首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
MspA nanopores from subunit dimers   总被引:1,自引:0,他引:1  
Mycobacterium smegmatis porin A (MspA) forms an octameric channel and represents the founding member of a new family of pore proteins. Control of subunit stoichiometry is important to tailor MspA for nanotechnological applications. In this study, two MspA monomers were connected by linkers ranging from 17 to 62 amino acids in length. The oligomeric pore proteins were purified from M. smegmatis and were shown to form functional channels in lipid bilayer experiments. These results indicated that the peptide linkers did not prohibit correct folding and localization of MspA. However, expression levels were reduced by 10-fold compared to wild-type MspA. MspA is ideal for nanopore sequencing due to its unique pore geometry and its robustness. To assess the usefulness of MspA made from dimeric subunits for DNA sequencing, we linked two M1-MspA monomers, whose constriction zones were modified to enable DNA translocation. Lipid bilayer experiments demonstrated that this construct also formed functional channels. Voltage gating of MspA pores made from M1 monomers and M1-M1 dimers was identical indicating similar structural and dynamic channel properties. Glucose uptake in M. smegmatis cells lacking porins was restored by expressing the dimeric mspA M1 gene indicating correct folding and localization of M1-M1 pores in their native membrane. Single-stranded DNA hairpins produced identical ionic current blockades in pores made from monomers and subunit dimers demonstrating that M1-M1 pores are suitable for DNA sequencing. This study provides the proof of principle that production of single-chain MspA pores in M. smegmatis is feasible and paves the way for generating MspA pores with altered stoichiometries. Subunit dimers enable better control of the chemical and physical properties of the constriction zone of MspA. This approach will be valuable both in understanding transport across the outer membrane in mycobacteria and in tailoring MspA for nanopore sequencing of DNA.  相似文献   

2.
Nanopore sequencing has the potential to become a fast and low-cost DNA sequencing platform. An ionic current passing through a small pore would directly map the sequence of single stranded DNA (ssDNA) driven through the constriction. The pore protein, MspA, derived from Mycobacterium smegmatis, has a short and narrow channel constriction ideally suited for nanopore sequencing. To study MspA's ability to resolve nucleotides, we held ssDNA within the pore using a biotin-NeutrAvidin complex. We show that homopolymers of adenine, cytosine, thymine, and guanine in MspA exhibit much larger current differences than in α-hemolysin. Additionally, methylated cytosine is distinguishable from unmethylated cytosine. We establish that single nucleotide substitutions within homopolymer ssDNA can be detected when held in MspA's constriction. Using genomic single nucleotide polymorphisms, we demonstrate that single nucleotides within random DNA can be identified. Our results indicate that MspA has high signal-to-noise ratio and the single nucleotide sensitivity desired for nanopore sequencing devices.  相似文献   

3.
The insertion of fully folded and assembled ion channels and pores into planar lipid bilayers for electrical recording has been facilitated by the use of conventional detergents at a final concentration below the critical micelle concentration (CMC). After the desired number of channels or pores (often one) has been incorporated into a bilayer, it is important to prevent further insertion events, which is often done by awkward techniques such as perfusion. Here, we show that the addition of single-chain fluorinated amphiphiles (F-amphiphiles) with zwitterionic, simple neutral, and neutral oligomeric headgroups at a concentration above the CMC prevents the further insertion of staphylococcal α-hemolysin pores, MspA pores, and Kcv potassium channels into lipid bilayers. We found the commercially available F(6)FC (fluorinated fos-choline with a C(6)F(13)C(2)H(4) chain) to be the least perturbing and most effective agent for this purpose. Bilayers are known to be resistant to F-amphiphiles, which in this case we suppose sequester the pores and channels within amphiphile aggregates. We suggest that F-amphiphiles might be useful in the fabrication of bilayer arrays for nanopore sensor devices and the rapid screening of membrane proteins.  相似文献   

4.
Malyshev et al. showed that the four-letter genetic code within a living organism could be expanded to include the unnatural DNA bases dNaM and d5SICS. However, verification and detection of these unnatural bases in DNA requires new sequencing techniques. Here we provide proof of concept detection of dNaM and d5SICS in DNA oligomers via nanopore sequencing using the nanopore MspA. We find that both phi29 DNA polymerase and Hel308 helicase are capable of controlling the motion of DNA containing dNaM and d5SICS through the pore and that single reads are sufficient to detect the presence and location of dNaM and d5SICS within single molecules.  相似文献   

5.
Nanopore technologies are being developed for fast and direct sequencing of single DNA molecules through detection of ionic current modulations as DNA passes through a pore's constriction. Here we demonstrate the ability to resolve changes in current that correspond to a known DNA sequence by combining the high sensitivity of a mutated form of the protein pore Mycobacterium smegmatis porin A (MspA) with phi29 DNA polymerase (DNAP), which controls the rate of DNA translocation through the pore. As phi29 DNAP synthesizes DNA and functions like a motor to pull a single-stranded template through MspA, we observe well-resolved and reproducible ionic current levels with median durations of ~28 ms and ionic current differences of up to 40 pA. Using six different DNA sequences with readable regions 42-53 nucleotides long, we record current traces that map to the known DNA sequences. With single-nucleotide resolution and DNA translocation control, this system integrates solutions to two long-standing hurdles to nanopore sequencing.  相似文献   

6.
An emerging DNA sequencing technique uses protein or solid-state pores to analyze individual strands as they are driven in single-file order past a nanoscale sensor. However, uncontrolled electrophoresis of DNA through these nanopores is too fast for accurate base reads. Here, we describe forward and reverse ratcheting of DNA templates through the α-hemolysin nanopore controlled by phi29 DNA polymerase without the need for active voltage control. DNA strands were ratcheted through the pore at median rates of 2.5-40 nucleotides per second and were examined at one nucleotide spatial precision in real time. Up to 500 molecules were processed at ~130 molecules per hour through one pore. The probability of a registry error (an insertion or deletion) at individual positions during one pass along the template strand ranged from 10% to 24.5% without optimization. This strategy facilitates multiple reads of individual strands and is transferable to other nanopore devices for implementation of DNA sequence analysis.  相似文献   

7.
Mycobacteria protect themselves with an outer lipid bilayer, which is the thickest biological membrane hitherto known and has an exceptionally low permeability rendering mycobacteria intrinsically resistant against many antibiotics. Pore proteins mediate the diffusion of hydrophilic nutrients across this membrane. Electron microscopy revealed that the outer membrane of Mycobacterium smegmatis contained about 1000 protein pores per microm(2), which are about 50-fold fewer pores per microm(2) than in Gram-negative bacteria. The projection structure of the major porin MspA of M. smegmatis was determined at 17 A resolution. MspA forms a cone-like tetrameric complex of 10 nm in length with a single central pore. Thus, MspA is drastically different from the trimeric porins of Gram-negative bacteria and represents a new class of channel proteins. The formation of MspA micelles indicated that the ends of MspA have different hydrophobicities. Oriented insertion of MspA into membranes was demonstrated in lipid bilayer experiments, which revealed a strongly asymmetrical voltage gating of MspA channels at -30 mV. The length of MspA is sufficient to span the outer membrane and contributes in combination with the tapering end of the pore and the low number of pores to the low permeability of the cell wall of M. smegmatis for hydrophilic compounds.  相似文献   

8.
9.
Hemolysin E (HlyE, ClyA, SheA) is a pore-forming protein toxin isolated from Escherichia coli. The three-dimensional structure of its water-soluble form is known, but that of the membrane-bound HlyE complex is not. We have used electron microscopy and image processing to show that the pores are predominantly octameric. Three-dimensional reconstructions of HlyE pores assembled in lipid/detergent micelles suggest a degree of conformational variability in the octameric complexes. The reconstructed pores were significantly longer than the maximum dimension of the water-soluble molecule, indicating that conformational changes occur on pore formation.  相似文献   

10.
Nanopore sequencing technology: nanopore preparations   总被引:2,自引:0,他引:2  
For the past decade, nanometer-scale pores have been developed as a powerful technique for sensing biological macromolecules. Various potential applications using these nanopores have been reported at the proof-of-principle stage, with the eventual aim of using them as an alternative to de novo DNA sequencing. Currently, there have been two general approaches to prepare nanopores for nucleic acid analysis: organic nanopores, such as alpha-hemolysin pores, are commonly used for DNA analysis, whereas synthetic solid-state nanopores have also been developed using various conventional and non-conventional fabrication techniques. In particular, synthetic nanopores with pore sizes smaller than the alpha-hemolysin pores have been prepared, primarily by electron-beam-assisted techniques: these are more robust and have better dimensional adjustability. This review will examine current methods of nanopore preparation, ranging from organic pore preparations to recent developments in synthetic nanopore fabrications.  相似文献   

11.
Jung Y  Cheley S  Braha O  Bayley H 《Biochemistry》2005,44(25):8919-8929
The cavity within the cap domain of the transmembrane staphylococcal alpha-hemolysin (alphaHL) pore is roughly a sphere of diameter approximately 45 A (molecular surface volume approximately 39,500 A(3)). We tested the ability of the cavity to accommodate exogenous polypeptide chains. Concatemerized Gly/Ser-containing sequences ("loops", L; number of repeats = n; number of residues = 10n + 5, n = 0-21) were inserted at a position located within the cavity of the fully assembled heptameric alphaHL pore. Homomeric pores containing 25 or less residues in each loop (n or= 7, only one L subunit was incorporated. As the inserted loop was lengthened, transient closures were observed in planar bilayer experiments with single pores. However, L(1)W(6) pores with very long loops (n = 14 and 21) had unitary conductance values close to those of W(7), suggesting that the loop is extruded through the opening in the cap of the pore into the external medium. Further analysis of bilayer recordings and electrophoretic migration patterns indicates that the upper capacity of the cavity is approximately 175 amino acids. The findings suggest that small functional peptides or proteins might be assembled within the alphaHL pore.  相似文献   

12.
Independent gating of single pores in CLC-0 chloride channels.   总被引:3,自引:0,他引:3  
The Cl- channel from the Torpedo electric organ, CLC-0, is the prototype of a large gene family of Cl- channels. At the single-channel level, CLC-0 shows a "double-barreled" behavior. Recently it was shown that CLC-0 is a dimer, and it was suggested that each subunit forms a single pore. The two protopores are gated individually by a fast voltage and anion-dependent gating mechanism. A slower common gating mechanism operates on both pores simultaneously. Previously, wild-type/mutant heteromeric channels had been constructed that display a large wild-type pore and small mutant pore. Here we use patch-clamp recording of single wild-type and mutant CLC-0 channels to investigate in detail the dependence of the gating of one protopore on the physically attached neighboring pore. No difference in rate constants of opening and closing of protopores could be found comparing homomeric wild-type and heteromeric wild-type/mutant channels. In addition, detailed kinetic analysis reveals that gating of single subunits is not correlated with the gating of the neighboring subunit. The results are consistent with the view that permeation and fast gating of individual pores are fully independent of the neighboring pore. Because the two subunits are associated in a common protein complex, opening and closing transitions of individual pores are probably due to only small conformational changes in each pore. In addition to the fast and slow gating mechanisms known previously for CLC-0, in the course of this study we occasionally observed an additional gating process that led to relatively long closures of single pores.  相似文献   

13.
We have previously demonstrated that a nanometer-diameter pore in a nanometer-thick metal-oxide-semiconductor-compatible membrane can be used as a molecular sensor for detecting DNA. The prospects for using this type of device for sequencing DNA are avidly being pursued. The key attribute of the sensor is the electric field-induced (voltage-driven) translocation of the DNA molecule in an electrolytic solution across the membrane through the nanopore. To complement ongoing experimental studies developing such pores and measuring signals in response to the presence of DNA, we conducted molecular dynamics simulations of DNA translocation through the nanopore. A typical simulated system included a patch of a silicon nitride membrane dividing water solution of potassium chloride into two compartments connected by the nanopore. External electrical fields induced capturing of the DNA molecules by the pore from the solution and subsequent translocation. Molecular dynamics simulations suggest that 20-basepair segments of double-stranded DNA can transit a nanopore of 2.2 x 2.6 nm(2) cross section in a few microseconds at typical electrical fields. Hydrophobic interactions between DNA bases and the pore surface can slow down translocation of single-stranded DNA and might favor unzipping of double-stranded DNA inside the pore. DNA occluding the pore mouth blocks the electrolytic current through the pore; these current blockades were found to have the same magnitude as the blockade observed when DNA transits the pore. The feasibility of using molecular dynamics simulations to relate the level of the blocked ionic current to the sequence of DNA was investigated.  相似文献   

14.
A detailed understanding of the kinetics of DNA motion though nanometer-scale pores is important for the successful development of many of the proposed next-generation rapid DNA sequencing and analysis methods. Many of these approaches require DNA motion through nanopores to be slowed by several orders of magnitude from its native translocation velocity so that the translocation times for individual nucleotides fall within practical timescales for detection. With the increased dwell time of DNA in the pore, DNA-pore interactions begin to play an increasingly important role in translocation kinetics. In previous work, we and others observed that when the DNA dwell time in the pore is substantial (>1 ms), DNA motion in α-hemolysin (α-HL) pores leads to nonexponential kinetics in the escape of DNA out of the pore. Here we show that a three-state model for DNA escape, involving stochastic binding interactions of DNA with the pore, accurately reproduces the experimental data. In addition, we investigate the sequence dependence of the DNA escape process and show that the interaction strength of adenine with α-HL is substantially lower relative to cytosine. Our results indicate a difference in the process by which DNA moves through an α-HL nanopore when the motion is fast (microsecond timescale) as compared with when it is slow (millisecond timescale) and strongly influenced by DNA-pore interactions of the kind reported here. We also show the ability of wild-type α-HL to detect and distinguish between 5-methylcytosine and cytosine based on differences in the absolute ionic current through the pore in the presence of these two nucleotides. The results we present here regarding sequence-dependent (and dwell-time-dependent) DNA-pore interaction kinetics will have important implications for the design of methods for DNA analysis through reduced-velocity motion in nanopores.  相似文献   

15.
Engineered protein nanopores, such as those based on α-hemolysin from Staphylococcus aureus have shown great promise as components of next-generation DNA sequencing devices. However, before such protein nanopores can be used to their full potential, the conformational dynamics and translocation pathway of the DNA within them must be characterized at the individual molecule level. Here, we employ atomistic molecular dynamics simulations of single-stranded DNA movement through a model α-hemolysin pore under an applied electric field. The simulations enable characterization of the conformations adopted by single-stranded DNA, and allow exploration of how the conformations may impact on translocation within the wild-type model pore and a number of mutants. Our results show that specific interactions between the protein nanopore and the DNA can have a significant impact on the DNA conformation often leading to localized coiling, which in turn, can alter the order in which the DNA bases exit the nanopore. Thus, our simulations show that strategies to control the conformation of DNA within a protein nanopore would be a distinct advantage for the purposes of DNA sequencing.  相似文献   

16.
Nanoscale pores have proved useful as a means to assay DNA and are actively being developed as the basis of genome sequencing methods. Hairpin DNA (hpDNA), having both double-helical and overhanging coil portions, can be trapped in a nanopore, giving ample time to execute a sequence measurement. In this article, we provide a detailed account of hpDNA interaction with a synthetic nanopore obtained through extensive all-atom molecular dynamics simulations. For synthetic pores with minimum diameters from 1.3 to 2.2 nm, we find that hpDNA can translocate by three modes: unzipping of the double helix and—in two distinct orientations—stretching/distortion of the double helix. Furthermore, each of these modes can be selected by an appropriate choice of the pore size and voltage applied transverse to the membrane. We demonstrate that the presence of hpDNA can dramatically alter the distribution of ions within the pore, substantially affecting the ionic current through it. In experiments and simulations, the ionic current relative to that in the absence of DNA can drop below 10% and rise beyond 200%. Simulations associate the former with the double helix occupying the constriction and the latter with accumulation of DNA that has passed through the constriction.  相似文献   

17.
K Paul  M K Morell  T J Andrews 《Biochemistry》1991,30(41):10019-10026
Fully functional Synechococcus PCC 6301 ribulose 1,5-bisphosphate carboxylase-oxygenase (kcat = 11.8 s-1) was assembled in vitro following separate expression of the large- and small-subunit genes in different Escherichia coli cultures. The small subunits were expressed predominantly as monomers, in contrast to the large subunits which have been shown to be largely octameric when expressed separately [Andrews, T. J. (1988) J. Biol. Chem. 263, 12213-12219]. This separate expression system was applied to the study of mutations in the amino-terminal arm of the small subunit, which is one of the major sites of contact with the large subunit in the assembled hexadecamer. It enabled the effects of a mutation on the tightness of binding of the small subunit to the large-subunit octamer to be distinguished from the effects of the same mutation on catalysis carried out by the assembled complex when fully saturated with mutant small subunits. This important distinction cannot be made when both subunits are expressed together in the same cell. Substitutions of conserved amino acid residues at positions 14 (Ala, Val, Gly, or Asp instead of Thr) and 17 (Cys instead of Tyr), which make important contacts with conserved large-subunit residues, were introduced by site-directed mutagenesis. All mutant small subunits were able to bind to large subunits and form active enzymes. A potential intersubunit hydrogen bond involving the Thr-14 hydroxyl group is shown to be unimportant. However, the binding of Gly-14, Asp-14, and Cys-17 mutant small subunits was weaker, and the resultant mutant enzymes had reduced catalytic rates compared to the wild type.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
The human chaperonin complex is a ~ 1 MDa nanomachine composed of two octameric rings formed from eight similar but non-identical subunits called CCT. Here, we are elucidating the mechanism of a heritable CCT5 subunit mutation that causes profound neuropathy in humans. In previous work, we introduced an equivalent mutation in an archaeal chaperonin that assembles into two octameric rings like in humans but in which all subunits are identical. We reported that the hexadecamer formed by the mutant subunit is unstable with impaired chaperoning functions. This study quantifies the loss of structural stability in the hexadecamer due to the pathogenic mutation, using differential scanning calorimetry (DSC) and isothermal titration calorimetry (ITC). The disassembly of the wild type complex, which is tightly coupled with subunit denaturation, was decoupled by the mutation without affecting the stability of individual subunits. Our results verify the effectiveness of the homo-hexadecameric archaeal chaperonin as a proxy to assess the impact of subtle defects in heterologous systems with mutations in a single subunit.  相似文献   

19.
CLC chloride channels comprise a gene family with nine mammalian members. Probably all CLC channels form homodimers, and some CLC proteins may also associate to heterodimers. ClC-0 and ClC-1, the only CLC channels investigated at the single-channel level, display two conductances of equal size which are thought to result from two separate pores, formed individually by the two monomers. We generated concatemeric channels containing one subunit of ClC-0 together with one subunit of ClC-1 or ClC-2. They should display two different conductances if one monomer were sufficient to form one pore. Indeed, we found a 8-picosiemens (pS) conductance (corresponding to ClC-0) that was associated with either a 1.8-pS (ClC-1) or a 2.8-pS (ClC-2) conductance. These conductances retained their typical gating, but the slow gating of ClC-0 that affects both pores simultaneously was lost. ClC-2 and ClC-0 current components were modified by point mutations in the corresponding subunit. The ClC-2 single pore of the mixed dimer was compared with the pores in the ClC-2 homodimer and found to be unaltered. We conclude that each monomer individually forms a gated pore. CLC dimers in general must be imagined as having two pores, as shown previously for ClC-0.  相似文献   

20.
The translocation of polymers through pores has been examined for almost two decades with an emphasis on nucleic acids. There are also interesting circumstances in biology where polypeptides and polysaccharides pass through transmembrane pores, and our laboratory has been investigating examples of them. Single-molecule nucleic acid sequencing by nanopore technology is an emerging approach for ultrarapid genomics. Strand sequencing with engineered protein nanopores is a viable technology which has required advances in four areas: nucleic acid threading, nucleobase identification, controlled strand translocation, and nanopore arrays (Bayley, 2012). The latter remain a pressing need and our attempts to improve arrays will be described. In several physiological situations, folded proteins pass through transmembrane pores. We have developed a model system comprising mutant thioredoxins as the translocated proteins, and staphylococcal alpha-hemolysin, as the pore. Our findings support a mechanism in which there is local unfolding near the terminus of the polypeptide that enters the pore. The remainder of the protein then unfolds spontaneously and diffuses through the pore into the recipient compartment (Rodriguez-Larrea & Bayley, 2013). We have also examined the pore formed by the E. coli outer membrane protein Wza, which transports capsular polysaccharide from its site of synthesis to the outside of the cell. We made mutant open forms of the pore and screened blockers for them by electrical recording in planar bilayers. The most effective blocker binds in the alpha-helix barrel of Wza, a site accessible from the external medium, and therefore, a prospective target for antibiotics (Kong et al., 2013).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号