoline N‐oxide, an inhibitor of the cytochrome b6f complex at the Qi site, while it was not affected by triphenyltin or isobutyl cyanide that interacts with the recently identified heme ci. The obtained data indicate that FNR associated with the cytochrome b6f complex can participate in the cyclic electron transport as PSI‐PQ or NADPH‐PQ oxidoreductase. Moreover, we have shown that PQ can be non‐enzymatically reduced by ascorbate in liposomes and this reaction might be involved in non‐photochemical reduction pathways of the PQ‐pool in chloroplasts.  相似文献   

3.
The effects of dibromothymoquinone (DBMIB) and methylviologen (MV) on the Chl a fluorescence induction transient (OJIP) were studied in vivo. Simultaneously measured 820-nm transmission kinetics were used to monitor electron flow through photosystem I (PSI). DBMIB inhibits the reoxidation of plastoquinol by binding to the cytochrome b6/f complex. MV accepts electrons from the FeS clusters of PSI and it allows electrons to bypass the block that is transiently imposed by ferredoxin-NADP+-reductase (FNR) (inactive in dark-adapted leaves). We show that the IP phase of the OJIP transient disappears in the presence of DBMIB without affecting Fm. MV suppresses the IP phase by lowering the P level compared to untreated leaves. These observations indicate that PSI activity plays an important role in the kinetics of the OJIP transient. Two requirements for the IP phase are electron transfer beyond the cytochrome b6/f complex (blocked by DBMIB) and a transient block at the acceptor side of PSI (bypassed by MV). It is also observed that in leaves, just like in thylakoid membranes, DBMIB can bypass its own block at the cytochrome b6/f complex and donate electrons directly to PC+ and P700+ with a donation time τ of 4.3 s. Further, alternative explanations of the IP phase that have been proposed in the literature are discussed.  相似文献   

4.
Lipid binding sites and properties are compared in two sub-families of hetero-oligomeric membrane protein complexes known to have similar functions in order to gain further understanding of the role of lipid in the function, dynamics, and assembly of these complexes. Using the crystal structure information for both complexes, we compared the lipid binding properties of the cytochrome b6f and bc1 complexes that function in photosynthetic and respiratory membrane energy transduction. Comparison of lipid and detergent binding sites in the b6f complex with those in bc1 shows significant conservation of lipid positions. Seven lipid binding sites in the cyanobacterial b6f complex overlap three natural sites in the Chlamydomonas reinhardtii algal complex and four sites in the yeast mitochondrial bc1 complex. The specific identity of lipids is different in b6f and bc1 complexes: b6f contains sulfoquinovosyldiacylglycerol, phosphatidylglycerol, phosphatidylcholine, monogalactosyldiacylglycerol, and digalactosyldiacylglycerol, whereas cardiolipin, phosphatidylethanolamine, and phosphatidic acid are present in the yeast bc1 complex. The lipidic chlorophyll a and β-carotene (β-car) in cyanobacterial b6f, as well as eicosane in C. reinhardtii, are unique to the b6f complex. Inferences of lipid binding sites and functions were supported by sequence, interatomic distance, and B-factor information on interacting lipid groups and coordinating amino acid residues. The lipid functions inferred in the b6f complex are as follows: (i) substitution of a transmembrane helix by a lipid and chlorin ring, (ii) lipid and β-car connection of peripheral and core domains, (iii) stabilization of the iron-sulfur protein transmembrane helix, (iv) n-side charge and polarity compensation, and (v) β-car-mediated super-complex with the photosystem I complex.  相似文献   

5.
Electrostatic interactions have a central role in some biological processes, such as recognition of charged ligands by proteins. We characterized the binding energetics of yeast triosephosphate isomerase (TIM) with phosphorylated inhibitors 2-phosphoglycollate (2PG) and phosphoglycolohydroxamate (PGH). We determined the thermodynamic parameters of the binding process (Kb, ΔGb, ΔHb, ΔSb and ΔCp) with different concentrations of NaCl, using fluorimetric and calorimetric titrations in the conventional mode of ITC and a novel method, multithermal titration calorimetry (MTC), which enabled us to measure ΔCp in a single experiment. We ruled out specific interactions of Na+ and Cl- with the native enzyme and did not detect significant linked protonation effects upon the binding of inhibitors. Increasing ionic strength (I) caused Kb, ΔGb and ΔHb to become less favorable, while ΔSb became less unfavorable. From the variation of Kb with I, we determined the electrostatic contribution of TIM−2PG and TIM−PGH to ΔGb at I = 0.06 M and 25 °C to be 36% and 26%, respectively. The greater affinity of PGH for TIM is due to a more favorable ΔHb compared to 2PG (by 19-24 kJ mol-1 at 25 °C). This difference is compatible with PGH establishing up to five more hydrogen bonds with TIM. Both binding ΔCps were negative, and less negative with increasing ionic strength. ΔCps at I = 0.06 M were much more negative than predicted by surface area models. Water molecules trapped in the interface when ligands bind to protein could explain the highly negative ΔCps. Thermodynamic binding functions for TIM−2PG changed more with ionic strength than those for TIM−PGH. This greater dependence is consistent with linked, but compensated, protonation equilibriums yielding the dianionic species of 2PG that binds to TIM, process that is not required for PGH.  相似文献   

6.
The cyanobacterial cytochrome b6f complex is central for the coordination of photosynthetic and respiratory electron transport and also for the balance between linear and cyclic electron transport. The development of a purification strategy for a highly active dimeric b6f complex from the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1 enabled characterization of the structural and functional role of the small subunit PetP in this complex. Moreover, the efficient transformability of this strain allowed the generation of a ΔpetP mutant. Analysis on the whole-cell level by growth curves, photosystem II light saturation curves, and P700+ reduction kinetics indicate a strong decrease in the linear electron transport in the mutant strain versus the wild type, while the cyclic electron transport via photosystem I and cytochrome b6f is largely unaffected. This reduction in linear electron transport is accompanied by a strongly decreased stability and activity of the isolated ΔpetP complex in comparison with the dimeric wild-type complex, which binds two PetP subunits. The distinct behavior of linear and cyclic electron transport may suggest the presence of two distinguishable pools of cytochrome b6f complexes with different functions that might be correlated with supercomplex formation.  相似文献   

7.
《Inorganica chimica acta》1988,145(2):267-271
Detailed synthetic and mechanistic studies of the addition of 2, 6-dimethylaniline to the organometallic complexes [Fe(CO)3(1–5-η-dienyl)]BF4 (1, dienyl=C6H7 or C7H9) indicates the general rate law kobs=ka [2,6-(Me)2C6H3NH2]+kb which is consistent with an equilibrium process. The greater reactivity of the C6H7 complex and the low ΔHa3 and large negative ΔSa3 values are in accordance with direct addition of the amine to the dienyl rings of 1. On the other hand the relatively much higher ΔHb 3 values are consistent with bond cleavage in dissociation as is the positive ΔSb 3 value of +220 J K−1 mol−1 determined for the C6H7 reaction. The negative ΔSb3 value of −43 J K−1 mol−1 found for the C7H9 reaction suggests the presence of an ordered transition state through which the starting dienyl complex is reformed via some internal SN2 process.  相似文献   

8.
Pini Marco  Tamar Elman  Iftach Yacoby 《BBA》2019,1860(9):689-698
The binding of FNR to PSI has been postulated long ago, however, a clear evidence is still missing. In this work, using isothermal titration calorimetry (ITC), we found that FNR binds to photosystem I with its light harvesting complex I (PSI-LHCI) from C. reinhardtii with a 1:1 stoichiometry, a Kd of ~0.8 μM and ?H of ?20.7 kcal/mol. Titrations at different temperatures were used to determine the heat capacity change, ?CP, of the binding, through which the size of the interface area between the proteins was assessed as ~3000 Å2. In a different set of ITC experiments, introduction of various sucrose concentrations was used to estimate that ~95 water molecules are released to the solvent. These observations support the notion of a binding site shared by few of the photosystem I - light harvesting complex I (PSI-LHCI) subunits in addition to PsaE. Based on these results, a hypothetical model was built for the binding site of FNR at PSI, using known crystallographic structures of: cyanobacterial PSI in complex with ferredoxin (Fd), plant PSI-LHCI and Fd:FNR complex from cyanobacteria. FNR binding site location is proposed to be at the foot of the stromal ridge and above the inner LHCI belt. It is expected to form contacts with PsaE, PsaB, PsaF and at least one of the LHCI. In addition, a ~4.5-fold increased affinity between FNR and PSI-LHCI under crowded 1 M sucrose environment led us to conclude that in C. reinhardtii FNR also functions as a subunit of PSI-LHCI.  相似文献   

9.
《BBA》1986,851(2):229-238
We have analyzed the heme-associated peroxidase activity in thylakoid membranes from the green algae Chlamydomonas reinhardtii after electrophoresis in the presence of sodium dodecyl sulfate. Besides cytochrome f and cytochrome b6, we observed peroxidase activity in two other bands, of 34 and 11 kDa, of unknown origin. Characterization of the b6/f complex subunits was undertaken by means of a comparison of the polypeptide deficiencies in several b6/f mutants with the polypeptide content of preparations enriched in b6/f complexes. We conclude that the b6/f complex consists of five subunits. Using site-specific translation inhibitors, we show that cytochrome f, cytochrome b6 and subunit IV are of chloroplast origin, whereas the Rieske protein and probably subunit V are translated on cytoplasmic ribosomes. A model of assembly of the complex is proposed: a cytochrome moiety, comprising the subunits of chloroplast origin, is assembled in the thylakoid membranes prior to the insertion and assembly of the subunits encoded in the nuclear genome.  相似文献   

10.
The cytochrome bc complexes b6f and bc1 catalyze proton-coupled quinol/quinone redox reactions to generate a transmembrane proton electrochemical gradient. Quinol oxidation on the electrochemically positive (p) interface of the complex occurs at the end of a narrow quinol/quinone entry/exit Qp portal, 11 Å long in bc complexes. Superoxide, which has multiple signaling functions, is a by-product of the p-side quinol oxidation. Although the transmembrane core and the chemistry of quinone redox reactions are conserved in bc complexes, the rate of superoxide generation is an order of magnitude greater in the b6f complex, implying that functionally significant differences in structure exist between the b6f and bc1 complexes on the p-side. A unique structure feature of the b6f p-side quinol oxidation site is the presence of a single chlorophyll-a molecule whose function is unrelated to light harvesting. This study describes a cocrystal structure of the cytochrome b6f complex with the quinol analog stigmatellin, which partitions in the Qp portal of the bc1 complex, but not effectively in b6f. It is inferred that the Qp portal is partially occluded in the b6f complex relative to bc1. Based on a discrete molecular-dynamics analysis, occlusion of the Qp portal is attributed to the presence of the chlorophyll phytyl tail, which increases the quinone residence time within the Qp portal and is inferred to be a cause of enhanced superoxide production. This study attributes a novel (to our knowledge), structure-linked function to the otherwise enigmatic chlorophyll-a in the b6f complex, which may also be relevant to intracellular redox signaling.  相似文献   

11.
The cytochrome bc complexes b6f and bc1 catalyze proton-coupled quinol/quinone redox reactions to generate a transmembrane proton electrochemical gradient. Quinol oxidation on the electrochemically positive (p) interface of the complex occurs at the end of a narrow quinol/quinone entry/exit Qp portal, 11 Å long in bc complexes. Superoxide, which has multiple signaling functions, is a by-product of the p-side quinol oxidation. Although the transmembrane core and the chemistry of quinone redox reactions are conserved in bc complexes, the rate of superoxide generation is an order of magnitude greater in the b6f complex, implying that functionally significant differences in structure exist between the b6f and bc1 complexes on the p-side. A unique structure feature of the b6f p-side quinol oxidation site is the presence of a single chlorophyll-a molecule whose function is unrelated to light harvesting. This study describes a cocrystal structure of the cytochrome b6f complex with the quinol analog stigmatellin, which partitions in the Qp portal of the bc1 complex, but not effectively in b6f. It is inferred that the Qp portal is partially occluded in the b6f complex relative to bc1. Based on a discrete molecular-dynamics analysis, occlusion of the Qp portal is attributed to the presence of the chlorophyll phytyl tail, which increases the quinone residence time within the Qp portal and is inferred to be a cause of enhanced superoxide production. This study attributes a novel (to our knowledge), structure-linked function to the otherwise enigmatic chlorophyll-a in the b6f complex, which may also be relevant to intracellular redox signaling.  相似文献   

12.
《BBA》1986,851(2):239-248
The distribution of the b6/f complex among stacked and unstacked thylakoid membranes was studied by immunocytochemistry and freeze-fracture analysis of mutants of Chlamydomonas reinhardtii lacking the complex. Immunogold labeling demonstrates the presence of b6/f complex in both regions of the thylakoid membrane in spinach and in C. reinhardtii. Numerous modifications were observed in the ultrastructure of the thylakoid membranes of mutants from C. reinhardtii lacking the complex. These modifications are consistent with the presence of b6/f complexes in different states of association in the stacked and unstacked regions of the thylakoid membrane. In particular we present evidence for an association of some b6/f complexes with the reaction centers of Photosystem I and II in large PFu and EFs particles, respectively.  相似文献   

13.
The product of oxidation of proline by pumpkin proline dehydrogenase reacted with o-aminobenzaldehyde to give a yellow compound that had an absorption spectrum similar to that obtained from chemically synthesized Δ1-pyrroline-5-carboxylate. The product of the proline dehydrogenase reaction and synthetic Δ1-pyrroline-5-carboxylate had identical Rf values. Both authentic Δ1-pyrroline-5-carboxylate and the product of the enzyme gave a pink colour with acid ninhydrin on paper chromatograms and both had identical elution patterns on Dowex 50(H+) columns. Neither synthetic Δ1-pyrroline-5-carboxylate nor the product of proline-dehydrogenase produced γ-amino butyrate with hydrogen peroxide.  相似文献   

14.
The light-dependent control of photosynthetic electron transport from plastoquinol (PQH2) through the cytochrome b6f complex (Cyt b6f) to plastocyanin (PC) and P700 (the donor pigment of Photosystem I, PSI) was investigated in laboratory-grown Helianthus annuus L., Nicotiana tabaccum L., and naturally-grown Solidago virgaurea L., Betula pendula Roth, and Tilia cordata P. Mill. leaves. Steady-state illumination was interrupted (light-dark transient) or a high-intensity 10 ms light pulse was applied to reduce PQ and oxidise PC and P700 (pulse-dark transient) and the following re-reduction of P700+ and PC+ was recorded as leaf transmission measured differentially at 810-950 nm. The signal was deconvoluted into PC+ and P700+ components by oxidative (far-red) titration (V. Oja et al., Photosynth. Res. 78 (2003) 1-15) and the PSI density was determined by reductive titration using single-turnover flashes (V. Oja et al., Biochim. Biophys. Acta 1658 (2004) 225-234). These innovations allowed the definition of the full light response curves of electron transport rate through Cyt b6f to the PSI donors. A significant down-regulation of Cyt b6f maximum turnover rate was discovered at low light intensities, which relaxed at medium light intensities, and strengthened again at saturating irradiances. We explain the low-light regulation of Cyt b6f in terms of inactivation of carbon reduction cycle enzymes which increases flux resistance. Cyclic electron transport around PSI was measured as the difference between PSI electron transport (determined from the light-dark transient) and PSII electron transport determined from chlorophyll fluorescence. Cyclic e transport was not detected at limiting light intensities. At saturating light the cyclic electron transport was present in some, but not all, leaves. We explain variations in the magnitude of cyclic electron flow around PSI as resulting from the variable rate of non-photosynthetic ATP-consuming processes in the chloroplast, not as a principle process that corrects imbalances in ATP/NADPH stoichiometry during photosynthesis.  相似文献   

15.
Electron paramagnetic resonance (EPR) spectroscopy was used to detect the light-induced formation of singlet oxygen (1O2*) in the intact and the Rieske-depleted cytochrome b6f complexes (Cyt b6f) from Bryopsis corticulans, as well as in the isolated Rieske Fe–S protein. It is shown that, under white-light illumination and aerobic conditions, chlorophyll a (Chl a) bound in the intact Cyt b6f can be bleached by light-induced 1O2*, and that the 1O2* production can be promoted by D2O or scavenged by extraneous antioxidants such as l-histidine, ascorbate, β-carotene and glutathione. Under similar experimental conditions, 1O2* was also detected in the Rieske-depleted Cyt b6f complex, but not in the isolated Rieske Fe–S protein. The results prove that Chl a cofactor, rather than Rieske Fe–S protein, is the specific site of 1O2* formation, a conclusion which draws further support from the generation of 1O2* with selective excitation of Chl a using monocolor red light.  相似文献   

16.
The cytochrome b 6 f complex of oxygenic photosynthesis produces substantial levels of reactive oxygen species (ROS). It has been observed that the ROS production rate by b 6 f is 10–20 fold higher than that observed for the analogous respiratory cytochrome bc1 complex. The types of ROS produced (O2??, 1O2, and, possibly, H2O2) and the site(s) of ROS production within the b 6 f complex have been the subject of some debate. Proposed sources of ROS have included the heme b p , PQ p ?? (possible sources for O2??), the Rieske iron–sulfur cluster (possible source of O2?? and/or 1O2), Chl a (possible source of 1O2), and heme c n (possible source of O2?? and/or H2O2). Our working hypothesis is that amino acid residues proximal to the ROS production sites will be more susceptible to oxidative modification than distant residues. In the current study, we have identified natively oxidized amino acid residues in the subunits of the spinach cytochrome b 6 f complex. The oxidized residues were identified by tandem mass spectrometry using the MassMatrix Program. Our results indicate that numerous residues, principally localized near p-side cofactors and Chl a, were oxidatively modified. We hypothesize that these sites are sources for ROS generation in the spinach cytochrome b 6 f complex.  相似文献   

17.
Cytochrome b6 from spinach chloroplasts (either within the purified cytochrome b6f complex, or in its isolated form) exhibits two spectral species, which correspond to two midpoint potentials. This can be demonstrated by low temperature difference spectroscopy at fixed redox potentials. The high potential form of cytochrome b6 has a split α-peak at 557.5 and 561.5 nm, the low potential form has a symmetrical α-peak at 560.5 nm. Similar results were obtained with cytochrome b6 in the isolated cytochrome b6f complex from the cyanobacterium Anabaena variabilis.  相似文献   

18.
Flexible-chain polymers with charge (polyelectrolytes) can interact with globular proteins with a net charge opposite to the charge of the polymers forming insoluble complexes polymer-protein. In this work, the interaction between the basic protein trypsin and the anionic polyelectrolyte Eudragit® L100 was studied by using isothermal calorimetric titrations and differential scanning calorimetry. Turbidimetric assays allowed determining that protein-polymer complex was insoluble at pH below 5 and the trypsin and Eudragit® L100 concentrations required forming the insoluble complex. DSC measurements showed that the Tm and denaturalization heat of trypsin increased in the polymer presence and the complex unfolded according to a two-state model. ΔH° and ΔS° binding parameters obtained by ITC were positives agree with hydrophobic interaction between trypsin and polymer. However, ionic strength of 1.0 M modified the insoluble complex formation. We propose a mechanism of interaction between Eudragit® L100 and trypsin molecules that involves both hydrophobic and electrostatic interactions. Kinetic studies of complex formation showed that the interaction requires less than 1 min achieving the maximum quantity of complex. Finally, a high percentage of active trypsin was precipitated (approximately 76% of the total mass of protein). These findings could be useful in different protocols such as a protein isolation strategy, immobilization or purification of a target protein.  相似文献   

19.
The aim of our study was to investigate the underlying molecular mechanisms of exogenously supplied trehalose affecting wheat photosynthesis under heat stress. The amount of ATP synthase (ATPase), oxygen-evolving enhancer protein (OEE), PsbP, Rubisco, chloroplast fructose-bisphosphate aldolase (FBPA), and ferredoxin-NADP(H) oxidoreductase (FNR) were downregulated, while PSI reaction center subunits were upregulated under heat stress. However, in the trehalose-pretreated groups, the amount of FNR, cytochrome b6f complex, PSI reaction center subunits, ATPase, FBPA, and Rubisco were upregulated under normal growth conditions and heat stress. Besides, during the recovery period, the upregulation in CAB, PsbP, OEE2, and ATPase suggested that trehalose pretreatment might help to the recovery of PSII and PSI. These results indicate that trehalose pretreatment effectively regulates the levels of the photosynthesis-related proteins and relieves the damage of heat stress to wheat chloroplast.  相似文献   

20.
Nuclear genes essential for the biogenesis of the chloroplast cytochrome b 6 f complex were identified by mutations that cause the specific loss of the complex. We describe four transposon-induced maize mutants that lack cytochrome b 6 f proteins but contain normal levels of other photosynthetic complexes. The four mutations define two nuclear genes. To identify the step at which each mutation blocks protein accumulation, mRNAs encoding each subunit were examined by Northern hybridization analysis and the rates of subunit synthesis were examined in pulse-labeling experiments. In each mutant the mRNAs encoding the known subunits of the complex were normal in size and abundance and the major subunits were synthesized at normal rates. Thus, these mutations block the biogenesis of the cytochrome b 6 f complex at a post-translational step. The two nuclear genes identified by these mutations may encode previously unknown subunits, be involved in prosthetic group synthesis or attachment, or facilitate assembly of the complex. These mutations were also used to provide evidence for the authenticity of a proposed fifth subunit of the complex and to demonstrate a role for the cytochrome b 6 f complex in protecting photosystem 11 from light-induced degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号