首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We have studied the role of five ABC transporter genes (MgAtr to MgAtr5) from the wheat pathogen Mycosphaerella graminicola in multidrug resistance (MDR). Complementation of Saccharomyces cerevisiae mutants with the ABC transporter genes from M. graminicola showed that all the genes tested encode proteins that provide protection against chemically unrelated compounds, indicating that their products function as multidrug transporters with distinct but overlapping substrate specificities. Their substrate range in yeast includes fungicides, plant metabolites, antibiotics, and a mycotoxin derived from Fusarium graminearum (diacetoxyscirpenol). Transformants of M. graminicola in which individual ABC transporter genes were deleted or disrupted did not exhibit clear-cut phenotypes, probably due to the functional redundancy of transporters with overlapping substrate specificity. Independently generated MgAtr5 deletion mutants of M. graminicola showed an increase in sensitivity to the putative wheat defence compound resorcinol and to the grape phytoalexin resveratrol, suggesting a role for this transporter in protecting the fungus against plant defence compounds. Bioassays with antagonistic bacteria indicated that MgAtr2 provides protection against metabolites produced by Pseudomonas fluorescens and Burkholderia cepacia. In summary, our results show that ABC transporters from M. graminicola play a role in protection against toxic compounds of natural and artificial origin.  相似文献   

2.
3.
4.
The ascomycete fungus, Fusarium graminearum (teleomorph Gibberella zeae), is the most common causal agent of Fusarium head blight (FHB), a devastating disease for cereal crops worldwide. F. graminearum produces ascospores (sexual spores) and conidia (asexual spores), which can serve as disease inocula of FHB. Meanwhile, Fusarium-infected grains are often contaminated with mycotoxins such as trichothecenes (TRIs), fumonisins, and zearalenones, among which TRIs are related to the pathogenicity of F. graminearum, and these toxins are hazardous to humans and livestock. In recent years, with the complete genome sequencing of F. graminearum, an increasing number of functional genes involved in the production of secondary metabolites, hyphal differentiation, sexual and asexual reproduction, virulence and pathogenicity have been identified from F. graminearum. In this review, the secondary metabolite synthesis, hyphal development and pathogenicity related genes in F. graminearum were thoroughly summarized, and the genes associated with secondary metabolites, sexual reproduction, energy metabolism, and pathogenicity were highlighted.  相似文献   

5.
6.
The ABC transporter-encoding gene MgAtr7 from the wheat pathogen Mycosphaerella graminicola was cloned based upon its high homology to ABC transporters involved in azole-fungicide sensitivity. Genomic and cDNA sequences indicated that the N-terminus of this ABC transporter contains a motif characteristic for a dityrosine/pyoverdine biosynthesis protein. This makes MgAtr7 the first member of a new class of fungal ABC transporters harboring both a transporter and a biosynthetic moiety. A homologue of MgAtr7 containing the same biosynthetic moiety was only found in the Fusarium graminearum genome and not in any other fungal genome examined so far. The gene structure of both orthologous transporters is highly conserved and the genomic area surrounding the ABC transporter exhibits micro-synteny between M. graminicola and F. graminearum. Functional analyses revealed that MgAtr7 is neither required for virulence nor involved in fungicide sensitivity but indicated a role in maintenance of iron homeostasis.  相似文献   

7.
The ATP-binding cassette (ABC) protein superfamily constitutes one of the largest protein families known in plants. In this report, we performed a complete inventory of ABC protein genes in Vitis vinifera, the whole genome of which has been sequenced. By comparison with ABC protein members of Arabidopsis thaliana, we identified 135 putative ABC proteins with 1 or 2 NBDs in V. vinifera. Of these, 120 encode intrinsic membrane proteins, and 15 encode proteins missing TMDs. V. vinifera ABC proteins can be divided into 13 subfamilies with 79 “full-size,” 41 “half-size,” and 15 “soluble” putative ABC proteins. The main feature of the Vitis ABC superfamily is the presence of 2 large subfamilies, ABCG (pleiotropic drug resistance and white-brown complex homolog) and ABCC (multidrug resistance-associated protein). We identified orthologs of V. vinifera putative ABC transporters in different species. This work represents the first complete inventory of ABC transporters in V. vinifera. The identification of Vitis ABC transporters and their comparative analysis with the Arabidopsis counterparts revealed a strong conservation between the 2 species. This inventory could help elucidate the biological and physiological functions of these transporters in V. vinifera.  相似文献   

8.
《Fungal biology》2020,124(9):753-765
The cereal infecting fungus Fusarium graminearum is predicted to possess a single homologue of plant RALF (rapid alkalinisation factor) peptides. Fusarium mutant strains lacking FgRALF were generated and found to exhibit wildtype virulence on wheat and Arabidopsis floral tissue. Arabidopsis lines constitutively overexpressing FgRALF exhibited no obvious change in susceptibility to F. graminearum leaf infection. In contrast transient virus-mediated over-expression (VOX) of FgRALF in wheat prior to F. graminearum infection, slightly increased the rate of fungal colonisation of floral tissue. Ten putative Feronia (FER) receptors of RALF peptide were identified bioinformatically in hexaploid wheat (Triticum aestivum). Transient silencing of two wheat FER homoeologous genes prior to F. graminearum inoculation did not alter the subsequent interaction outcome. Collectively, our VOX results show that the fungal RALF peptide may be a minor contributor in F. graminearum virulence but results from fungal gene deletion experiments indicate potential functional redundancy within the F. graminearum genome. We demonstrate that virus-mediated over-expression is a useful tool to provide novel information about gene/protein function when results from gene deletion/disruption experimentation were uninformative.  相似文献   

9.
10.
11.
In the pathogenic bacterium Bacillus anthracis, virulence requires induced expression of the anthrax toxin and capsule genes. Elevated CO2/bicarbonate levels, an indicator of the host environment, provide a signal ex vivo to increase expression of virulence factors, but the mechanism underlying induction and its relevance in vivo are unknown. We identified a previously uncharacterized ABC transporter (BAS2714-12) similar to bicarbonate transporters in photosynthetic cyanobacteria, which is essential to the bicarbonate induction of virulence gene expression. Deletion of the genes for the transporter abolished induction of toxin gene expression and strongly decreased the rate of bicarbonate uptake ex vivo, demonstrating that the BAS2714-12 locus encodes a bicarbonate ABC transporter. The bicarbonate transporter deletion strain was avirulent in the A/J mouse model of infection. Carbonic anhydrase inhibitors, which prevent the interconversion of CO2 and bicarbonate, significantly affected toxin expression only in the absence of bicarbonate or the bicarbonate transporter, suggesting that carbonic anhydrase activity is not essential to virulence factor induction and that bicarbonate, and not CO2, is the signal essential for virulence induction. The identification of this novel bicarbonate transporter essential to virulence of B. anthracis may be of relevance to other pathogens, such as Streptococcus pyogenes, Escherichia coli, Borrelia burgdorferi, and Vibrio cholera that regulate virulence factor expression in response to CO2/bicarbonate, and suggests it may be a target for antibacterial intervention.  相似文献   

12.
Isolates of the Fusarium graminearum species complex (FGSC, n = 446) were collected from wheat spikes from northern and western regions of Iran with a history of Fusarium head blight (FHB) occurrences. The trichothecene mycotoxin genotypes/chemotypes, the associated phylogenetic species, and geographical distribution of these isolates were analyzed. Two phylogenetic species, Fusarium asiaticum and F. graminearum, were identified and were found to belong to sequence characterized amplified region (SCAR) groups V and I. Isolates from F. asiaticum species lineage 6 were within SCAR group V, whereas F. graminearum species lineage 7 were of SCAR group I. Of the 446 isolates assayed, 274 were F. asiaticum species predominantly of the nivalenol (NIV) genotype, while other isolates were either deoxynivalenol (DON) plus 3-acetyldeoxynivalenol (3-AcDON) or DON plus 15-acetyldeoxynivalenol (15-AcDON) genotype. Based on Tri7 gene sequences, a new subpopulation of 15-AcDON producers was observed among F. asiaticum strains in which 11-bp repeats were absent in the Tri7 sequences. The trichothecene chemotype was confirmed and quantified by high-performance liquid chromatography (HPLC) in 46 FGSC isolates. Isolates produced NIV (33.4–108.2 μg/g) and DON (64.7–473.6 μg/g) plus either 3-AcDON (51.4–142.4 μg/g) or 15-AcDON (24.1–99.3 μg/g). Among FGSC isolates, F. asiaticum produced the highest levels of trichothecenes. Using BIOCLIM based on the climate data of 20-year during 1994–2014, modelling geographical distribution of FGSC showed that F. asiaticum was restricted to warmer and humid areas with a median value of mean annual temperature of about 17.5 °C and annual rainfall of 658 mm, respectively (P < 0.05). In contrast, F. graminearum (only 15-AcDON producers) was restricted to cooler and drier areas, with a median value of the mean annual temperature of 14.4 °C and an annual rainfall of 384 mm, respectively (P < 0.05). Based on climate parameters at anthesis, the recorded distribution of F. graminearum and F. asiaticum was similar to that based on BIOCLIM parameters. Therefore, geographic differences on the wheat-growing areas in Iran have had a significant effect on distribution of FGSC and their trichothecene chemotypes.  相似文献   

13.
The enzyme product of the dddD gene, found in several different marine bacteria, acts on dimethylsulfoniopropionate (DMSP), liberating dimethyl sulfide (DMS) and generating 3-OH-propionate as the initially detected C3 product. In many bacteria, dddD is near genes whose sequence suggests that they encode a DMSP transporter. These are of two very different types, in the BCCT (betaine-carnitine-choline transporter) family or resembling members of the ABC super-family that import betaines. Even within these two families, the amino acid sequences of these putative transporters are not particularly similar to each other. Genes for the predicted DMSP transporters of Halomonas and Marinomonas (both BCCT type) and of Burkholderia ambifaria AMMD (ABC-type) were each cloned and introduced into an Escherichia coli mutant (MKH13) that is defective in betaine uptake, and so fails to catabolise DMSP even when a cloned dddD gene was present, due to the failure of the substrate to be imported. DMSP-dependent DMS production (Ddd+ phenotype) was restored by introducing any of these cloned transporters into MKH13 containing dddD. Other marine bacteria use a range of enzymes, called DddL, DddP, DddQ, DddW and DddY, to cleave DMSP, but the various ddd genes that encode them are usually unlinked to any that are predicted to encode betaine transporters. We identified one gene in Sulfitobacter sp. EE-36 and two in Roseovarius nubinhibens ISM, which, when cloned and introduced into E. coli MKH13, overcame its osmotic sensitivity when it was grown with DMSP or other exogenous betaines. These genes all encoded BCCT transporters, but were unlinked to any known genes involved in DMSP catabolism in these two strains of α-proteobacteria.  相似文献   

14.
15.
Fusarium graminearum is a filamentous fungal plant pathogen that infects major cereal crops. The fungus produces both sexual and asexual spores in order to endure unfavorable environmental conditions and increase their numbers and distribution across plants. In a model filamentous fungus, Aspergillus nidulans, early induction of conidiogenesis is orchestrated by the fluffy genes. The objectives of this study were to characterize fluffy gene homologs involved in conidiogenesis and their mechanism of action in F. graminearum. We characterized five fluffy gene homologs in F. graminearum and found that FlbD is the only conserved regulator for conidiogenesis in A. nidulans and F. graminearum. Deletion of fgflbD prevented hyphal differentiation and the formation of perithecia. Successful interspecies complementation using A. nidulans flbD demonstrated that the molecular mechanisms responsible for FlbD functions are conserved in F. graminearum. Moreover, abaA-wetA pathway is positively regulated by FgFlbD during conidiogenesis in F. graminearum. Deleting fgflbD abolished morphological effects of abaA overexpression, which suggests that additional factors for FgFlbD or an AbaA-independent pathway for conidiogenesis are required for F. graminearum conidiation. Importantly, this study led to the construction of a genetic pathway of F. graminearum conidiogenesis and provides new insights into the genetics of conidiogenesis in fungi.  相似文献   

16.
Aims: Considering the agronomic and industrial damage that is caused by the fungus Fusarium graminearum, as well as the serious health risks it poses to humans and animals exposed to F. graminearum‐produced mycotoxin deoxynivalenol (DON), this study evaluated the ability of different lactic acid bacteria (LAB) strains to inhibit fungal development and remove DON in vitro. Methods and Results: The antagonistic effects of strains and commercial cultures of LAB were evaluated against F. graminearum IAPAR 2218 by the agar diffusion method. Additionally, the influence of the culture media, pH and the presence of lactic and acetic acid on these effects was tested. The capacity to remove DON by viable cells and heat‐inactivated cells was analysed in liquid media and quantified by high performance liquid chromatography (HPLC). All isolated strains and commercial cultures inhibited the fungus and removed DON. The pH and culture media concentration did not influence these abilities, but heat inactivation had a strong effect on the ability of bacteria to remove mycotoxin. Conclusions: The isolated bacteria are able to inhibit F. graminearum growth and remove DON in vitro. Significance and Impact of the Study: This study suggests potential application of the isolated LAB strains in the inhibition of F. graminearum IAPAR 2218 and DON removal in vitro.  相似文献   

17.
The membrane trafficking system is important for compartmentalization of the biosynthesis pathway and secretion of deoxynivalenol (DON) mycotoxin (a virulence factor) in Fusarium graminearum. Flippases are transmembrane lipid transporters and mediate a number of essential physiological steps of membrane trafficking, including vesicle budding, charging, and protein diffusion within the membrane. However, the roles of flippases in secondary metabolism remain unknown in filamentous fungi. Herein, we identified five flippases (FgDnfA, FgDnfB, FgDnfC1, FgDnfC2, and FgDnfD) in F. graminearum and established their specific and redundant functions in the development and pathogenicity of this phytopathogenic fungus. Our results demonstrate that FgDnfA is critical for normal vegetative growth while the other flippases are dispensable. FgDnfA and FgDnfD were found crucial for the fungal pathogenesis, and a remarkable reduction in DON production was observed in ΔFgDNFA and ΔFgDNFD. Deletion of the FgDNFB gene increased DON production to about 30 times that produced by the wild type. Further analysis showed that FgDnfA and FgDnfD have positive roles in the regulation of trichothecene (TRI) genes (TRI1, TRI4, TRI5, TRI6, TRI12, and TRI101) expression and toxisome reorganization, while FgDnfB acts as a negative regulator of DON synthesis. In addition, FgDnfB and FgDnfD have redundant functions in the regulation of phosphatidylcholine transport, and double deletion of FgDNFB and FgDNFD showed serious defects in fungal development, DON synthesis, and virulence. Collectively, our findings reveal the distinct and specific functions of flippase family members in F. graminearum and principally demonstrate that FgDnfA, FgDnfD, and FgDnfB have specific spatiotemporal roles during toxisome biogenesis.  相似文献   

18.
About a 100 years ago, the Drosophila white mutant marked the birth of Drosophila genetics. The white gene turned out to encode the first well studied ABC transporter in arthropods. The ABC gene family is now recognized as one of the largest transporter families in all kingdoms of life. The majority of ABC proteins function as primary-active transporters that bind and hydrolyze ATP while transporting a large diversity of substrates across lipid membranes. Although extremely well studied in vertebrates for their role in drug resistance, less is known about the role of this family in the transport of endogenous and exogenous substances in arthropods. The ABC families of five insect species, a crustacean and a chelicerate have been annotated in some detail. We conducted a thorough phylogenetic analysis of the seven arthropod and human ABC protein subfamilies, to infer orthologous relationships that might suggest conserved function. Most orthologous relationships were found in the ABCB half transporter, ABCD, ABCE and ABCF subfamilies, but specific expansions within species and lineages are frequently observed and discussed. We next surveyed the role of ABC transporters in the transport of xenobiotics/plant allelochemicals and their involvement in insecticide resistance. The involvement of ABC transporters in xenobiotic resistance in arthropods is historically not well documented, but an increasing number of studies using unbiased differential gene expression analysis now points to their importance. We give an overview of methods that can be used to link ABC transporters to resistance. ABC proteins have also recently been implicated in the mode of action and resistance to Bt toxins in Lepidoptera. Given the enormous interest in Bt toxicology in transgenic crops, such findings will provide an impetus to further reveal the role of ABC transporters in arthropods.  相似文献   

19.
Infection withFusarium graminearum andF. culmorum not only causes severe yield and quality losses, the most relevant concern is the contamination of cereal foods and feeds with trichothecenes (e.g. deoxynivalenol, DON). The ability to synthesize trichothecenes has been shown to be a virulence factor ofF. graminearum on wheat and, on the other hand, toxin resistance is most likely an important component of field resistance. Our hypothesis is that pleiotropic drug resistance mediated by PDR-type ABC transporter proteins (acting as membrane located drug efflux pumps) is a relevant mechanism of DON resistance not only in yeast but also in wheat. Goal of this project is the development of molecular markers for this gene family for use in marker-assisted plant breeding programs. The technical difficulties caused by the large size of the PDR-family are discussed.  相似文献   

20.
WOR1 is a gene for a conserved fungal regulatory protein controlling the dimorphic switch and pathogenicity determents in Candida albicans and its ortholog in the plant pathogen Fusarium oxysporum, called SGE1, is required for pathogenicity and expression of key plant effector proteins. F. graminearum, an important pathogen of cereals, is not known to employ switching and no effector proteins from F. graminearum have been found to date that are required for infection. In this study, the potential role of the WOR1-like gene in pathogenesis was tested in this toxigenic fungus. Deletion of the WOR1 ortholog (called FGP1) in F. graminearum results in greatly reduced pathogenicity and loss of trichothecene toxin accumulation in infected wheat plants and in vitro. The loss of toxin accumulation alone may be sufficient to explain the loss of pathogenicity to wheat. Under toxin-inducing conditions, expression of genes for trichothecene biosynthesis and many other genes are not detected or detected at lower levels in Δfgp1 strains. FGP1 is also involved in the developmental processes of conidium formation and sexual reproduction and modulates a morphological change that accompanies mycotoxin production in vitro. The Wor1-like proteins in Fusarium species have highly conserved N-terminal regions and remarkably divergent C-termini. Interchanging the N- and C- terminal portions of proteins from F. oxysporum and F. graminearum resulted in partial to complete loss of function. Wor1-like proteins are conserved but have evolved to regulate pathogenicity in a range of fungi, likely by adaptations to the C-terminal portion of the protein.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号