首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Mechanics has an important role during morphogenesis, both in the generation of forces driving cell shape changes and in determining the effective material properties of cells and tissues. Drosophila dorsal closure has emerged as a reference model system for investigating the interplay between tissue mechanics and cellular activity. During dorsal closure, the amnioserosa generates one of the major forces that drive closure through the apical contraction of its constituent cells. We combined quantitation of live data, genetic and mechanical perturbation and cell biology, to investigate how mechanical properties and contraction rate emerge from cytoskeletal activity. We found that a decrease in Myosin phosphorylation induces a fluidization of amnioserosa cells which become more compliant. Conversely, an increase in Myosin phosphorylation and an increase in actin linear polymerization induce a solidification of cells. Contrary to expectation, these two perturbations have an opposite effect on the strain rate of cells during DC. While an increase in actin polymerization increases the contraction rate of amnioserosa cells, an increase in Myosin phosphorylation gives rise to cells that contract very slowly. The quantification of how the perturbation induced by laser ablation decays throughout the tissue revealed that the tissue in these two mutant backgrounds reacts very differently. We suggest that the differences in the strain rate of cells in situations where Myosin activity or actin polymerization is increased arise from changes in how the contractile forces are transmitted and coordinated across the tissue through ECadherin-mediated adhesion. Altogether, our results show that there is an optimal level of Myosin activity to generate efficient contraction and suggest that the architecture of the actin cytoskeleton and the dynamics of adhesion complexes are important parameters for the emergence of coordinated activity throughout the tissue.  相似文献   

2.
Many animals exhibit stereotypical left-right (LR) asymmetry in their internal organs. The mechanisms of LR axis formation required for the subsequent LR asymmetric development are well understood, especially in some vertebrates. However, the molecular mechanisms underlying LR asymmetric morphogenesis, particularly how mechanical force is integrated into the LR asymmetric morphogenesis of organs, are poorly understood. Here, we identified zipper (zip), encoding a Drosophila non-muscle myosin II (myosin II) heavy chain, as a gene required for LR asymmetric development of the embryonic anterior midgut (AMG). Myosin II is known to directly generate mechanical force in various types of cells during morphogenesis and cell migration. We found that myosin II was involved in two events in the LR asymmetric development of the AMG. First, it introduced an LR bias to the directional position of circular visceral muscle (CVMU) cells, which externally cover the midgut epithelium. Second, it was required for the LR-biased rotation of the AMG. Our results suggest that myosin II in CVMU cells plays a crucial role in generating the force leading to LR asymmetric morphogenesis. Taken together with previous studies in vertebrates, the involvement of myosin II in LR asymmetric morphogenesis might be conserved evolutionarily.  相似文献   

3.
4.
Apoptosis, or programmed cell death, is an essential process for the elimination of unnecessary cells during embryonic development, tissue homeostasis, and certain pathological conditions. Recently, an active mechanical function of apoptosis called apoptotic force has been demonstrated during a tissue fusion process of Drosophila embryogenesis. The mechanical force produced during apoptosis is used not only to force dying cells out from tissues in order to keep tissue integrity, but also to change the morphology of neighboring cells to fill the space originally occupied by the dying cell. Furthermore, the occurrence of apoptosis correlates with tissue movement and tension of the tissue. This finding suggests that apoptotic forces might be harnessed throughout cell death-related morphogenesis; however, this concept remains to be fully investigated. While the investigation of this active mechanical function of apoptosis has just begun, here we summarize the current understandings of this novel function of apoptosis, and discuss some possible developmental processes in which apoptosis may play a mechanical role. The concept of apoptotic force prompts a necessity to rethink the role of programmed cell death during morphogenesis.  相似文献   

5.
How genetic programs generate cell-intrinsic forces to shape embryos is actively studied, but less so how tissue-scale physical forces impact morphogenesis. Here we address the role of the latter during axis extension, using Drosophila germband extension (GBE) as a model. We found previously that cells elongate in the anteroposterior (AP) axis in the extending germband, suggesting that an extrinsic tensile force contributed to body axis extension. Here we further characterized the AP cell elongation patterns during GBE, by tracking cells and quantifying their apical cell deformation over time. AP cell elongation forms a gradient culminating at the posterior of the embryo, consistent with an AP-oriented tensile force propagating from there. To identify the morphogenetic movements that could be the source of this extrinsic force, we mapped gastrulation movements temporally using light sheet microscopy to image whole Drosophila embryos. We found that both mesoderm and endoderm invaginations are synchronous with the onset of GBE. The AP cell elongation gradient remains when mesoderm invagination is blocked but is abolished in the absence of endoderm invagination. This suggested that endoderm invagination is the source of the tensile force. We next looked for evidence of this force in a simplified system without polarized cell intercalation, in acellular embryos. Using Particle Image Velocimetry, we identify posteriorwards Myosin II flows towards the presumptive posterior endoderm, which still undergoes apical constriction in acellular embryos as in wildtype. We probed this posterior region using laser ablation and showed that tension is increased in the AP orientation, compared to dorsoventral orientation or to either orientations more anteriorly in the embryo. We propose that apical constriction leading to endoderm invagination is the source of the extrinsic force contributing to germband extension. This highlights the importance of physical interactions between tissues during morphogenesis.  相似文献   

6.
7.
8.
Although growth and morphogenesis are controlled by genetics, physical shape change in plant tissue results from a balance between cell wall loosening and intracellular pressure. Despite recent work demonstrating a role for mechanical signals in morphogenesis, precise measurement of mechanical properties at the individual cell level remains a technical challenge. To address this challenge, we have developed cellular force microscopy (CFM), which combines the versatility of classical microindentation techniques with the high automation and resolution approaching that of atomic force microscopy. CFM's large range of forces provides the possibility to map the apparent stiffness of both plasmolyzed and turgid tissue as well as to perform micropuncture of cells using very high stresses. CFM experiments reveal that, within a tissue, local stiffness measurements can vary with the level of turgor pressure in an unexpected way. Altogether, our results highlight the importance of detailed physically based simulations for the interpretation of microindentation results. CFM's ability to be used both to assess and manipulate tissue mechanics makes it a method of choice to unravel the feedbacks between mechanics, genetics, and morphogenesis.  相似文献   

9.

Background

Force generation and the material properties of cells and tissues are central to morphogenesis but remain difficult to measure in vivo. Insight is often limited to the ratios of mechanical properties obtained through disruptive manipulation, and the appropriate models relating stress and strain are unknown. The Drosophila amnioserosa epithelium progressively contracts over 3 hours of dorsal closure, during which cell apices exhibit area fluctuations driven by medial myosin pulses with periods of 1.5–6 min. Linking these two timescales and understanding how pulsatile contractions drive morphogenetic movements is an urgent challenge.

Results

We present a novel framework to measure in a continuous manner the mechanical properties of epithelial cells in the natural context of a tissue undergoing morphogenesis. We show that the relationship between apicomedial myosin fluorescence intensity and strain during fluctuations is consistent with a linear behaviour, although with a lag. We thus used myosin fluorescence intensity as a proxy for active force generation and treated cells as natural experiments of mechanical response under cyclic loading, revealing unambiguous mechanical properties from the hysteresis loop relating stress to strain. Amnioserosa cells can be described as a contractile viscoelastic fluid. We show that their emergent mechanical behaviour can be described by a linear viscoelastic rheology at timescales relevant for tissue morphogenesis. For the first time, we establish relative changes in separate effective mechanical properties in vivo. Over the course of dorsal closure, the tissue solidifies and effective stiffness doubles as net contraction of the tissue commences. Combining our findings with those from previous laser ablation experiments, we show that both apicomedial and junctional stress also increase over time, with the relative increase in apicomedial stress approximately twice that of other obtained measures.

Conclusions

Our results show that in an epithelial tissue undergoing net contraction, stiffness and stress are coupled. Dorsal closure cell apical contraction is driven by the medial region where the relative increase in stress is greater than that of stiffness. At junctions, by contrast, the relative increase in the mechanical properties is the same, so the junctional contribution to tissue deformation is constant over time. An increase in myosin activity is likely to underlie, at least in part, the change in medioapical properties and we suggest that its greater effect on stress relative to stiffness is fundamental to actomyosin systems and confers on tissues the ability to regulate contraction rates in response to changes in external mechanics.
  相似文献   

10.
Successful completion of development requires coordination of patterning events with morphogenetic movements. Environmental variability challenges this coordination. For example, developing organisms encounter varying environmental temperatures that can strongly influence developmental rates. We hypothesized that the mechanics of morphogenesis would have to be finely adjusted to allow for normal morphogenesis across a wide range of developmental rates. We formulated our hypothesis as a simple model incorporating time-dependent application of force to a viscoelastic tissue. This model suggested that the capacity to maintain normal morphogenesis across a range of temperatures would depend on how both tissue viscoelasticity and the forces that drive deformation vary with temperature. To test this model we investigated how the mechanical behavior of embryonic tissue (Xenopus laevis) changed with temperature; we used a combination of micropipette aspiration to measure viscoelasticity, electrically induced contractions to measure cellular force generation, and confocal microscopy to measure endogenous contractility. Contrary to expectations, the viscoelasticity of the tissues and peak contractile tension proved invariant with temperature even as rates of force generation and gastrulation movements varied three-fold. Furthermore, the relative rates of different gastrulation movements varied with temperature: the speed of blastopore closure increased more slowly with temperature than the speed of the dorsal-to-ventral progression of involution. The changes in the relative rates of different tissue movements can be explained by the viscoelastic deformation model given observed viscoelastic properties, but only if morphogenetic forces increase slowly rather than all at once.  相似文献   

11.
The response of cells to forces is essential for tissue morphogenesis and homeostasis. This response has been extensively investigated in interphase cells, but it remains unclear how forces affect dividing cells. We used a combination of micro-manipulation tools on human dividing cells to address the role of physical parameters of the micro-environment in controlling the cell division axis, a key element of tissue morphogenesis. We found that forces applied on the cell body direct spindle orientation during mitosis. We further show that external constraints induce a polarization of dynamic subcortical actin structures that correlate with spindle movements. We propose that cells divide according to cues provided by their mechanical micro-environment, aligning daughter cells with the external force field.  相似文献   

12.
Epithelial morphogenesis depends on coordinated changes in cell shape, a process that is still poorly understood. During zebrafish epiboly and Drosophila dorsal closure, cell-shape changes at the epithelial margin are of critical importance. Here evidence is provided for a conserved mechanism of local actin and myosin 2 recruitment during theses events. It was found that during epiboly of the zebrafish embryo, the movement of the outer epithelium (enveloping layer) over the yolk cell surface involves the constriction of marginal cells. This process depends on the recruitment of actin and myosin 2 within the yolk cytoplasm along the margin of the enveloping layer. Actin and myosin 2 recruitment within the yolk cytoplasm requires the Ste20-like kinase Msn1, an orthologue of Drosophila Misshapen. Similarly, in Drosophila, actin and myosin 2 localization and cell constriction at the margin of the epidermis mediate dorsal closure and are controlled by Misshapen. Thus, this study has characterized a conserved mechanism underlying coordinated cell-shape changes during epithelial morphogenesis.  相似文献   

13.
Skeletal condensation occurs when specified mesenchyme cells self-organize over several days to form a distinctive cartilage template. Here, we determine how and when specified mesenchyme cells integrate mechanical and molecular information from their environment, forming cartilage condensations in the pharyngeal arches of chick embryos. By disrupting cytoskeletal reorganization, we demonstrate that dynamic cell shape changes drive condensation and modulate the response of the condensing cells to Fibroblast Growth Factor (FGF), Bone Morphogenetic Protein (BMP) and Transforming Growth Factor beta (TGF-β) signaling pathways. Rho Kinase (ROCK)-driven actomyosin contractions and Myosin II-generated differential cell cortex tension regulate these cell shape changes. Disruption of the condensation process inhibits the differentiation of the mesenchyme cells into chondrocytes, demonstrating that condensation regulates the fate of the mesenchyme cells. We also find that dorsal and ventral condensations undergo distinct cell shape changes. BMP signaling is instructive for dorsal condensation-specific cell shape changes. Moreover, condensations exhibit ventral characteristics in the absence of BMP signaling, suggesting that in the pharyngeal arches ventral morphology is the ground pattern. Overall, this study characterizes the interplay between cytoskeletal dynamics and molecular signaling in a self-organizing system during tissue morphogenesis.  相似文献   

14.
The establishment of cell polarity is crucial for embryonic cells to acquire their proper morphologies and functions, because cell alignment and intracellular events are coordinated in tissues during embryogenesis according to the cell polarity. Although much is known about the molecules involved in cell polarization, the direct trigger of the process remains largely obscure. We previously demonstrated that the tissue boundary between the chordamesoderm and lateral mesoderm of Xenopus laevis is important for chordamesodermal cell polarity. Here, we examined the intracellular calcium dynamics during boundary formation between two different tissues. In a combination culture of nodal-induced chordamesodermal explants and a heterogeneous tissue, such as ectoderm or lateral mesoderm, the chordamesodermal cells near the boundary frequently displayed intracellular calcium elevation; this frequency was significantly less when homogeneous explants were used. Inhibition of the intracellular calcium elevation blocked cell polarization in the chordamesodermal explants. We also observed frequent calcium waves near the boundary of the dorsal marginal zone (DMZ) dissected from an early gastrula-stage embryo. Optical sectioning revealed that where heterogeneous explants touched, the chordamesodermal surface formed a wedge with the narrow end tucked under the heterogeneous explant. No such configuration was seen between homogeneous explants. When physical force was exerted against a chordamesodermal explant with a glass needle at an angle similar to that created in the explant, or migrating chordamesodermal cells crawled beneath a silicone block, intracellular calcium elevation was frequent and cell polarization was induced. Finally, we demonstrated that a purinergic receptor, which is implicated in mechano-sensing, is required for such frequent calcium elevation in chordamesoderm and for cell polarization. This study raises the possibility that tissue-tissue interaction generates mechanical forces through cell-cell contact that initiates coordinated cell polarization through a transient increase in intracellular calcium.  相似文献   

15.
Collective cell migration is a fundamental process during embryogenesis and its initial occurrence, called epiboly, is an excellent in vivo model to study the physical processes involved in collective cell movements that are key to understanding organ formation, cancer invasion, and wound healing. In zebrafish, epiboly starts with a cluster of cells at one pole of the spherical embryo. These cells are actively spreading in a continuous movement toward its other pole until they fully cover the yolk. Inspired by the physics of wetting, we determine the contact angle between the cells and the yolk during epiboly. By choosing a wetting approach, the relevant scale for this investigation is the tissue level, which is in contrast to other recent work. Similar to the case of a liquid drop on a surface, one observes three interfaces that carry mechanical tension. Assuming that interfacial force balance holds during the quasi-static spreading process, we employ the physics of wetting to predict the temporal change of the contact angle. Although the experimental values vary dramatically, the model allows us to rescale all measured contact-angle dynamics onto a single master curve explaining the collective cell movement. Thus, we describe the fundamental and complex developmental mechanism at the onset of embryogenesis by only three main parameters: the offset tension strength, α, that gives the strength of interfacial tension compared to other force-generating mechanisms; the tension ratio, δ, between the different interfaces; and the rate of tension variation, λ, which determines the timescale of the whole process.  相似文献   

16.
Changes in the cytoskeletal architecture underpin the dynamic changes in tissue shape that occur during development. It is clear that such changes must be coordinated so that individual cell behaviors are synchronized; however, the mechanisms by which morphogenesis is instructed and coordinated are unknown. After its induction in non-neural ectoderm, the inner ear undergoes morphogenesis, being transformed from a flat ectodermal disk on the surface of the embryo to a hollowed sphere embedded in the head. We provide evidence that this shape change relies on extrinsic signals subsequent to genetic specification. By using specific inhibitors, we find that local fibroblast growth factor (FGF) signaling triggers a phosphorylation cascade that activates basal myosin II through the activation of phospholipase Cgamma. Myosin II exhibits a noncanonical activity that results in the local depletion of actin filaments. Significantly, the resulting apical actin enrichment drives morphogenesis of the inner ear. Thus, FGF signaling directly exerts profound cytoskeletal effects on otic cells, coordinating the morphogenesis of the inner ear. The iteration of this morphogenetic signaling system suggests that it is a more generally applicable mechanism in other epithelial tissues undergoing shape change.  相似文献   

17.
The molecular and cellular bases of cell shape change and movement during morphogenesis and wound healing are of intense interest and are only beginning to be understood. Here, we investigate the forces responsible for morphogenesis during dorsal closure with three approaches. First, we use real-time and time-lapsed laser confocal microscopy to follow actin dynamics and document cell shape changes and tissue movements in living, unperturbed embryos. We label cells with a ubiquitously expressed transgene that encodes GFP fused to an autonomously folding actin binding fragment from fly moesin. Second, we use a biomechanical approach to examine the distribution of stiffness/tension during dorsal closure by following the response of the various tissues to cutting by an ultraviolet laser. We tested our previous model (Young, P.E., A.M. Richman, A.S. Ketchum, and D.P. Kiehart. 1993. Genes Dev. 7:29-41) that the leading edge of the lateral epidermis is a contractile purse-string that provides force for dorsal closure. We show that this structure is under tension and behaves as a supracellular purse-string, however, we provide evidence that it alone cannot account for the forces responsible for dorsal closure. In addition, we show that there is isotropic stiffness/tension in the amnioserosa and anisotropic stiffness/tension in the lateral epidermis. Tension in the amnioserosa may contribute force for dorsal closure, but tension in the lateral epidermis opposes it. Third, we examine the role of various tissues in dorsal closure by repeated ablation of cells in the amnioserosa and the leading edge of the lateral epidermis. Our data provide strong evidence that both tissues appear to contribute to normal dorsal closure in living embryos, but surprisingly, neither is absolutely required for dorsal closure. Finally, we establish that the Drosophila epidermis rapidly and reproducibly heals from both mechanical and ultraviolet laser wounds, even those delivered repeatedly. During healing, actin is rapidly recruited to the margins of the wound and a newly formed, supracellular purse-string contracts during wound healing. This result establishes the Drosophila embryo as an excellent system for the investigation of wound healing. Moreover, our observations demonstrate that wound healing in this insect epidermal system parallel wound healing in vertebrate tissues in situ and vertebrate cells in culture (for review see Kiehart, D.P. 1999. Curr. Biol. 9:R602-R605).  相似文献   

18.
Mismatch of hierarchical structure and mechanical properties between tissue-engineered implants and native tissue may result in signal cues that negatively impact repair and remodeling. With bottom-up tissue engineering approaches, designing tissue components with proper microscale mechanical properties is crucial to achieve necessary macroscale properties in the final implant. However, characterizing microscale mechanical properties is challenging, and current methods do not provide the versatility and sensitivity required to measure these fragile, soft biological materials. Here, we developed a novel, highly sensitive Hall-Effect based force sensor that is capable of measuring mechanical properties of biological materials over wide force ranges (μN to N), allowing its use at all steps in layer-by-layer fabrication of engineered tissues. The force sensor design can be easily customized to measure specific force ranges, while remaining easy to fabricate using inexpensive, commercial materials. Although we used the force sensor to characterize mechanics of single-layer cell sheets and silk fibers, the design can be easily adapted for different applications spanning larger force ranges (>N). This platform is thus a novel, versatile, and practical tool for mechanically characterizing biological and biomimetic materials.  相似文献   

19.
Many morphogenetic processes are accomplished by coordinated cell rearrangements. These rearrangements are accompanied by substantial shifts in the neighbor relationships between cells. Here we propose a model for studying morphogenesis in epithelial sheets by directed cell neighbor change. Our model describes cell rearrangements by accounting for the balance of forces between neighboring cells within an epithelium. Cell rearrangement and cell shape changes occur when these forces are not in mechanical equilibrium. We will show that cell rearrangement within the epidermal enveloping layer (EVL) of the teleost fish Fundulus during epiboly can be explained solely in terms of the balance of forces generated among constituent epithelial cells. Within a cell, we account for circumferential elastic forces and the force generated by hydrostatic and osmotic pressure. The model treats epithelial cells as two-dimensional polygons where the mechanical forces are applied to the polygonal nodes. A cell node protrudes or contracts when the nodal forces are not in mechanical equilibrium. In an epithelial sheet, adjacent cells share common boundary nodes; in this way, mechanical force is transmitted from cell to cell, mimicking junctional coupling. These junctional nodes can slide, and nodes may appear or disappear, so that the number of polygonal sides is variable. Computer graphics allows us to compare numerical simulations of the model with time-lapse cinemicroscopy of cell rearrangements in the living embryo, and data obtained from fixed and silver stained embryos. By manipulating the mechanical properties of the model cells we can study the conditions necessary to reproduce normal cell behavior during Fundulus epiboly. We find that simple stress relaxation is sufficient to account for cell rearrangements among interior cells of the EVL when they are isotropically contractile. Experimental observations show that the number of EVL marginal cells continuously decreases throughout epiboly. In order for the simulation to reproduce this behavior, cells at the EVL boundary must generate protrusive forces rather than contractile tension forces. Therefore, the simulation results suggest that the mechanical properties of EVL marginal cells at their leading edge must be quite different from EVL interior cells.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号