首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A previous study showed that long-chain n-3 polyunsaturated fatty acids (LCn-3PUFA; >18 carbons n-3) exert an anabolic effect on protein metabolism through the upregulation of insulin sensitivity and activation of the insulin signaling pathway. This study further delineates for the first time whether the anabolic effect of LCn-3PUFA on metabolism is dose responsive. Six steers were used to test three graded amounts of menhaden oil rich in LCn-3PUFA (0%, 2% and 4%; enteral infusions) according to a double 3 × 3 Latin square design. Treatment comparisons were made using iso-energetic substitutions of control oil for menhaden oil and using 6-week experimental periods. The LCn-3PUFA in muscle total membrane phospholipids increased from 8%, 14% to 20% as dietary menhaden oil increased. Feeding graded amounts of menhaden oil linearly decreased plasma insulin concentration (49, 35 and 25 μU/ml, P = 0.01). The insulin-stimulated amino acid disposal rates as assessed using hyperinsulinemic-euglycemic-euaminoacidemic clamps (20, 40 and 80 mU/kg per h) were linearly increased by the incremental administrations of menhaden oil from 169, 238 to 375 μmol/kg per h (P = 0.005) during the 40 mU/kg per h clamp, and from 295, 360 and 590 μmol/kg per h (P = 0.02) during the 80 mU/kg per h clamp. Glucose disposal rate responded according to a quadratic relationship with the incremental menhaden oil amounts (P < 0.05). A regression analysis showed that 47% of the amino acid disposal rates elicited during the hyperinsulinemic clamp was related to muscle membrane LCn-3PUFA content (P = 0.003). These results show for the first time that both protein and glucose metabolism respond in a dose-dependent manner to menhaden oil and to muscle membrane LCn-3PUFA.  相似文献   

3.
In moderate physical exercise, the transition from predominantly anaerobic towards predominantly aerobic metabolism is a key step to improve performance. Increase in the supply of oxygen and nutrients, such as free fatty acids (FFA) and glucose, which accompanies high blood flow, is required for this transition. The mechanisms involved in the vasodilation in skeletal muscle during physical activity are not completely known yet. In this article, we postulate a role of FFA and heat production in this process. The presence of uncoupling protein-2 and -3 (UCP-2 and -3) in skeletal muscle, whose activity is dependent on FFA, suggests that these metabolites can act as mitochondrial uncouplers in this tissue. Evidence indicates however that UCPs act as uncouplers only when coenzyme Q is predominantly in the reduced state (i.e. under nonphosphorylation conditions or state 4 respiration) as is observed in resting muscles and in the beginning of physical activity (predominantly anaerobic metabolism). The increase in the lipolytic activity in adipose tissue in the beginning of physical activity results in elevated plasma FFA levels. The FFA can then act on the UCPs, increasing the local heat production. We propose that this calorigenic effect of FFA is important to activate nitric oxide synthase, resulting in nitric oxide production and consequent vasodilation. Therefore, FFA would be important mediators for the changes that occur in muscle metabolism during prolonged physical activity, ensuring the appropriate supply of oxygen and nutrients by increasing blood flow at the beginning of exercise in the contracting skeletal muscles.  相似文献   

4.
Excess dietary long-chain fatty acid (LCFA) intake results in ectopic lipid accumulation and insulin resistance. Since medium-chain fatty acids (MCFA) are preferentially oxidized over LCFA, we hypothesized that diets rich in MCFA result in a lower ectopic lipid accumulation and insulin resistance compared to diets rich in LCFA. Feeding mice high-fat (HF) (45% kcal fat) diets for 8 weeks rich in triacylglycerols composed of MCFA (HFMCT) or LCFA (HFLCT) revealed a lower body weight gain in the HFMCT-fed mice. Indirect calorimetry revealed higher fat oxidation on HFMCT compared to HFLCT (0.011.0±0.0007 vs. 0.0096±0.0015 kcal/g body weight per hour, P<.05). In line with this, neutral lipid immunohistochemistry revealed significantly lower lipid storage in skeletal muscle (0.05±0.08 vs. 0.30±0.23 area%, P <.05) and in liver (0.9±0.4 vs. 6.4±0.8 area%, P<.05) after HFMCT vs. HFLCT, while ectopic fat storage in low fat (LF) was very low. Hyperinsulinemic euglycemic clamps revealed that the HFMCT and HFLCT resulted in severe whole body insulin resistance (glucose infusion rate: 53.1±6.8, 50.8±15.3 vs. 124.6±25.4 μmol min−1 kg−1, P<.001 in HFMCT, HFLCT and LF-fed mice, respectively). However, under hyperinsulinemic conditions, HFMCT revealed a lower endogenous glucose output (22.6±8.0 vs. 34.7±8.5 μmol min−1 kg−1, P<.05) and a lower peripheral glucose disappearance (75.7±7.8 vs. 93.4±12.4 μmol min−1 kg−1, P<.03) compared to HFLCT-fed mice. In conclusion, both HF diets induced whole body insulin resistance compared to LF. However, the HFMCT gained less weight, had less ectopic lipid accumulation, while peripheral insulin resistance was more pronounced compared to HFLCT. This suggests that HF-diets rich in medium- versus long-chain triacylglycerols induce insulin resistance via distinct mechanisms.  相似文献   

5.
《Free radical research》2013,47(9):1055-1068
Abstract

High fructose consumption has implicated in insulin resistance and metabolic syndrome. Fructose is a highly lipogenic sugar that has intense metabolic effects in liver. Recent evidences suggest that fructose exposure to other tissues has substantial and profound metabolic consequences predisposing toward chronic conditions such as type 2 diabetes. Since skeletal muscle is the major site for glucose utilization, in the present study we define the effects of fructose exposure on glucose utilization in skeletal muscle cells. Upon fructose exposure, the L6 skeletal muscle cells displayed diminished glucose uptake, glucose transporter type 4 (GLUT4) translocation, and impaired insulin signaling. The exposure to fructose elevated reactive oxygen species (ROS) production in L6 myotubes, accompanied by activation of the stress/inflammation markers c-Jun N-terminal kinase (JNK) and extracellular signal-regulated kinase 1/2 (ERK1/2), and degradation of inhibitor of NF-κB (IκBα). We found that fructose caused impairment of glucose utilization and insulin signaling through ROS-mediated activation of JNK and ERK1/2 pathways, which was prevented in the presence of antioxidants. In conclusion, our data demonstrate that exposure to fructose induces cell-autonomous oxidative response through ROS production leading to impaired insulin signaling and attenuated glucose utilization in skeletal muscle cells.  相似文献   

6.
Time-dependent effects of fatty acids on skeletal muscle metabolism   总被引:4,自引:0,他引:4  
Increased plasma levels of free fatty acids (FFA) occur in states of insulin resistance such as type 2 diabetes mellitus, obesity, and metabolic syndrome. These high levels of plasma FFA seem to play an important role for the development of insulin resistance but the mechanisms involved are not known. We demonstrated that acute exposure to FFA (1 h) in rat incubated skeletal muscle leads to an increase in the insulin-stimulated glycogen synthesis and glucose oxidation. In conditions of prolonged exposure to FFA, however, the insulin-stimulated glucose uptake and metabolism is impaired in skeletal muscle. In this review, we discuss the differences between the effects of acute and prolonged exposure to FFA on skeletal muscle glucose metabolism and the possible mechanisms involved in the FFA-induced insulin resistance.  相似文献   

7.
8.
9.
Fatty acid translocase (FAT/CD36) is a membrane receptor that facilitates long-chain fatty acid uptake. To investigate its role in the regulation of long-chain fatty acid composition in muscle tissue, we studied and compared FAT/CD36 gene expression in muscle tissues of commercial broiler chickens and Chinese local Silky fowls. The results from gas chromatography–mass spectrometry analysis of muscle samples demonstrated that Chinese local Silky fowls had significantly higher (P < 0.05) proportions of linoleic acid (LA) and palmitic acid, lower proportions (P < 0.05) of arachidonic acid (AA) and oleic acid than the commercial broiler chickens. The mRNA expression levels of fatty acid (FA) transporters (FA transport protein-1, membrane FA-binding protein, FAT/CD36 and caveolin-1) in the m. ipsilateral pectoralis and biceps femoris were analyzed by Q-PCR, and FAT/CD36 expression levels showed significant differences between these types of chickens (P < 0.01). Interestingly, the levels of FAT/CD36 expression are positively correlated with LA content (r = 0.567, P < 0.01) but negatively correlated with palmitic acid content (r = −0.568, P < 0.01). Further experiments in the stably transfected Chinese hamster oocytes cells with chicken FAT/CD36 cDNA demonstrated that overexpression of FAT/CD36 improves total FA uptake with a significant increase in the proportion of LA and AA, and a decreased proportion of palmitic acid. These results suggest that chicken FAT/CD36 may selectively transport LA and AA, which may lead to the higher LA deposition in muscle tissue.  相似文献   

10.
Acute effects of free fatty acids (FFA) were investigated on: (1) glucose oxidation, and UCP-2 and -3 mRNA and protein levels in 1 h incubated rat soleus and extensor digitorium longus (EDL) muscles, (2) mitochondrial membrane potential in cultured skeletal muscle cells, (3) respiratory activity and transmembrane electrical potential in mitochondria isolated from rat skeletal muscle, and (4) oxygen consumption by anesthetized rats. Long-chain FFA increased both basal and insulin-stimulated glucose oxidation in incubated rat soleus and EDL muscles and reduced mitochondrial membrane potential in C2C12 myotubes and rat skeletal muscle cells. Caprylic, palmitic, oleic, and linoleic acid increased O2 consumption and decreased electrical membrane potential in isolated mitochondria from rat skeletal muscles. FFA did not alter UCP-2 and -3 mRNA and protein levels in rat soleus and EDL muscles. Palmitic acid increased oxygen consumption by anesthetized rats. These results suggest that long-chain FFA acutely lead to mitochondrial uncoupling in skeletal muscle.  相似文献   

11.
Angiopoietin-like 4 (ANGPTL4) is a regulator of LPL activity. In this study we examined whether different fatty acids have a differential effect on plasma ANGPTL4 levels during hyperinsulinemia in healthy lean males. In 10 healthy lean males, 3 hyperinsulinemic euglycemic clamps were performed during concomitant 6 h intravenous infusion of soybean oil (Intralipid® rich in PUFA), olive oil (Clinoleic® rich in MUFA) and control saline. In 10 other healthy lean males, 2 hyperinsulinemic clamps were performed during infusion of a mixed lipid emulsion containing a mixture of fish oil (FO), medium-chain triglycerides (MCTs), and long-chain triglycerides (LCTs) (FO/MCT/LCT; SMOFlipid®) or saline. FFA levels of approximately 0.5 mmol/l were reached during each lipid infusion. Plasma ANGPTL4 decreased during hyperinsulinemia by 32% (18–52%) from baseline. This insulin-mediated decrease in ANGPTL4 concentrations was partially reduced during concomitant infusion of olive oil and completely blunted during concomitant infusion of soybean oil and FO/MCT/LCT. The reduction in insulin sensitivity was similar between all lipid infusions. In accordance, incubation of rat hepatoma cells with the polyunsaturated fatty acid C22:6 increased ANGPTL4 expression by 70-fold, compared with 27-fold by the polyunsaturated fatty acid C18:2, and 15-fold by the monounsaturated fatty acid C18:1. These results suggest that ANGPTL4 is strongly regulated by fatty acids in humans, and is also dependent on the type of fatty acid.  相似文献   

12.
13.
We have reported previously that randomly interesterified triacylglycerol containing medium- and long-chain fatty acids in the same glycerol molecule (MLCT) resulted in significantly lower body fat accumulation and higher hepatic fatty acid oxidation than from long-chain triacylglycerol (LCT) in rats. To understand the metabolic changes occurring in white adipose tissue, the fatty acid oxidation and synthesis, and the adipocytokine level were measured in rats fed with MLCT or LCT for 2 weeks. In comparison with LCT, MLCT lowered not only the fatty acid synthase and glycerol-3-phosphate dehydrogenase activities in perirenal adipose tissue, but also the serum insulin and leptin levels, in addition to significantly reducing the body fat accumulation. In contrast, fatty acid oxidation measured as the carnitine palmitoyltransferase activity in the tissue was significantly higher in the MLCT-fed rats than in the LCT-fed rats. It seems that the altered fatty acid metabolism in adipose tissue per se was also responsible for the lower adiposity by dietary MLCT.  相似文献   

14.
During physical activity, increased reactive oxygen species production occurs, which can lead to cell damage and in a decline of individual’s performance and health. The use of omega-3 polyunsaturated fatty acids as a supplement to protect the immune system has been increasing; however, their possible benefit to the anti-oxidant system is not well described. Thus, the aim of this study was to evaluate whether the omega-3 fatty acids (docosahexaenoic acid and eicosapentaenoic acid) can be beneficial to the anti-oxidant system in cultured skeletal muscle cells. C2C12 myocytes were differentiated and treated with either eicosapentaenoic acid or docosahexaenoic acid for 24 h. Superoxide content was quantified using the dihydroethidine oxidation method and superoxide dismutase, catalase, and glutathione peroxidase activity, and expression was quantified. We observed that the docosahexaenoic fatty acids caused an increase in superoxide production. Eicosapentaenoic acid induced catalase activity, while docosahexaenoic acid suppressed superoxide dismutase activity. In addition, we found an increased protein expression of the total manganese superoxide dismutase and catalase enzymes when cells were treated with eicosapentaenoic acid. Taken together, these data indicate that the use of eicosapentaenoic acid may present both acute and chronic benefits; however, the treatment with DHA may not be beneficial to muscle cells.  相似文献   

15.
Hyperphenylalaninemic (HPA) children display low levels of long-chain polyunsaturated fatty acids (LCPUFA), particularly docosahexaenoic acid (DHA), in circulating lipids and erythrocytes. We have investigated the effects on the blood fatty acid status and lipid picture of a balanced supplementation with LCPUFA in HPA children through a double-blind, placebo-controlled trial. A total of 20 well-controlled HPA, school-age children were randomized to receive through a 12-month trial fat capsules supplying either 26% fatty acid as LCPUFA (including 4.6%gamma -linolenic acid, 7.4% arachidonic acid, AA, 5.5% eicosapentaenoic acid and 8% DHA) or placebo (olive oil). The study supplementation was administered in order to provide 0.3-0.5% of the individual daily energy requirements as LCPUFA. Reference data were obtained from healthy children of comparable age. Among HPA children (whose DHA status was poor at baseline), those supplemented with LCPUFA showed an increase of around 100% in the baseline DHA levels in plasma phospholipids and erythrocytes. No changes of AA levels were observed. Blood lipid levels did not significantly change. A balanced supplementation with LCPUFA in treated HPA children may improve the DHA status without adversely affecting the AA status.  相似文献   

16.
Objective: Our aim was to study the fatty acid (FA) composition of liver phospholipids and its relation to that in erythrocyte membranes from patients with obese nonalcoholic fatty liver disease (NAFLD), as an indication of lipid metabolism alterations leading to steatosis. Research Methods and Procedures: Eight control subjects who underwent antireflux surgery and 12 obese patients with NAFLD who underwent subtotal gastrectomy with a gastro‐jejunal anastomosis in Roux‐en‐Y were studied. The oxidative stress status of patients was assessed by serum F2‐isoprostanes levels (gas chromatography/negative ion chemical ionization tandem mass spectrometry). Analysis of FA composition of liver and erythrocyte phospholipids was carried out by gas‐liquid chromatography. Results: Patients with NAFLD showed serum F2‐isoprostanes levels 84% higher than controls. Compared with controls, liver phospholipids from obese patients exhibited significantly 1) lower levels of 20:4n‐6, 22:5n‐3, 22:6n‐3 [docosahexaenoic acid (DHA)], total long‐chain polyunsaturated FA (LCPUFA), and total n‐3 LCPUFA, 2) higher 22:5n‐6 [docosapentaenoic acid (DPAn‐6)] levels and n‐6/n‐3 LCPUFA ratios, and 3) comparable levels of n‐6 LCPUFA. Levels of DHA and DPAn‐6 in liver were positively correlated with those in erythrocytes (r = 0.77 and r = 0.90, respectively; p < 0.0001), whereas DHA and DPAn‐6 showed a negative association in both tissues (r = ?0.79, p < 0.0001 and r = ?0.58, p < 0.01, respectively), associated with lower DHA/DPAn‐6 ratios. Discussion: Obese patients with NAFLD showed marked alterations in the polyunsaturated fatty acid pattern of the liver. These changes are significantly correlated with those found in erythrocytes, thus suggesting that erythrocyte FA composition could be a reliable indicator of derangements in liver lipid metabolism in obese patients.  相似文献   

17.
Objective: Both obesity and the metabolic syndrome (MetS) have been independently linked with increased oxidative and inflammatory stress. This study tested the hypothesis that obesity with MetS is associated with greater oxidative and inflammatory burden compared with obesity alone. Research Methods and Procedures: Forty‐eight normal‐weight and 40 obese (20 without MetS; 20 with MetS) adults were studied. MetS was defined according to National Cholesterol Education Program Adult Treatment Panel III criteria. Plasma concentrations of oxidized low‐density lipoprotein, C‐reactive protein, tumor necrosis factor‐α, interleukin (IL)‐6, and IL‐18 were determined by enzyme immunoassay. Results: Plasma biomarkers of oxidative stress and inflammation were lowest in normal‐weight controls. Of note, obese MetS adults demonstrated significantly higher plasma concentrations of oxidized low‐density lipoprotein (62.3 ± 3.2 vs. 54.0 ± 4.0 U/L; p < 0.05), C‐reactive protein (3.0 ± 0.6 vs. 1.5 ± 0.3 mg/L; p < 0.01), tumor necrosis factor‐α (2.1 ± 0.1 vs. 1.6 ± 0.1 pg/mL; p < 0.05), IL‐6 (2.8 ± 0.4 vs. 1.4 ± 0.2 pg/mL; p < 0.01), and IL‐18 (253 ± 16 vs. 199 ± 16 pg/mL; p < 0.01), compared with obese adults without MetS. Discussion: These results suggest that MetS heightens oxidative stress and inflammatory burden in obese adults. Increased oxidative and inflammatory stress may contribute to the greater risk of coronary heart disease and cerebrovascular disease in obese adults with MetS.  相似文献   

18.
Whereas numerous studies deal with the effects and metabolism of eicosapentaenoic acid (20:5(n - 3)) in platelets, very few concern docosahexaenoic acid (22:6(n - 3)), although both acids are consumed in equal amounts from most fish fat. The present paper reports the modulation of 22:6(n - 3) oxygenation as well as that of endogenous arachidonic acid (20:4(n - 6)) in 22:6(n - 3)-rich platelets. Like the oxygenation of 20:5(n - 3), the lipoxygenation of 22:6(n - 3) occurred at a low level when incubated alone, but was markedly increased in the presence of 20:4(n - 6), suggesting a similar peroxide tone dependency. 20:5(n - 3) could not replace 20:4(n - 6) in the increasing 22:6(n - 3) lipoxygenation, whereas 22:6(n - 3) shared the potentiating effect of 20:4(n - 6) on both the cyclooxygenation and the lipoxygenation of 20:5(n - 3). On the other hand, 20:5(n - 3), 22:6(n - 3) or 20:5(n - 3) + 22:6(n - 3) enrichment of platelet phospholipids inhibited the formation of cyclooxygenase but not lipoxygenase products from endogenous 20:4(n - 6) in thrombin-stimulated platelets. In doing so, 22:6(n - 3) appeared even more potent than 20:5(n - 3), although it was not liberated after acylation in phospholipids, the opposite of what was observed with 20:5(n - 3). Therefore, it seems that, in contrast to 20:5(n - 3), which may compete with endogenous 20:4(n - 6) at the cyclooxygenase level, 22:6(n - 3) would affect the latter enzyme activity in a different way. We conclude that 20:5(n - 3) and 22:6(n - 3) behave differently and might act synergistically on the inhibition of platelet functions after fish fat intake.  相似文献   

19.
In our previous studies, medium- and long-chain triacylglycerols (MLCT), randomly interesterified triacylglycerols containing medium-chain and long-chain fatty acids in the same glycerol molecule, significantly reduced body fat accumulation in humans and rats. To clarify mechanism(s) for this effect of MLCT, we measured energy expenditure and hepatic fatty acid metabolism in rats by comparison with long-chain triacylglycerols (LCT) or medium-chain triacylglycerols (MCT). MLCT, compared with LCT, showed significantly lower body fat accumulation, higher 24-h energy expenditure and acyl-CoA dehydrogenase activity measured using octanoyl-CoA as a substrate, and similar lipogenic activity. MCT, compared with LCT, showed significantly higher energy expenditure, but fat accumulation was comparable. Additionally, MCT exhibited significantly higher lipogenic activity than the other oils. These data suggest that enhancement of energy expenditure and medium-chain fatty acids (MCFA) oxidation without activating de novo lipogenesis are responsible at least for the lower body fat accumulation in rats fed MLCT. The activation of hepatic lipogenesis by excessive intake of MCFA might counteract their preventive effects on body fat accumulation.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号