首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Hsp70蛋白自身磷酸化对其分子伴侣功能的影响   总被引:1,自引:0,他引:1  
近年对分子伴侣蛋白Hsp70作用机制的研究发现,其ATP功能区域X光晶体结构有一个新的钙离子结合区域,这个新的功能区域与Hsp70分子的ADP结合、ATP水解及合成有关.有报道认为Hsp70蛋白的NDP激酶样作用,通过形成酸不稳定性自身磷酸化中间体催化γ 磷酸基团在ATP和ADP间传递,组氨酸H89与这个新的区域有密切关系,有可能与Hsp70蛋白形成自身磷酸化中间体有关.本研究运用基因定位诱导突变技术,将89位组氨酸以丝氨酸替代(H89S),通过比较Hsp70野生型及突变型蛋白的自身磷酸化过程的改变,及其对Hsp70蛋白体外荧光素酶活性影响的不同,初步探讨Hsp70作用机制.结果发现,突变的H89S蛋白自身磷酸化过程及体外变性荧光素酶重折叠受到抑制.野生型蛋白未受到影响,野生型Hsp70可以形成酸不稳定的自身磷酸化中间体,产生CDP依赖性解磷酸反应,而H89S突变型蛋白不能形成这种反应.89位组氨酸点突变能显著降低ATP酶交换反应及体外变性荧光素酶重折叠水平,但它的自身磷酸化可能并非唯一必需的介导位点或只是一个选择性的功能侧链.  相似文献   

2.
Eukaryotic ribosomes carry a stable chaperone complex termed ribosome-associated complex consisting of the J-domain protein Zuo1 and the Hsp70 Ssz1. Zuo1 and Ssz1 together with the Hsp70 homolog Ssb1/2 form a functional triad involved in translation and early polypeptide folding processes. Strains lacking one of these components display slow growth, cold sensitivity, and defects in translational fidelity. Ssz1 diverges from canonical Hsp70s insofar that neither the ability to hydrolyze ATP nor binding to peptide substrates is essential in vivo. The exact role within the chaperone triad and whether or not Ssz1 can hydrolyze ATP has remained unclear. We now find that Ssz1 is not an ATPase in vitro, and even its ability to bind ATP is dispensable in vivo. Furthermore, Ssz1 function was independent of ribosome-associated complex formation, indicating that Ssz1 is not merely a structural scaffold for Zuo1. Finally, Ssz1 function in vivo was inactivated when both nucleotide binding and Zuo1 interaction via the C-terminal domain were disrupted in the same mutant. The two domains of this protein thus cooperate in a way that allows for severe interference in either but not in both of them.  相似文献   

3.
Mitochondria biogenesis requires the import of several precursor proteins that are synthesized in the cytosol. The mitochondrial heat shock protein 70 (mtHsp70) machinery components are highly conserved among eukaryotes, including humans. However, the functional properties of human mtHsp70 machinery components have not been characterized among all eukaryotic families. To study the functional interactions, we have reconstituted the components of the mtHsp70 chaperone machine (Hsp70/J-protein/GrpE/Hep) and systematically analyzed in vitro conditions for biochemical functions. We observed that the sequence-specific interaction of human mtHsp70 toward mitochondrial client proteins differs significantly from its yeast counterpart Ssc1. Interestingly, the helical lid of human mtHsp70 was found dispensable to the binding of P5 peptide as compared with the other Hsp70s. We observed that the two human mitochondrial matrix J-protein splice variants differentially regulate the mtHsp70 chaperone cycle. Strikingly, our results demonstrated that human Hsp70 escort protein (Hep) possesses a unique ability to stimulate the ATPase activity of mtHsp70 as well as to prevent the aggregation of unfolded client proteins similar to J-proteins. We observed that Hep binds with the C terminus of mtHsp70 in a full-length context and this interaction is distinctly different from unfolded client-specific or J-protein binding. In addition, we found that the interaction of Hep at the C terminus of mtHsp70 is regulated by the helical lid region. However, the interaction of Hep at the ATPase domain of the human mtHsp70 is mutually exclusive with J-proteins, thus promoting a similar conformational change that leads to ATPase stimulation. Additionally, we highlight the biochemical defects of the mtHsp70 mutant (G489E) associated with a myelodysplastic syndrome.  相似文献   

4.
5.
The aim of this study was to investigate the potential protective effect of the Hsp70 protein in the cardiac dysfunction induced by doxorubicin (DOX) and the mechanisms of its action. For this purpose, we used both wild-type mice (F1/F1) and Hsp70-transgenic mice (Tg/Tg) overexpressing human HSP70. Both types were subjected to chronic DOX administration (3 mg/kg intraperitoneally every week for 10 weeks, with an interval from weeks 4 to 6). Primary cell cultures isolated from embryos of these mice were also studied. During DOX administration, the mortality rate as well as weight reduction were lower in Tg/Tg compared to F1/F1 mice (P < 0.05). In vivo cardiac function assessment by transthoracic echocardiography showed that the reduction in left ventricular systolic function observed after DOX administration was lower in Tg/Tg mice (P < 0.05). The study in primary embryonic cell lines showed that the apoptosis after incubation with DOX was reduced in cells overexpressing Hsp70 (Tg/Tg), while the apoptotic pathway that was activated by DOX administration involved activated protein factors such as p53, Bax, caspase-9, caspase-3, and PARP-1. In myocardial protein extracts from identical mice with DOX-induced heart failure, the particular activated apoptotic pathway was confirmed, while the presence of Hsp70 appeared to inhibit the apoptotic pathway upstream of the p53 activation. Our results, in this DOX-induced heart failure model, indicate that Hsp70 overexpression in Tg/Tg transgenic mice provides protection from myocardial damage via an Hsp70-block in p53 activation, thus reducing the subsequent apoptotic mechanism.  相似文献   

6.
7.
8.
Hsp70 classes of molecular chaperones are highly conserved in all organisms and play an essential role in the maintenance of cellular homeostasis. Hsp70s assist nascent chain protein folding and denatured proteins, as well as the import of proteins to the organelles, and solubilization of aggregated proteins. ATPase function is required for Hsp70 function. Hsp70s use ATP hydrolysis driven mechanism for substrate protein binding and release. Various Hsps are unregulated in cancers but their significance for tumor growth is poorly understood. Studies have linked Hsp70 to several types of carcinoma. Human Hsp70s allow proliferation of cancer cells and suppress apoptotic and senescence pathways. This review presents Hsp70s role for growth of transformed cells and the current state of Hsp70 as a drug target along with recent patents in humans in this particular area.  相似文献   

9.
The aim of this study was to elucidate the mechanisms for regulations of cardiac Kv1.5 channel expression. We particularly focused on the role of heat shock proteins (Hsps). We tested the effects of Hsps on the stability of Kv1.5 channels using biochemical and electrophysiological techniques: co-expression of Kv1.5 and Hsp family proteins in mammalian cell lines, followed by Western blotting, immunoprecipitation, pulse-chase analysis, immunofluorescence and whole-cell patch clamp. Hsp70 and heat shock factor 1 increased the expression of Kv1.5 protein in HeLa and COS7 cells, whereas either Hsp40, 27 or 90 did not. Hsp70 prolonged the half-life of Kv1.5 protein. Hsp70 was co-immunoprecipitated and co-localized with Kv1.5-FLAG. Hsp70 significantly increased the immunoreactivity of Kv1.5 in the endoplasmic reticulum, Golgi apparatus and on the cell membrane. Hsp70 enhanced Kv1.5 current of transfected cells, which was abolished by pretreatment with brefeldin A or colchicine. Thus, Hsp70, but not other Hsps, stabilizes functional Kv1.5 protein.  相似文献   

10.
《Journal of molecular biology》2019,431(15):2729-2746
Members of the Hsp90 and Hsp70 families of molecular chaperones are imp\ortant for the maintenance of protein homeostasis and cellular recovery following environmental stresses, such as heat and oxidative stress. Moreover, the two chaperones can collaborate in protein remodeling and activation. In higher eukaryotes, Hsp90 and Hsp70 form a functionally active complex with Hop (Hsp90–Hsp70 organizing protein) acting as a bridge between the two chaperones. In bacteria, which do not contain a Hop homolog, Hsp90 and Hsp70, DnaK, directly interact during protein remodeling. Although yeast possesses a Hop-like protein, Sti1, Hsp90, and Hsp70 can directly interact in yeast in the absence of Sti1. Previous studies showed that residues in the middle domain of Escherichia coli Hsp90 are important for interaction with the J-protein binding region of DnaK. The results did not distinguish between the possibility that (i) these sites were involved in direct interaction and (ii) the residues in these sites participate in conformational changes which are transduced to other sites on Hsp90 and DnaK that are involved in the direct interaction. Here we show by crosslinking experiments that the direct interaction is between a site in the middle domain of Hsp90 and the J-protein binding site of Hsp70 in both E. coli and yeast. Moreover, J-protein promotes the Hsp70–Hsp90 interaction in the presence of ATP, likely by converting Hsp70 into the ADP-bound conformation. The identification of the protein–protein interaction site is anticipated to lead to a better understanding of the collaboration between the two chaperones in protein remodeling.  相似文献   

11.
Hsp40 and TPR1 are chaperone adaptors that regulate Hsp70-dependent folding processes by interacting with the amino terminal and carboxy terminal domains of Hsp70, respectively. In this study, we report cooperative interactions involving Hsp70, Hsp40, and TPR1 that enhance Hsp70-dependent folding of chemically denatured substrates. Hsp40 and Hsp70 dependent folding of chemically denatured luciferase was enhanced by up to 80% when TPR1 was also present. HspBp1, a negative modulator of Hsp70, completely inhibited Hsp70-dependent folding in the presence of Hsp40. However, when TPR1 was included in the reaction, the inhibitory effect of HspBp1 was reversed. To analyze the interactions, Kd analysis and competition assays were carried out. The Kds of the interactions of Hsp40, TRP1, and HspBp1 with Hsp70 were 0.5, 0.6, and 0.04 mM, respectively. Interestingly, the Hsp70/HspBp1 complex could only be dissociated in the presence of both Hsp40 and TPR1, suggesting cooperative interaction between Hsp70, Hsp40 and TPR1. To examine these interactions in vivo, we established a tetracycline-regulatable Hela cell line that expresses Hsp70 in the absence of doxycycline. Expression of HspBp1 inhibited Hsp70-dependent folding of heat-denatured luciferase, and this effect was only reversed in the presence of Hsp40 and TPR1. Our findings reveal a novel mechanism of positive regulation of Hsp70-dependent folding.  相似文献   

12.
Missense mutant proteins, such as those produced in individuals with genetic diseases, are often misfolded and subject to processing by intracellular quality control systems. Previously, we have shown using a yeast system that enzymatic function could be restored to I278T cystathionine β-synthase (CBS), a cause of homocystinuria, by treatments that affect the intracellular chaperone environment. Here, we extend these studies and show that it is possible to restore significant levels of enzyme activity to 17 of 18 (94%) disease causing missense mutations in human cystathionine β-synthase (CBS) expressed in Saccharomyces cerevisiae by exposure to ethanol, proteasome inhibitors, or deletion of the Hsp26 small heat shock protein. All three of these treatments induce Hsp70, which is necessary but not sufficient for rescue. In addition to CBS, these same treatments can rescue disease-causing mutations in human p53 and the methylene tetrahydrofolate reductase gene. These findings do not appear restricted to S. cerevisiae, as proteasome inhibitors can restore significant CBS enzymatic activity to CBS alleles expressed in fibroblasts derived from homocystinuric patients and in a mouse model for homocystinuria that expresses human I278T CBS. These findings suggest that proteasome inhibitors and other Hsp70 inducing agents may be useful in the treatment of a variety of genetic diseases caused by missense mutations.  相似文献   

13.
Currently, the identification of groups of amino acid residues that are important in the function, structure, or interaction of a protein can be both costly and prohibitively complex, involving vast numbers of mutagenesis experiments. Here, we present the application of a novel computational method, which identifies the presence of coevolution in a data set, thereby enabling the a priori identification of amino acid residues that play an important role in protein function. We have applied this method to the heat shock protein (Hsp) protein-folding system, studying the network between Hsp70, Hsp90, and Hop (heat shock-organizing protein). Our analysis has identified functional residues within the tetratricopeptide repeat (TPR) 1 and 2A domains in Hop, previously shown to be interacting with Hsp70 and Hsp90, respectively. Further, we have identified significant residues elsewhere in Hop within domains that have been recently proposed as being important for Hop interaction with Hsp70 and/or Hsp90. In addition, several amino acid sites present in groups of coevolution were identified as 3-dimensionally or linearly proximal to functionally important sites or domains. Based on our results, we also investigate a further functional domain within Hop, between TPR1 and TPR2A, which we suggest as being functionally important in the interaction of Hop with both Hsp70 and Hsp90 whether directly or otherwise. Our method has identified all the previously characterized functionally important regions in this system, thereby indicating the power of this method in the a priori identification of important regions for site-directed mutagenesis studies.  相似文献   

14.
Hsp70 and Hsp90 protein chaperones cooperate in a protein-folding pathway required by many "client" proteins. The co-chaperone Sti1p coordinates functions of Hsp70 and Hsp90 in this pathway. Sti1p has three tetratricopeptide repeat (TPR) domains. TPR1 binds Hsp70, TPR2a binds Hsp90, and the ligand for TPR2b is unknown. Although Sti1p is thought to be dedicated to the client folding pathway, we earlier showed that Sti1p regulated Hsp70, independently of Hsp90, in a way that impairs yeast [PSI+] prion propagation. Using this prion system to monitor Sti1p regulation of Hsp70 and an Hsp90-inhibiting compound to monitor Hsp90 regulation, we identified Sti1p mutations that separately affect Hsp70 and Hsp90. TPR1 mutations impaired Sti1p regulation of Hsp70, but deletion of TPR2a and TPR2b did not. Conversely, TPR2a and TPR2b mutations impaired Sti1p regulation of Hsp90, but deletion of TPR1 did not. All Sti1p mutations variously impaired the client folding pathway, which requires both Hsp70 and Hsp90. Thus, Sti1p regulated Hsp70 and Hsp90 separately, Hsp90 is implicated as a TPR2b ligand, and mutations separately affecting regulation of either chaperone impair a pathway that is dependent upon both. We further demonstrate that client folding depended upon bridging of Hsp70 and Hsp90 by Sti1p and find conservation of the independent regulation of Hsp70 and Hsp90 by human Hop1.  相似文献   

15.
Mechanisms for regulation of Hsp70 function by Hsp40   总被引:9,自引:0,他引:9       下载免费PDF全文
The Hsp70 family members play an essential role in cellular protein metabolism by acting as polypeptide-binding and release factors that interact with nonnative regions of proteins at different stages of their life cycles. Hsp40 cochaperone proteins regulate complex formation between Hsp70 and client proteins. Herein, literature is reviewed that describes the mechanisms by which Hsp40 proteins interact with Hsp70 to specify its cellular functions.  相似文献   

16.
Activation and regulation of Hsp32 and Hsp70.   总被引:5,自引:0,他引:5  
  相似文献   

17.
18.
Maize heat shock protein of 101 KDa (HSP101) is essential for thermotolerance induction in this plant. The mRNA encoding this protein harbors an IRES element in the 5′UTR that mediates cap-independent translation initiation. In the current work it is demonstrated that hsp101 IRES comprises the entire 5′UTR sequence (150 nts), since deletion of 17 nucleotides from the 5′ end decreased translation efficiency by 87% compared to the control sequence. RNA structure analysis of maize hsp101 IRES revealed the presence of three stem-loops toward its 5′ end, whereas the remainder sequence contains a great proportion of unpaired nucleotides. Furthermore, HSP90 protein was identified by mass spectrometry as the protein preferentially associated with the maize hsp101 IRES. In addition, it has been found that eIFiso4G rather than eIF4G initiation factor mediates translation of the maize hsp101 mRNA.  相似文献   

19.
HOP is a cochaperone belonging to the foldosome, a system formed by the cytoplasmic Hsp70 and Hsp90 chaperones. HOP acts as an adapter protein capable of transferring client proteins from the first to the second molecular chaperone. HOP is a modular protein that regulates the ATPase activity of Hsp70 and Hsp90 to perform its function. To obtain more detailed information on the structure and function of this protein, we produced the recombinant HOP of Plasmodium falciparum (PfHOP). The protein was obtained in a folded form, with a high content of α-helix secondary structure. Unfolding experiments showed that PfHOP unfolds through two transitions, suggesting the presence of at least two domains with different stabilities. In addition, PfHOP primarily behaved as an elongated dimer in equilibrium with the monomer. Small-angle X-ray scattering data corroborated this interpretation and led to the reconstruction of a PfHOP ab initio model as a dimer. Finally, the PfHOP protein was able to inhibit and to stimulate the ATPase activity of the recombinant Hsp90 and Hsp70–1, respectively, of P. falciparum. Our results deepened the knowledge of the structure and function of PfHOP and further clarified its participation in the P. falciparum foldosome.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号