共查询到20条相似文献,搜索用时 0 毫秒
1.
Anand Minajigi Christopher S. Francklyn 《The Journal of biological chemistry》2010,285(31):23810-23817
Aminoacyl-tRNA synthetases hydrolyze aminoacyl adenylates and aminoacyl-tRNAs formed from near-cognate amino acids, thereby increasing translational fidelity. The contributions of pre- and post-transfer editing pathways to the fidelity of Escherichia coli threonyl-tRNA synthetase (ThrRS) were investigated by rapid kinetics. In the pre-steady state, asymmetric activation of cognate threonine and noncognate serine was observed in the active sites of dimeric ThrRS, with similar rates of activation. In the absence of tRNA, seryl-adenylate was hydrolyzed 29-fold faster by the ThrRS catalytic domain than threonyl-adenylate. The rate of seryl transfer to cognate tRNA was only 2-fold slower than threonine. Experiments comparing the rate of ATP consumption to the rate of aminoacyl-tRNAAA formation demonstrated that pre-transfer hydrolysis contributes to proofreading only when the rate of transfer is slowed significantly. Thus, the relative contributions of pre- and post-transfer editing in ThrRS are subject to modulation by the rate of aminoacyl transfer. 相似文献
2.
Medha Raina Adil Moghal Amanda Kano Mathew Jerums Paul D. Schnier Shun Luo Rohini Deshpande Pavel V. Bondarenko Henry Lin Michael Ibba 《The Journal of biological chemistry》2014,289(25):17780-17790
Quality control operates at different steps in translation to limit errors to approximately one mistranslated codon per 10,000 codons during mRNA-directed protein synthesis. Recent studies have suggested that error rates may actually vary considerably during translation under different growth conditions. Here we examined the misincorporation of Phe at Tyr codons during synthesis of a recombinant antibody produced in tyrosine-limited Chinese hamster ovary (CHO) cells. Tyr to Phe replacements were previously found to occur throughout the antibody at a rate of up to 0.7% irrespective of the identity or context of the Tyr codon translated. Despite this comparatively high mistranslation rate, no significant change in cellular viability was observed. Monitoring of Phe and Tyr levels revealed that changes in error rates correlated with changes in amino acid pools, suggesting that mischarging of tRNATyr with noncognate Phe by tyrosyl-tRNA synthetase was responsible for mistranslation. Steady-state kinetic analyses of CHO cytoplasmic tyrosyl-tRNA synthetase revealed a 25-fold lower specificity for Tyr over Phe as compared with previously characterized bacterial enzymes, consistent with the observed increase in translation error rates during tyrosine limitation. Functional comparisons of mammalian and bacterial tyrosyl-tRNA synthetase revealed key differences at residues responsible for amino acid recognition, highlighting differences in evolutionary constraints for translation quality control. 相似文献
3.
4.
Zhi-Rong Ruan Zhi-Peng Fang Qing Ye Hui-Yan Lei Gilbert Eriani Xiao-Long Zhou En-Duo Wang 《The Journal of biological chemistry》2015,290(3):1664-1678
Aminoacyl-tRNA synthetases (aaRSs) are a group of ancient enzymes catalyzing aminoacylation and editing reactions for protein biosynthesis. Increasing evidence suggests that these critical enzymes are often associated with mammalian disorders. Therefore, complete determination of the enzymes functions is essential for informed diagnosis and treatment. Here, we show that a yeast knock-out strain for the threonyl-tRNA synthetase (ThrRS) gene is an excellent platform for such an investigation. Saccharomyces cerevisiae ThrRS has a unique modular structure containing four structural domains and a eukaryote-specific N-terminal extension. Using randomly mutated libraries of the ThrRS gene (thrS) and a genetic screen, a set of loss-of-function mutants were identified. The mutations affected the synthetic and editing activities and influenced the dimer interface. The results also highlighted the role of the N-terminal extension for enzymatic activity and protein stability. To gain insights into the pathological mechanisms induced by mutated aaRSs, we systematically introduced the loss-of-function mutations into the human cytoplasmic ThrRS gene. All mutations induced similar detrimental effects, showing that the yeast model could be used to study pathology-associated point mutations in mammalian aaRSs. 相似文献
5.
Pyrrolysine is represented by an amber codon in genes encoding proteins such as the methylamine methyltransferases present in some Archaea and Bacteria. Pyrrolysyl-tRNA synthetase (PylRS) attaches pyrrolysine to the amber-suppressing tRNAPyl. Archaeal PylRS, encoded by pylS, has a catalytic C-terminal domain but an N-terminal region of unknown function and structure. In Bacteria, homologs of the N- and C-terminal regions of archaeal PylRS are respectively encoded by pylSn and pylSc. We show here that wild type PylS from Methanosarcina barkeri and PylSn from Desulfitobacterium hafniense bind tRNAPyl in EMSA with apparent Kd values of 0.12 and 0.13 μm, respectively. Truncation of the N-terminal region of PylS eliminated detectable tRNAPyl binding as measured by EMSA, but not catalytic activity. A chimeric protein with PylSn fused to the N terminus of truncated PylS regained EMSA-detectable tRNAPyl binding. PylSn did not bind other D. hafniense tRNAs, nor did the competition by the Escherichia coli tRNA pool interfere with tRNAPyl binding. Further indicating the specificity of PylSn interaction with tRNAPyl, substitutions of conserved residues in tRNAPyl in the variable loop, D stem, and T stem and loop had significant impact in binding, whereas those having base changes in the acceptor stem or anticodon stem and loop still retained the ability to complex with PylSn. PylSn and the N terminus of PylS comprise the protein superfamily TIGR03129. The members of this family are not similar to any known RNA-binding protein, but our results suggest their common function involves specific binding of tRNAPyl. 相似文献
6.
J Ling KM Peterson I Simonovic D Söll M Simonovic 《The Journal of biological chemistry》2012,287(34):28518-28525
Accurate translation of mRNA into protein is a fundamental biological process critical for maintaining normal cellular functions. To ensure translational fidelity, aminoacyl-tRNA synthetases (aaRSs) employ pre-transfer and post-transfer editing activities to hydrolyze misactivated and mischarged amino acids, respectively. Whereas post-transfer editing, which requires either a specialized domain in aaRS or a trans-protein factor, is well described, the mechanism of pre-transfer editing is less understood. Here, we show that yeast mitochondrial threonyl-tRNA synthetase (MST1), which lacks an editing domain, utilizes pre-transfer editing to discriminate against serine. MST1 misactivates serine and edits seryl adenylate (Ser-AMP) in a tRNA-independent manner. MST1 hydrolyzes 80% of misactivated Ser-AMP at a rate 4-fold higher than that for the cognate threonyl adenylate (Thr-AMP) while releasing 20% of Ser-AMP into the solution. To understand the mechanism of pre-transfer editing, we solved the crystal structure of MST1 complexed with an analog of Ser-AMP. The binding of the Ser-AMP analog to MST1 induces conformational changes in the aminoacylation active site, and it positions a potential hydrolytic water molecule more favorably for nucleophilic attack. In addition, inhibition results reveal that the Ser-AMP analog binds the active site 100-fold less tightly than the Thr-AMP analog. In conclusion, we propose that the plasticity of the aminoacylation site in MST1 allows binding of Ser-AMP and the appropriate positioning of the hydrolytic water molecule. 相似文献
7.
Xiangjing Qin Zhitai Hao Qingnan Tian Zhemin Zhang Chun Zhou Wei Xie 《The Journal of biological chemistry》2014,289(29):20359-20369
Aminoacyl-tRNA synthetases are an ancient enzyme family that specifically charges tRNA molecules with cognate amino acids for protein synthesis. Glycyl-tRNA synthetase (GlyRS) is one of the most intriguing aminoacyl-tRNA synthetases due to its divergent quaternary structure and abnormal charging properties. In the past decade, mutations of human GlyRS (hGlyRS) were also found to be associated with Charcot-Marie-Tooth disease. However, the mechanisms of traditional and alternative functions of hGlyRS are poorly understood due to a lack of studies at the molecular basis. In this study we report crystal structures of wild type and mutant hGlyRS in complex with tRNA and with small substrates and describe the molecular details of enzymatic recognition of the key tRNA identity elements in the acceptor stem and the anticodon loop. The cocrystal structures suggest that insertions 1 and 3 work together with the active site in a cooperative manner to facilitate efficient substrate binding. Both the enzyme and tRNA molecules undergo significant conformational changes during glycylation. A working model of multiple conformations for hGlyRS catalysis is proposed based on the crystallographic and biochemical studies. This study provides insights into the catalytic pathway of hGlyRS and may also contribute to our understanding of Charcot-Marie-Tooth disease. 相似文献
8.
Morana Dulic Nevena Cvetesic John J. Perona Ita Gruic-Sovulj 《The Journal of biological chemistry》2010,285(31):23799-23809
Hydrolytic editing activities are present in aminoacyl-tRNA synthetases possessing reduced amino acid discrimination in the synthetic reactions. Post-transfer hydrolysis of misacylated tRNA in class I editing enzymes occurs in a spatially separate domain inserted into the catalytic Rossmann fold, but the location and mechanisms of pre-transfer hydrolysis of misactivated amino acids have been uncertain. Here, we use novel kinetic approaches to distinguish among three models for pre-transfer editing by Escherichia coli isoleucyl-tRNA synthetase (IleRS). We demonstrate that tRNA-dependent hydrolysis of noncognate valyl-adenylate by IleRS is largely insensitive to mutations in the editing domain of the enzyme and that noncatalytic hydrolysis after release is too slow to account for the observed rate of clearing. Measurements of the microscopic rate constants for amino acid transfer to tRNA in IleRS and the related valyl-tRNA synthetase (ValRS) further suggest that pre-transfer editing in IleRS is an enzyme-catalyzed activity residing in the synthetic active site. In this model, the balance between pre-transfer and post-transfer editing pathways is controlled by kinetic partitioning of the noncognate aminoacyl-adenylate. Rate constants for hydrolysis and transfer of a noncognate intermediate are roughly equal in IleRS, whereas in ValRS transfer to tRNA is 200-fold faster than hydrolysis. In consequence, editing by ValRS occurs nearly exclusively by post-transfer hydrolysis in the editing domain, whereas in IleRS both pre- and post-transfer editing are important. In both enzymes, the rates of amino acid transfer to tRNA are similar for cognate and noncognate aminoacyl-adenylates, providing a significant contrast with editing DNA polymerases. 相似文献
9.
Min Tan Bin Zhu Xiao-Long Zhou Ran He Xin Chen Gilbert Eriani En-Duo Wang 《The Journal of biological chemistry》2010,285(5):3235-3244
To prevent genetic code ambiguity due to misincorporation of amino acids into proteins, aminoacyl-tRNA synthetases have evolved editing activities to eliminate intermediate or final non-cognate products. In this work we studied the different editing pathways of class Ia leucyl-tRNA synthetase (LeuRS). Different mutations and experimental conditions were used to decipher the editing mechanism, including the recently developed compound AN2690 that targets the post-transfer editing site of LeuRS. The study emphasizes the crucial importance of tRNA for the pre- and post-transfer editing catalysis. Both reactions have comparable efficiencies in prokaryotic Aquifex aeolicus and Escherichia coli LeuRSs, although the E. coli enzyme favors post-transfer editing, whereas the A. aeolicus enzyme favors pre-transfer editing. Our results also indicate that the entry of the CCA-acceptor end of tRNA in the editing domain is strictly required for tRNA-dependent pre-transfer editing. Surprisingly, this editing reaction was resistant to AN2690, which inactivates the enzyme by forming a covalent adduct with tRNALeu in the post-transfer editing site. Taken together, these data suggest that the binding of tRNA in the post-transfer editing conformation confers to the enzyme the capacity for pre-transfer editing catalysis, regardless of its capacity to catalyze post-transfer editing. 相似文献
10.
Angela M. Smith Jesse S. Harrison Kevin M. Sprague Hervé Roy 《The Journal of biological chemistry》2013,288(31):22768-22776
Aminoacylphosphatidylglycerol synthases (aaPGSs) are enzymes that transfer amino acids from aminoacyl-tRNAs (aa-tRNAs) to phosphatidylglycerol (PG) to form aa-PG in the cytoplasmic membrane of bacteria. aa-PGs provide bacteria with resistance to a range of antimicrobial compounds and stress conditions. Enterococcus faecium encodes a triple-specific aaPGS (RakPGS) that utilizes arginine, alanine, and lysine as substrates. Here we identify a novel hydrolase (AhyD), encoded immediately adjacent to rakPGS in E. faecium, which is responsible for the hydrolysis of aa-PG. The genetic synteny of aaPGS and ahyD is conserved in >60 different bacterial species. Deletion of ahyD in E. faecium resulted in increased formation of Ala-PG and Lys-PG and increased sensitivity to bacitracin. Our results suggest that AhyD and RakPGS act together to maintain optimal levels of aa-PG in the bacterial membrane to confer resistance to certain antimicrobial compounds and stress conditions. 相似文献
11.
Ghosh A Sakaguchi R Liu C Vishveshwara S Hou YM 《The Journal of biological chemistry》2011,286(43):37721-37731
Protein structure networks are constructed for the identification of long-range signaling pathways in cysteinyl tRNA synthetase (CysRS). Molecular dynamics simulation trajectory of CysRS-ligand complexes were used to determine conformational ensembles in order to gain insight into the allosteric signaling paths. Communication paths between the anticodon binding region and the aminoacylation region have been identified. Extensive interaction between the helix bundle domain and the anticodon binding domain, resulting in structural rigidity in the presence of tRNA, has been detected. Based on the predicted model, six residues along the communication paths have been examined by mutations (single and double) and shown to mediate a coordinated coupling between anticodon recognition and activation of amino acid at the active site. This study on CysRS clearly shows that specific key residues, which are involved in communication between distal sites in allosteric proteins but may be elusive in direct structure analysis, can be identified from dynamics of protein structure networks. 相似文献
12.
RNase BN, the Escherichia coli homolog of RNase Z, was previously shown to act as both a distributive exoribonuclease and an endoribonuclease on model RNA substrates and to be inhibited by the presence of a 3′-terminal CCA sequence. Here, we examined the mode of action of RNase BN on bacteriophage and bacterial tRNA precursors, particularly in light of a recent report suggesting that RNase BN removes CCA sequences (Takaku, H., and Nashimoto, M. (2008) Genes Cells 13, 1087–1097). We show that purified RNase BN can process both CCA-less and CCA-containing tRNA precursors. On CCA-less precursors, RNase BN cleaved endonucleolytically after the discriminator nucleotide to allow subsequent CCA addition. On CCA-containing precursors, RNase BN acted as either an exoribonuclease or endoribonuclease depending on the nature of the added divalent cation. Addition of Co2+ resulted in higher activity and predominantly exoribonucleolytic activity, whereas in the presence of Mg2+, RNase BN was primarily an endoribonuclease. In no case was any evidence obtained for removal of the CCA sequence. Certain tRNA precursors were extremely poor substrates under any conditions tested. These findings provide important information on the ability of RNase BN to process tRNA precursors and help explain the known physiological properties of this enzyme. In addition, they call into question the removal of CCA sequences by RNase BN. 相似文献
13.
Godinic-Mikulcic V Jaric J Hausmann CD Ibba M Weygand-Durasevic I 《The Journal of biological chemistry》2011,286(5):3396-3404
Aminoacyl-tRNA synthetases (aaRSs) play an integral role in protein synthesis, functioning to attach the correct amino acid with its cognate tRNA molecule. AaRSs are known to associate into higher-order multi-aminoacyl-tRNA synthetase complexes (MSC) involved in archaeal and eukaryotic translation, although the precise biological role remains largely unknown. To gain further insights into archaeal MSCs, possible protein-protein interactions with the atypical Methanothermobacter thermautotrophicus seryl-tRNA synthetase (MtSerRS) were investigated. Yeast two-hybrid analysis revealed arginyl-tRNA synthetase (MtArgRS) as an interacting partner of MtSerRS. Surface plasmon resonance confirmed stable complex formation, with a dissociation constant (K(D)) of 250 nM. Formation of the MtSerRS·MtArgRS complex was further supported by the ability of GST-MtArgRS to co-purify MtSerRS and by coelution of the two enzymes during gel filtration chromatography. The MtSerRS·MtArgRS complex also contained tRNA(Arg), consistent with the existence of a stable ribonucleoprotein complex active in aminoacylation. Steady-state kinetic analyses revealed that addition of MtArgRS to MtSerRS led to an almost 4-fold increase in the catalytic efficiency of serine attachment to tRNA, but had no effect on the activity of MtArgRS. Further, the most pronounced improvements in the aminoacylation activity of MtSerRS induced by MtArgRS were observed under conditions of elevated temperature and osmolarity. These data indicate that formation of a complex between MtSerRS and MtArgRS provides a means by which methanogenic archaea can optimize an early step in translation under a wide range of extreme environmental conditions. 相似文献
14.
RNA 2',3'-cyclic phosphate ends play important roles in RNA metabolism as substrates for RNA ligases during tRNA restriction-repair and tRNA splicing. Diverse bacteria from multiple phyla encode a two-component RNA repair cassette, comprising Pnkp (polynucleotide kinase-phosphatase-ligase) and Hen1 (RNA 3'-terminal ribose 2'-O-methyltransferase), that heals and then seals broken tRNAs with 2',3'-cyclic phosphate and 5'-OH ends. The Pnkp-Hen1 repair operon is absent in the majority of bacterial species, thereby raising the prospect that other RNA repair systems might be extant. A candidate component is RNA 3'-phosphate cyclase, a widely distributed enzyme that transforms RNA 3'-monophosphate termini into 2',3'-cyclic phosphates but cannot seal the ends it produces. Escherichia coli RNA cyclase (RtcA) is encoded in a σ(54)-regulated operon with RtcB, a protein of unknown function. Taking a cue from Pnkp-Hen1, we purified E. coli RtcB and tested it for RNA ligase activity. We report that RtcB per se seals broken tRNA-like stem-loop structures with 2',3'-cyclic phosphate and 5'-OH ends to form a splice junction with a 2'-OH, 3',5'-phosphodiester. We speculate that: (i) RtcB might afford bacteria a means to recover from stress-induced RNA damage; and (ii) RtcB homologs might catalyze tRNA repair or splicing reactions in archaea and eukarya. 相似文献
15.
16.
Suzuki T Miyauchi K Suzuki T Yokobori S Shigi N Kondow A Takeuchi N Yamagishi A Watanabe K 《The Journal of biological chemistry》2011,286(41):35494-35498
Variations in the genetic code are found frequently in mitochondrial decoding systems. Four non-universal genetic codes are employed in ascidian mitochondria: AUA for Met, UGA for Trp, and AGA/AGG(AGR) for Gly. To clarify the decoding mechanism for the non-universal genetic codes, we isolated and analyzed mitochondrial tRNAs for Trp, Met, and Gly from an ascidian, Halocynthia roretzi. Mass spectrometric analysis identified 5-taurinomethyluridine (τm(5)U) at the anticodon wobble positions of tRNA(Met)(AUR), tRNA(Trp)(UGR), and tRNA(Gly)(AGR), suggesting that τm(5)U plays a critical role in the accurate deciphering of all four non-universal codes by preventing the misreading of pyrimidine-ending near-cognate codons (NNY) in their respective family boxes. Acquisition of the wobble modification appears to be a prerequisite for the genetic code alteration. 相似文献
17.
Enrico Caserta Liang-Chun Liu Frank J. Grundy Tina M. Henkin 《The Journal of biological chemistry》2015,290(38):23336-23347
Many amino acid-related genes in Gram-positive bacteria are regulated by the T box riboswitch. The leader RNA of genes in the T box family controls the expression of downstream genes by monitoring the aminoacylation status of the cognate tRNA. Previous studies identified a three-nucleotide codon, termed the “Specifier Sequence,” in the riboswitch that corresponds to the amino acid identity of the downstream genes. Pairing of the Specifier Sequence with the anticodon of the cognate tRNA is the primary determinant of specific tRNA recognition. This interaction mimics codon-anticodon pairing in translation but occurs in the absence of the ribosome. The goal of the current study was to determine the effect of a full range of mismatches for comparison with codon recognition in translation. Mutations were individually introduced into the Specifier Sequence of the glyQS leader RNA and tRNAGly anticodon to test the effect of all possible pairing combinations on tRNA binding affinity and antitermination efficiency. The functional role of the conserved purine 3′ of the Specifier Sequence was also verifiedin this study. We found that substitutions at the Specifier Sequence resulted in reduced binding, the magnitude of which correlates well with the predicted stability of the RNA-RNA pairing. However, the tolerance for specific mismatches in antitermination was generally different from that during decoding, which reveals a unique tRNA recognition pattern in the T box antitermination system. 相似文献
18.
Tanmay Dutta Arun Malhotra Murray P. Deutscher 《The Journal of biological chemistry》2012,287(42):35747-35755
Escherichia coli RNase BN, a member of the RNase Z family of endoribonucleases, differs from other family members in that it also can act as an exoribonuclease in vitro. Here, we examine whether this activity of RNase BN also functions in vivo. Comparison of the x-ray structure of RNase BN with that of Bacillus subtilis RNase Z, which lacks exoribonuclease activity, revealed that RNase BN has a narrower and more rigid channel downstream of the catalytic site. We hypothesized that this difference in the putative RNA exit channel might be responsible for the acquisition of exoribonuclease activity by RNase BN. Accordingly, we generated several mutant RNase BN proteins in which residues within a loop in this channel were converted to the corresponding residues present in B. subtilis RNase Z, thus widening the channel and increasing its flexibility. The resulting mutant RNase BN proteins had reduced or were essentially devoid of exoribonuclease activity in vitro. Substitution of one mutant rbn gene (P142G) for wild type rbn in the E. coli chromosome revealed that the exoribonuclease activity of RNase BN is not required for maturation of phage T4 tRNA precursors, a known specific function of this RNase. On the other hand, removal of the exoribonuclease activity of RNase BN in a cell lacking other processing RNases leads to slower growth and affects maturation of multiple tRNA precursors. These findings help explain how RNase BN can act as both an exo- and an endoribonuclease and also demonstrate that its exoribonuclease activity is capable of functioning in vivo, thus widening the potential role of this enzyme in E. coli. 相似文献
19.
Mycoplasma genitalium is expected to metabolize RNA using unique pathways because its minimal genome encodes very few ribonucleases. In this work, we report that the only exoribonuclease identified in M. genitalium, RNase R, is able to remove tRNA 3'-trailers and generate mature 3'-ends. Several sequence and structural features of a tRNA precursor determine its precise processing at the 3'-end by RNase R in a purified system. The aminoacyl-acceptor stem plays a major role in stopping RNase R digestion at the mature 3'-end. Disruption of the stem causes partial or complete degradation of the pre-tRNA by RNase R, whereas extension of the stem results in the formation of a product terminating downstream at the new mature 3'-end. In addition, the 3'-terminal CCA sequence and the discriminator residue influence the ability of RNase R to stop at the mature 3'-end. RNase R-mediated generation of the mature 3'-end prefers a sequence of RCCN at the 3' terminus of tRNA. Variations of this sequence may cause RNase R to trim further and remove terminal CA residues from the mature 3'-end. Therefore, M. genitalium RNase R can precisely remove the 3'-trailer of a tRNA precursor by recognizing features in the terminal domains of tRNA, a process requiring multiple RNases in most bacteria. 相似文献
20.
Nevena Cvetesic Mirna Bilus Ita Gruic-Sovulj 《The Journal of biological chemistry》2015,290(22):13981-13991
Aminoacyl-tRNA synthetases catalyze ATP-dependent covalent coupling of cognate amino acids and tRNAs for ribosomal protein synthesis. Escherichia coli isoleucyl-tRNA synthetase (IleRS) exploits both the tRNA-dependent pre- and post-transfer editing pathways to minimize errors in translation. However, the molecular mechanisms by which tRNAIle organizes the synthetic site to enhance pre-transfer editing, an idiosyncratic feature of IleRS, remains elusive. Here we show that tRNAIle affects both the synthetic and editing reactions localized within the IleRS synthetic site. In a complex with cognate tRNA, IleRS exhibits a 10-fold faster aminoacyl-AMP hydrolysis and a 10-fold drop in amino acid affinity relative to the free enzyme. Remarkably, the specificity against non-cognate valine was not improved by the presence of tRNA in either of these processes. Instead, amino acid specificity is determined by the protein component per se, whereas the tRNA promotes catalytic performance of the synthetic site, bringing about less error-prone and kinetically optimized isoleucyl-tRNAIle synthesis under cellular conditions. Finally, the extent to which tRNAIle modulates activation and pre-transfer editing is independent of the intactness of its 3′-end. This finding decouples aminoacylation and pre-transfer editing within the IleRS synthetic site and further demonstrates that the A76 hydroxyl groups participate in post-transfer editing only. The data are consistent with a model whereby the 3′-end of the tRNA remains free to sample different positions within the IleRS·tRNA complex, whereas the fine-tuning of the synthetic site is attained via conformational rearrangement of the enzyme through the interactions with the remaining parts of the tRNA body. 相似文献