首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The Sec complex catalyzes the translocation of proteins of the secretory pathway into the endoplasmic reticulum and the integration of membrane proteins into the endoplasmic reticulum membrane. Some substrate peptides require the presence and involvement of accessory proteins such as Sec63. Recently, a structure of the Sec complex from Saccharomyces cerevisiae, consisting of the Sec61 channel and the Sec62, Sec63, Sec71 and Sec72 proteins was determined by cryo-electron microscopy (cryo-EM). Here, we show by co-precipitation that the Sec61 channel subunit Sbh1 is not required for formation of stable Sec63-Sec61 contacts. Molecular dynamics simulations started from the cryo-EM conformation of Sec61 bound to Sec63 and of unbound Sec61 revealed how Sec63 affects the conformation of Sec61 lateral gate, plug, pore region and pore ring diameter via three intermolecular contact regions. Molecular docking of SRP-dependent vs. SRP-independent signal peptide chains into the Sec61 channel showed that the pore regions affected by presence/absence of Sec63 play a crucial role in positioning the signal anchors of SRP-dependent substrates nearby the lateral gate.  相似文献   

2.
In eukaryotes, most secretory and membrane proteins are targeted by an N‐terminal signal sequence to the endoplasmic reticulum, where the trimeric Sec61 complex serves as protein‐conducting channel (PCC). In the post‐translational mode, fully synthesized proteins are recognized by a specialized channel additionally containing the Sec62, Sec63, Sec71, and Sec72 subunits. Recent structures of this Sec complex in the idle state revealed the overall architecture in a pre‐opened state. Here, we present a cryo‐EM structure of the yeast Sec complex bound to a substrate, and a crystal structure of the Sec62 cytosolic domain. The signal sequence is inserted into the lateral gate of Sec61α similar to previous structures, yet, with the gate adopting an even more open conformation. The signal sequence is flanked by two Sec62 transmembrane helices, the cytoplasmic N‐terminal domain of Sec62 is more rigidly positioned, and the plug domain is relocated. We crystallized the Sec62 domain and mapped its interaction with the C‐terminus of Sec63. Together, we obtained a near‐complete and integrated model of the active Sec complex.  相似文献   

3.
In yeast, efficient protein transport across the endoplasmic reticulum (ER) membrane may occur co-translationally or post-translationally. The latter process is mediated by a membrane protein complex that consists of the Sec61p complex and the Sec62p-Sec63p subcomplex. In contrast, in mammalian cells protein translocation is almost exclusively co-translational. This transport depends on the Sec61 complex, which is homologous to the yeast Sec61p complex and has been identified in mammals as a ribosome-bound pore-forming membrane protein complex. We report here the existence of ribosome-free mammalian Sec61 complexes that associate with two ubiquitous proteins of the ER membrane. According to primary sequence analysis both proteins display homology to the yeast proteins Sec62p and Sec63p and are therefore named Sec62 and Sec63, respectively. The probable function of the mammalian Sec61-Sec62-Sec63 complex is discussed with respect to its abundance in ER membranes, which, in contrast to yeast ER membranes, apparently lack efficient post-translational translocation activity.  相似文献   

4.
BackgroundIn eukaryotic cells, biogenesis of proteins destined to the secretory pathway begins from the cytosol. Nascent chains are either co-translationally or post-translationally targeted to the endoplasmic reticulum (ER) and translocated across the membrane through the Sec61 complex. For the post-translational translocation, the Sec62/Sec63 complex is additionally required. Sec63, however, is also shown to mediate co-translational translocation of a subset of proteins, the types and characteristics of proteins that Sec63 mediates in translocation still await to be defined.MethodsTo overview the types of proteins that require Sec63 for the ER translocation, we prepared Sec63 mutant lacking the first 39 residues (Sec63_ΔN39) in yeast and assessed initial translocation efficiencies of diverse types of precursors in the sec63_ΔN39 strain by a 5 min metabolic labeling. By employing Blue-Native gel electrophoresis (BN-PAGE), stability of the SEC complex (Sec61 plus Sec62/Sec63 complexes) isolated from cells carrying the Sec63_ΔN39 mutant was examined.ResultsAmong the various translocation precursors tested, we found that proper sorting of single- and double-pass membrane proteins was severely impaired in addition to post-translational translocation precursor in the sec63_ΔN39 mutant strain. Stability of the SEC complex was compromised upon deletion of the N-terminal 39 residues.ConclusionsThe N-terminus of Sec63 is important for stability of the SEC complex and Sec63 is required for proper sorting of membrane proteins in vivo.General significanceSec63 is essential on insertion of membrane proteins.  相似文献   

5.
Sec61p and BiP directly facilitate polypeptide translocation into the ER.   总被引:78,自引:0,他引:78  
Secretory proteins are segregated from cytosolic proteins by their translocation into the endoplasmic reticulum (ER). A modified secretory protein trapped during translocation across the ER membrane can be crosslinked to two previously identified proteins, Sec61p and BiP (Kar2p). The dependence of this cross-linking upon proteins and small molecules was examined. Mutations in SEC62 and SEC63 decrease the ability of Sec61p to be cross-linked to the secretory polypeptide trapped in translocation. ATP is also required for interaction of Sec61p with the secretory protein. Three kar2 alleles display defective translocation in vitro. Two of these alleles also decrease the ability of Sec61p to be cross-linked to the secretory protein. The third allele, while exhibiting a severe translocation defect, does not affect the interaction of Sec61p with the secretory protein. These results suggest that Sec61p is directly involved in translocation and that BiP acts at two stages of the translocation cycle.  相似文献   

6.
In the endoplasmic reticulum (ER) membrane, transmembrane (TM) domain insertion occurs through the Sec61 channel with its auxiliary components, including Sec62. Sec62 interacts with the Sec61 channel and is located on the front side of the Sec61 lateral gate, an entry site for TM domains to the lipid bilayer. Overexpression of Sec62 led to a growth defect in yeast, and we investigated its effects on protein translocation and membrane insertion by pulse labeling of Sec62 client proteins. Our data show that the insertion efficiency of marginally hydrophobic TM segments is reduced upon Sec62 overexpression. This result suggests a potential regulatory role of Sec62 as a gatekeeper of the lateral gate, thereby modulating the insertion threshold of TM segments.  相似文献   

7.
Protein transport via the Sec translocon represents an evolutionary conserved mechanism for delivering cytosolically-synthesized proteins to extra-cytosolic compartments. The Sec translocon has a three-subunit core, termed Sec61 in Eukaryotes and SecYEG in Bacteria. It is located in the endoplasmic reticulum of Eukaryotes and in the cytoplasmic membrane of Bacteria where it constitutes a channel that can be activated by multiple partner proteins. These partner proteins determine the mechanism of polypeptide movement across the channel. During SRP-dependent co-translational targeting, the ribosome threads the nascent protein directly into the Sec channel. This pathway is in Bacteria mainly dedicated for membrane proteins but in Eukaryotes also employed by secretory proteins. The alternative pathway, leading to post-translational translocation across the Sec translocon engages an ATP-dependent pushing mechanism by the motor protein SecA in Bacteria and a ratcheting mechanism by the lumenal chaperone BiP in Eukaryotes. Protein transport and biogenesis is also assisted by additional proteins at the lateral gate of SecY/Sec61α and in the lumen of the endoplasmic reticulum or in the periplasm of bacterial cells. The modular assembly enables the Sec complex to transport a vast array of substrates. In this review we summarize recent biochemical and structural information on the prokaryotic and eukaryotic Sec translocons and we describe the remarkably complex interaction network of the Sec complexes.  相似文献   

8.
The metazoan Sec61 translocon transports polypeptides into and across the membrane of the endoplasmic reticulum via two major routes, a well-established co-translational pathway and a post-translational alternative. We have used two model substrates to explore the elements of a secretory protein precursor that preferentially direct it towards a co- or post-translational pathway for ER translocation. Having first determined the capacity of precursors to enter ER derived microsomes post-translationally, we then exploited semi-permeabilized mammalian cells specifically depleted of key membrane components using siRNA to address their contribution to the membrane translocation process. These studies suggest precursor chain length is a key factor in the post-translational translocation at the mammalian ER, and identify Sec62 and Sec63 as important components acting on this route. This role for Sec62 and Sec63 is independent of the signal sequence that delivers the precursor to the ER. However, the signal sequence can influence the subsequent membrane translocation process, conferring sensitivity to a small molecule inhibitor and dictating reliance on the molecular chaperone BiP. Our data support a model where secretory protein precursors that fail to engage the signal recognition particle, for example because they are short, are delivered to the ER membrane via a distinct route that is dependent upon both Sec62 and Sec63. Although this requirement for Sec62 and Sec63 is unaffected by the specific signal sequence that delivers a precursor to the ER, this region can influence subsequent events, including both Sec61 mediated transport and the importance of BiP for membrane translocation. Taken together, our data suggest that an ER signal sequence can regulate specific aspects of Sec61 mediated membrane translocation at a stage following Sec62/Sec63 dependent ER delivery.  相似文献   

9.
A Müsch  M Wiedmann  T A Rapoport 《Cell》1992,69(2):343-352
We show by photocross-linking that nascent secretory proteins, during their passage through the endoplasmic reticulum membrane of S. cerevisiae, are in physical contact with Sec61p and Sec62p, two genetically identified membrane proteins that are essential for in vivo translocation. Sec61p seems to be in continuous contact, whereas Sec62p is involved only transiently. Translocation comprises both ATP-dependent and -independent phases of interaction with the Sec proteins. The results suggest a direct role of the Sec proteins in translocation.  相似文献   

10.
Yeast microsomes contain a heptameric Sec complex involved in post-translational protein transport that is composed of a heterotrimeric Sec61p complex and a tetrameric Sec62-Sec63 complex. The trimeric Sec61p complex also exists as a separate entity that probably functions in co-translational protein transport, like its homolog in mammals. We have now discovered in the yeast endoplasmic reticulum membrane a second, structurally related trimeric complex, named Ssh1p complex. It consists of Ssh1p1 (Sec sixty-one homolog 1), a rather distant relative of Sec61p, of Sbh2p, a homolog of the Sbh1p subunit of the Sec61p complex, and of Sss1p, a component common to both trimeric complexes. In contrast to Sec61p, Ssh1p is not essential for cell viability but it is required for normal growth rates. Sbh1p and Sbh2p individually are also not essential, but cells lacking both proteins are impaired in their growth at elevated temperatures and accumulate precursors of secretory proteins; microsomes isolated from these cells also exhibit a reduced rate of post-translational protein transport. Like the Sec61p complex, the Ssh1p complex interacts with membrane-bound ribosomes, but it does not associate with the Sec62-Sec63p complex to form a heptameric Sec complex. We therefore propose that it functions exclusively in the co-translational pathway of protein transport.  相似文献   

11.
Previous electrophysiological experiments characterized the Sec61 complex, which provides the aqueous path for entry of newly-synthesized polypeptides into the mammalian endoplasmic reticulum, as a highly dynamic channel that, once activated by precursor proteins, fluctuates between main open states with mean conductances of 220 and 550 pS. Millimolar concentrations of lanthanum ions simultaneously restricted the dynamics of the Sec61 channel and inhibited translocation of polypeptides. Molecular modeling indicates that lanthanum binding sites cluster at the putative lateral gate of the Sec61 complex and suggests that structural flexibility of the lateral gate is essential for channel and protein transport activities of the Sec61 complex.  相似文献   

12.
To determine whether the yeast Sec61p translocation pore is a high-affinity ribosome receptor in the endoplasmic reticulum, we isolated the Sec61p complex using an improved protocol in which contaminants found previously to be associated with the complex are absent. The purified complex, which contains Sec61p with an amino terminal hexahistidine tag, was active since it rescued a sec61–3 post-translational translocation defect in a reconstituted system. Co-reconstitution of the Sec61p and Sec63p complexes into liposomes failed to support post-translational translocation, suggesting that Sec62p is required for this process. By Scatchard analysis, the purified Sec61p complex bound to yeast ribosomes when reconstituted into liposomes with a KD of 5.6 n m , a value similar to the KD obtained when ribosome binding to total microsomal protein was measured (2.7 n m ). In addition, a mammalian protein, p180, which has been proposed to be a ribosome receptor, was expressed in yeast, and endoplasmic reticulum-derived microsomes isolated from this strain exhibited ∼2.3-fold greater binding to yeast ribosomes. Despite this increase in ribosome binding, neither co- nor post-translational translocation was compromised in vivo . In sum, our data suggest that the Sec61p complex is a ribosome receptor in the yeast endoplasmic reticulum membrane.  相似文献   

13.
The Sec61 translocon of the endoplasmic reticulum (ER) membrane forms an aqueous pore, allowing polypeptides to be transferred across or integrated into membranes. Protein translocation into the ER can occur co- and posttranslationally. In yeast, posttranslational translocation involves the heptameric translocase complex including its Sec62p and Sec63p subunits. The mammalian ER membrane contains orthologs of yeast Sec62p and Sec63p, but their function is poorly understood. Here, we analyzed the effects of excess and deficit Sec63 on various ER cargoes using human cell culture systems. The overexpression of Sec63 reduces the steady-state levels of viral and cellular multi-spanning membrane proteins in a cotranslational mode, while soluble and single-spanning ER reporters are not affected. Consistent with this, the knock-down of Sec63 increases the steady-state pools of polytopic ER proteins, suggesting a substrate-specific and regulatory function of Sec63 in ER import. Overexpressed Sec63 exerts its down-regulating activity on polytopic protein levels independent of its Sec62-interacting motif, indicating that it may not act in conjunction with Sec62 in human cells. The specific action of Sec63 is further sustained by our observations that the up-regulation of either Sec62 or two other ER proteins with lumenal J domains, like ERdj1 and ERdj4, does not compromise the steady-state level of a multi-spanning membrane reporter. A J domain-specific mutation of Sec63, proposed to weaken its interaction with the ER resident BiP chaperone, reduces the down-regulating capacity of excess Sec63, suggesting an involvement of BiP in this process. Together, these results suggest that Sec63 may perform a substrate-selective quantity control function during cotranslational ER import.  相似文献   

14.
M Pilon  R Schekman    K R?misch 《The EMBO journal》1997,16(15):4540-4548
Degradation of misfolded secretory proteins has long been assumed to occur in the lumen of the endoplasmic reticulum (ER). Recent evidence, however, suggests that such proteins are instead degraded by proteasomes in the cytosol, although it remains unclear how the proteins are transported out of the ER. Here we provide the first genetic evidence that Sec61p, the pore-forming subunit of the protein translocation channel in the ER membrane, is directly involved in the export of misfolded secretory proteins. We describe two novel mutants in yeast Sec61p that are cold-sensitive for import into the ER in both intact yeast cells and a cell-free system. Microsomes derived from these mutants are defective in exporting misfolded secretory proteins. These proteins become trapped in the ER and are associated with Sec61p. We conclude that misfolded secretory proteins are exported for degradation from the ER to the cytosol via channels formed by Sec61p.  相似文献   

15.
Protein translocation into the endoplasmic reticulum occurs at pore-forming structures known as translocons. In yeast, two different targeting pathways converge at a translocation pore formed by the Sec61 complex. The signal recognition particle-dependent pathway targets nascent precursors co-translationally, whereas the Sec62p-dependent pathway targets polypeptides post-translationally. In addition to the Sec61 complex, both pathways also require Sec63p, an integral membrane protein of the Hsp40 family, and Kar2p, a soluble Hsp70 located in the ER lumen. Using a series of mutant alleles, we demonstrate that a conserved Brl (Brr2-like) domain in the COOH-terminal cytosolic region of Sec63p is essential for function both in vivo and in vitro. We further demonstrate that this domain is required for assembly of two oligomeric complexes of 350 and 380 kDa, respectively. The larger of these corresponds to the heptameric "SEC complex" required for post-translational translocation. However, the 350-kDa complex represents a newly defined hexameric SEC' complex comprising Sec61p, Sss1p, Sbh1p, Sec63p, Sec71p, and Sec72p. Our data indicate that the SEC' complex is required for co-translational protein translocation across the yeast ER membrane.  相似文献   

16.
The evolutionarily conserved Sec61 translocon mediates the translocation and membrane insertion of proteins. For the integration of proteins into the membrane, the Sec61 translocon opens laterally to the lipid bilayer. Previous studies suggest that the lateral opening of the channel is mediated by the helices TM2b and TM7 of a pore-forming subunit of the Sec61 translocon. To map key residues in TM2b and TM7 in yeast Sec61 that modulate lateral gating activity, we performed alanine scanning and in vivo site-directed photocross-linking experiments. Alanine scanning identified two groups of critical residues in the lateral gate, one group that leads to defects in the translocation and membrane insertion of proteins and the other group that causes faster translocation and facilitates membrane insertion. Photocross-linking data show that the former group of residues is located at the interface of the lateral gate. Furthermore, different degrees of defects for the membrane insertion of single- and double-spanning membrane proteins were observed depending on whether the mutations were located in TM2b or TM7. These results demonstrate subtle differences in the molecular mechanism of the signal sequence binding/opening of the lateral gate and membrane insertion of a succeeding transmembrane segment in a polytopic membrane protein.  相似文献   

17.
The yeast endoplasmic reticulum has three distinct protein translocation channels. The heterotrimeric Sec61 and Ssh1 complexes, which bind translating ribosomes, mediate cotranslational translocation of proteins targeted to the endoplasmic reticulum by the signal recognition particle (SRP) and SRP receptor targeting pathway, whereas the heptameric Sec complex has been proposed to mediate ribosome-independent post-translational translocation of proteins with less hydrophobic signal sequences that escape recognition by the SRP. However, multiple reports have proposed that the Sec complex may function cotranslationally and be involved in translocation or integration of SRP-dependent protein translocation substrates. To provide insight into these conflicting views, we induced expression of the tobacco etch virus protease to achieve rapid inactivation of the Sec complex by protease-mediated cleavage within the cytoplasmic domain of the Sec63 protein. Protein translocation assays conducted after tobacco etch virus protease induction revealed a complete block in translocation of two well-characterized substrates of the Sec complex, carboxypeptidase Y (CPY) and Gas1p, when the protease cleavage sites were located at structural domain boundaries in Sec63. However, integration of SRP-dependent membrane protein substrates was not detectably impacted. Moreover, redirecting CPY to the cotranslational pathway by increasing the hydrophobicity of the signal sequence rendered translocation of CPY insensitive to inactivation of the Sec complex. We conclude that the Sec complex is primarily responsible for the translocation of yeast secretome proteins with marginally hydrophobic signal sequences.  相似文献   

18.
Posttranslational translocation of prepro-alpha-factor (ppalphaF) across the yeast endoplasmic reticulum membrane begins with the binding of the signal sequence to the Sec complex, a membrane component consisting of the trimeric Sec61p complex and the tetrameric Sec62p/63p complex. We show by photo-cross-linking that the signal sequence is bound directly to a site where it contacts simultaneously Sec61p and Sec62p, suggesting that there is a single signal sequence recognition step. We found no evidence for the simultaneous contact of the signal sequence with two Sec61p molecules. To identify transmembrane segments of Sec61p that line the actual translocation pore, a late translocation intermediate of ppalphaF was generated with photoreactive probes incorporated into the mature portion of the polypeptide. Cross-linking to multiple regions of Sec61p was observed. In contrast to the signal sequence, neighboring positions of the mature portion of ppalphaF had similar interactions with Sec61p. These data suggest that the channel pore is lined by several transmembrane segments, which have no significant affinity for the translocating polypeptide chain.  相似文献   

19.
20.
Import of secretory proteins into the Endoplasmic Reticulum (ER) is an established function of the Sec61 channel. The contribution of the Sec61 channel to export of misfolded proteins from the ER for degradation by proteasomes is still controversial, but the proteasome 19S regulatory particle (RP) is necessary and sufficient for extraction of specific misfolded proteins from the ER, and binds directly to the Sec61 channel. In this work we have identified an import-competent sec61 mutant, S353C, carrying a point mutation in ER-lumenal loop 7 which reduces affinity of the cytoplasmic face of the Sec61 channel for the 19S RP. This indicates that the interaction between the 19S RP and the Sec61 channel is dependent on conformational changes in Sec61p hinging on loop 7. The sec61-S353C mutant had no measurable ER import defects and did not cause ER stress in intact cells, but reduced ER-export of a 19S RP-dependent misfolded protein when proteasomes were limiting in a cell-free assay. Our data suggest that the interaction between the 19S RP and the Sec61 channel is essential for the export of specific substrates from the ER to the cytosol for proteasomal degradation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号