首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Because of the possible role of brown adipose tissue and UCP1 in metabolic regulation, even in adult humans, there is presently considerable interest in quantifying, from in-vitro data, the thermogenic capacities of brown and brite/beige adipose tissues. An important issue is therefore to establish which parameters are the most adequate for this. A particularly important issue is the relevance of UCP1 mRNA levels as estimates of the degree of recruitment and of the thermogenic capacity resulting from differences in physiological conditions and from experimental manipulations. By solely following UCP1 mRNA levels in brown adipose tissue, the conclusion would be made that the tissue's highest activation occurs after only 6 h in the cold and then successively decreases to being only some 50% elevated after 1 month in the cold. However, measurement of total UCP1 protein levels per depot ("mouse") reveals that the maximal thermogenic capacity estimated in this way is reached first after 1 month but represents an approx. 10-fold increase in thermogenic capacity. Since this in-vitro measure correlates quantitatively and temporally with the acquisition of nonshivering thermogenesis, this must be considered the most physiologically relevant parameter. Similarly, observations that cold acclimation barely increases UCP1 mRNA levels in classical brown adipose tissue but leads to a 200-fold increase in UCP1 mRNA levels in brite/beige adipose tissue depots may overemphasise the physiological significance of these depots, as the high fold-increases are due to very low initial levels, and the UCP1 mRNA levels reached are at least an order of magnitude lower than in brown adipose tissue; furthermore, based on total UCP1 protein amounts, the brite/beige depots attain only about 10% of the thermogenic capacity of the classical brown adipose tissue depots. Consequently, inadequate conclusions may be reached if UCP1 mRNA levels are used as a proxy for the metabolic significance of recruited versus non-recruited brown adipose tissue and for estimating the metabolic significance of brown versus brite/beige adipose tissues. This article is part of a Special Issue entitled Brown and White Fat: From Signaling to Disease.  相似文献   

2.
Thermogenesis in brown adipocytes, conferred by mitochondrial uncoupling protein 1 (UCP1), is receiving great attention because metabolically active brown adipose tissue may protect humans from metabolic diseases. In particular, the thermogenic function of brown‐like adipocytes in white adipose tissue, known as brite (or beige) adipocytes, is currently of prime interest. A valid procedure to quantify the specific contribution of UCP1 to thermogenesis is thus of vital importance. Adrenergic stimulation of lipolysis is a common way to activate UCP1. We here report, however, that in this frequently applied setup, taking control over intracellular fatty acid levels is essential for the analysis of thermogenic function in cultured brown and brite adipocytes. By the application of these findings, we demonstrate that UCP1 is functionally thermogenic in intact brite adipocytes and adrenergic UCP1 activation is largely dependent on adipose triglyceride lipase (ATGL) rather than hormone sensitive lipase (HSL).  相似文献   

3.
The presence of two distinct types of adipose tissue, which have opposing functions, has been known for decades. White adipose tissue (WAT) is the main tissue of energy storage, while brown adipose tissue (BAT) dissipates energy as heat and is required for non-shivering thermoregulation. In the last few years, a third type of adipocyte was identified, termed the brite (“brown and white”) or beige adipocyte. Their physiological control and role, however, are not fully clarified. Brite/beige adipocytes have a positive impact on systemic metabolism that is generally explained by the thermogenesis of brite/beige adipocytes; although thermogenesis has not been directly measured but is mostly inferred by gene expression data of typical thermogenic genes such as uncoupling protein 1 (UCP1). Here we critically review functional evidence for the thermogenic potential of brite/beige adipocytes, leading to the conclusion that direct measurements of brite/beige adipocyte bioenergetics, beyond gene regulation, are pivotal to quantify their thermogenic potential. In particular, we exemplified that the massive induction of UCP1 mRNA during the browning of isolated subcutaneous adipocytes in vitro is not reflected in significant alterations of cellular bioenergetics. Herein, we demonstrate that increases in mitochondrial respiration in response to beta-adrenergic stimulus can be independent of UCP1. Using HEK293 cells expressing UCP1, we show how to directly assess UCP1 function by adequate activation in intact cells. Finally, we provide a guide on the interpretation of UCP1 activity and the pitfalls by solely using respiration measurements. The functional analysis of beige adipocyte bioenergetics will assist to delineate the impact of browning on thermogenesis, possibly elucidating additional physiological roles and its contribution to systemic metabolism, highlighting possible avenues for future research. This article is part of a Special Issue entitled: 18th European Bioenergetic Conference.  相似文献   

4.
Mammalian adipose tissues are broadly divided into white adipose tissue (WAT) and thermogenic fat tissue (brown adipose tissue and beige adipose tissue). Uncoupling protein 1 (UCP1) is the central protein in thermogenesis, and cells that exhibit induced UCP1 expression and appear scattered throughout WAT are called beige adipocytes, and their induction in WAT is referred to as “beiging”. Beige adipocytes can differentiate from preadipocytes or convert from mature adipocytes. UCP1 was thought to contribute to non-shivering thermogenesis; however, recent studies demonstrated the presence of UCP1-independent thermogenic mechanisms. There is evidence that thermogenic fat tissue contributes to systemic energy expenditure even in human beings. This review discusses the roles that thermogenic fat tissue plays in energy consumption and offers insight into the possibility and challenges associated with its application in the treatment of obesity and type 2 diabetes.  相似文献   

5.
Brown adipose tissue (BAT) and brown in white (brite) adipose tissue, termed also beige adipose tissue, are major sites of mammalian nonshivering thermogenesis. Mitochondrial uncoupling protein 1 (UCP1), specific for these tissues, is the key factor for heat production. Recent molecular aspects of UCP1 structure provide support for the fatty acid cycling model of coupling, i.e. when UCP1 expels fatty acid anions in a uniport mode from the matrix, while uncoupling. Protonophoretic function is ensured by return of the protonated fatty acid to the matrix independent of UCP1. This mechanism is advantageous for mitochondrial uncoupling and compatible with heat production in a pro-thermogenic environment, such as BAT. It must still be verified whether posttranslational modification of UCP1, such as sulfenylation of Cys253, linked to redox activity, promotes UCP1 activity. BAT biogenesis and UCP1 expression, has also been linked to the pro-oxidant state of mitochondria, further endorsing a redox signalling link promoting an establishment of pro-thermogenic state. We discuss circumstances under which promotion of superoxide formation exceeds its attenuation by uncoupling in mitochondria and throughout point out areas of future research into UCP1 function.  相似文献   

6.
Adipose tissue is a major metabolic organ, and it has been traditionally classified as either white adipose tissue (WAT) or brown adipose tissue (BAT). WAT and BAT are characterized by different anatomical locations, morphological structures, functions, and regulations. WAT and BAT are both involved in energy balance. WAT is mainly involved in the storage and mobilization of energy in the form of triglycerides, whereas BAT specializes in dissipating energy as heat during cold- or diet-induced thermogenesis. Recently, brown-like adipocytes were discovered in WAT. These brown-like adipocytes that appear in WAT are called beige or brite adipocytes. Interestingly, these beige/brite cells resemble white fat cells in the basal state, but they respond to thermogenic stimuli with increased levels of thermogenic genes and increased respiration rates. In addition, beige/brite cells have a gene expression pattern distinct from that of either white or brown fat cells. The current epidemic of obesity has increased the interest in studying adipocyte formation (adipogenesis), especially in beige/brite cells. This review summarizes the developmental process of adipose tissues that originate from the mesenchymal stem cells and the features of these three different types of adipocytes.  相似文献   

7.
Adipose tissue is a major metabolic organ, and it has been traditionally classified as either white adipose tissue(WAT) or brown adipose tissue(BAT). WAT and BAT are characterized by different anatomical locations, morphological structures, functions, and regulations. WAT and BAT are both involved in energy balance. WAT is mainly involved in the storage and mobilization of energy in the form of triglycerides, whereas BAT specializes in dissipating energy as heat during cold- or diet-induced thermogenesis. Recently, brownlike adipocytes were discovered in WAT. These brownlike adipocytes that appear in WAT are called beige or brite adipocytes. Interestingly, these beige/brite cells resemble white fat cells in the basal state, but they respond to thermogenic stimuli with increased levels of thermogenic genes and increased respiration rates. In addition, beige/brite cells have a gene expressionpattern distinct from that of either white or brown fat cells. The current epidemic of obesity has increased the interest in studying adipocyte formation(adipogenesis), especially in beige/brite cells. This review summarizes the developmental process of adipose tissues that originate from the mesenchymal stem cells and the features of these three different types of adipocytes.  相似文献   

8.
The bioenergetics of brown fat mitochondria isolated from UCP1-ablated mice were investigated. The mitochondria had lost the high GDP-binding capacity normally found in brown fat mitochondria, and they were innately in an energized state, in contrast to wild-type mitochondria. GDP, which led to energization of wild-type mitochondria, was without effect on the brown fat mitochondria from UCP1-ablated mice. The absence of thermogenic function did not result in reintroduction of high ATP synthase activity. Remarkably and unexpectedly, the mitochondria from UCP1-ablated mice were as sensitive to the de-energizing ("uncoupling") effect of free fatty acids as were UCP1-containing mitochondria. Therefore, the de-energizing effect of free fatty acids does not appear to be mediated via UCP1, and free fatty acids would not seem to be the intracellular physiological activator involved in mediation of the thermogenic signal from the adrenergic receptor to UCP1. In the UCP1-ablated mice, Ucp2 mRNA levels in brown adipose tissue were 14-fold higher and Ucp3 mRNA levels were marginally lower than in wild-type. The Ucp2 and Ucp3 mRNA levels were therefore among the highest found in any tissue. These high mRNA levels did not confer on the isolated mitochondria any properties associated with de-energization. Thus, the mere observation of a high level of Ucp2 or Ucp3 mRNA in a tissue cannot be taken as an indication that mitochondria isolated from that tissue will display innate de-energization or thermogenesis.  相似文献   

9.
10.
Chronic adrenergic activation leads to the emergence of beige adipocytes in some depots of white adipose tissue in mice. Despite their morphological similarities to brown adipocytes and their expression of uncoupling protein 1 (UCP1), a thermogenic protein exclusively expressed in brown adipocytes, the beige adipocytes have a gene expression pattern distinct from that of brown adipocytes. However, it is unclear whether the thermogenic function of beige adipocytes is different from that of classical brown adipocytes existing in brown adipose tissue. To examine the thermogenic ability of UCP1 expressed in beige and brown adipocytes, the adipocytes were isolated from the fat depots of C57BL/6J mice housed at 24°C (control group) or 10°C (cold-acclimated group) for 3 weeks. Morphological and gene expression analyses revealed that the adipocytes isolated from brown adipose tissue of both the control and cold-acclimated groups consisted mainly of brown adipocytes. These brown adipocytes contained large amounts of UCP1 and increased their oxygen consumption when stimulated with norepinephirine. Adipocytes isolated from the perigonadal white adipose tissues of both groups and the inguinal white adipose tissue of the control group were white adipocytes that showed no increase in oxygen consumption after norepinephrine stimulation. Adipocytes isolated from the inguinal white adipose tissue of the cold-acclimated group were a mixture of white and beige adipocytes, which expressed UCP1 and increased their oxygen consumption in response to norepinephrine. The UCP1 content and thermogenic ability of beige adipocytes estimated on the basis of their abundance in the cell mixture were similar to those of brown adipocytes. These results revealed that the inducible beige adipocytes have potent thermogenic ability comparable to classical brown adipocytes.  相似文献   

11.
Development of brown and beige/brite adipocytes increases thermogenesis and helps to reduce obesity and metabolic syndrome. Our previous study suggests that dietary raspberry can ameliorate metabolic syndromes in diet-induced obese mice. Here, we further evaluated the effects of raspberry on energy expenditure and adaptive thermogenesis and determined whether these effects were mediated by AMP-activated protein kinase (AMPK). Mice deficient in the catalytic subunit of AMPKα1 and wild-type (WT) mice were fed a high-fat diet (HFD) or HFD supplemented with 5% raspberry (RAS) for 10 weeks. The thermogenic program and related regulatory factors in adipose tissue were assessed. RAS improved the insulin sensitivity and reduced fat mass in WT mice but not in AMPKα1-/- mice. In the absence of AMPKα1, RAS failed to increase oxygen consumption and heat production. Consistent with this, the thermogenic gene expression in brown adipose tissue and brown-like adipocyte formation in subcutaneous adipose tissue were not induced by RAS in AMPKα1-/- mice. In conclusion, AMPKα1 is indispensable for the effects of RAS on brown and beige/brite adipocyte development, and prevention of obesity and metabolic dysfunction.  相似文献   

12.
To examine the thermogenic significance of the classical uncoupling protein-1 (UCP1), the thermogenic potential of brown adipocytes isolated from UCP1-ablated mice was investigated. Ucp1(-/-) cells had a basal metabolic rate identical to wild-type; the mitochondria within them were coupled to the same degree. The response to norepinephrine in wild-type cells was robust ( approximately 10-fold increase in thermogenesis); Ucp1(-/-) cells only responded approximately 3% of this. Ucp1(-/-) cells were as potent as wild-type in norepinephrine-induced cAMP accumulation and lipolysis and had a similar mitochondrial respiratory complement. In wild-type cells, fatty acids induced a thermogenic response similar to norepinephrine, but fatty acids (and retinoate) were practically without effect in Ucp1(-/-) cells. It is concluded that no other adrenergically induced thermogenic mechanism exists in brown adipocytes except that mediated by UCP1 and that entopic expression of UCP1 does not lead to overt innate uncoupling, and it is suggested that fatty acids are transformed to an intracellular physiological activator of UCP1. High expression of UCP2 and UCP3 in the tissue was not associated with an overt innate highly uncoupled state of mitochondria within the cells, nor with an ability of norepinephrine or endo- or exogenous fatty acids to induce uncoupled respiration in the cells. Thus, UCP1 remains the only physiologically potent thermogenic uncoupling protein in these cells.  相似文献   

13.
Channeling carbohydrates and fatty acids to thermogenic tissues, including brown and beige adipocytes, have garnered interest as an approach for the management of obesity-related metabolic disorders. Mitochondrial fatty acid oxidation (β-oxidation) is crucial for the maintenance of thermogenesis. Upon cellular fatty acid uptake or following lipolysis from triglycerides (TG), fatty acids are esterified to coenzyme A (CoA) to form active acyl-CoA molecules. This enzymatic reaction is essential for their utilization in β-oxidation and thermogenesis. The activation and deactivation of fatty acids are regulated by two sets of enzymes called acyl-CoA synthetases (ACS) and acyl-CoA thioesterases (ACOT), respectively. The expression levels of ACS and ACOT family members in thermogenic tissues will determine the substrate availability for β-oxidation, and consequently the thermogenic capacity. Although the role of the majority of ACS and ACOT family members in thermogenesis remains unclear, recent proceedings link the enzymatic activities of ACS and ACOT family members to metabolic disorders and thermogenesis. Elucidating the contributions of specific ACS and ACOT family members to trafficking of fatty acids towards thermogenesis may reveal novel targets for modulating thermogenic capacity and treating metabolic disorders.  相似文献   

14.
15.
The term 'uncoupling protein' was originally used for the mitochondrial membrane protein UCP1, which is uniquely present in mitochondria of brown adipocytes, thermogenic cells that regulate body temperature in small rodents, hibernators and mammalian newborns. In these cells, UCP1 acts as a proton carrier activated by free fatty acids and creates a shunt between complexes of the respiratory chain and ATP-synthase resulting in a futile proton cycling and dissipation of oxidation energy as heat. Recent identification of new homologues to UCP1 expressed in brown and white adipose tissue, muscle, brain and other tissues together with the hypothesis that these novel uncoupling proteins (UCPs) may regulate thermogenesis and/or fatty acid metabolism and furthermore may protect against free radical oxygen species production have generated considerable optimism for rapid advances in the identification of new targets for pharmacological management of complex pathological syndromes such as obesity, type 2 diabetes or chronic inflammatory diseases. However, since the physiological and biochemical roles of the novel UCPs are not yet clear, the main challenge today consists first of all in providing mechanistic explanation for their functions in cellular physiology. This lively awaited information may be the basis for potential pharmacological targeting of the UCPs in future.  相似文献   

16.
17.
18.
Aging is associated with increased adiposity in white adipose tissues and impaired thermogenesis in brown adipose tissues; both contribute to increased incidences of obesity and type 2 diabetes. Ghrelin is the only known circulating orexigenic hormone that promotes adiposity. In this study, we show that ablation of the ghrelin receptor (growth hormone secretagogue receptor, GHS-R) improves insulin sensitivity during aging. Compared to wild-type (WT) mice, old Ghsr(-/-) mice have reduced fat and preserve a healthier lipid profile. Old Ghsr(-/-) mice also exhibit elevated energy expenditure and resting metabolic rate, yet have similar food intake and locomotor activity. While GHS-R expression in white and brown adipose tissues was below the detectable level in the young mice, GHS-R expression was readily detectable in visceral white fat and interscapular brown fat of the old mice. Gene expression profiles reveal that Ghsr ablation reduced glucose/lipid uptake and lipogenesis in white adipose tissues but increased thermogenic capacity in brown adipose tissues. Ghsr ablation prevents age-associated decline in thermogenic gene expression of uncoupling protein 1 (UCP1). Cell culture studies in brown adipocytes further demonstrate that ghrelin suppresses the expression of adipogenic and thermogenic genes, while GHS-R antagonist abolishes ghrelin's effects and increases UCP1 expression. Hence, GHS-R plays an important role in thermogenic impairment during aging. Ghsr ablation improves aging-associated obesity and insulin resistance by reducing adiposity and increasing thermogenesis. Growth hormone secretagogue receptor antagonists may be a new means of combating obesity by shifting the energy balance from obesogenesis to thermogenesis.  相似文献   

19.
Brown adipose tissue serves as a thermogenic organ in placental mammals to defend body temperature in the cold by nonshivering thermogenesis. The thermogenic function of brown adipose tissue is enabled by several specialised features on the organ as well as on the cellular level, including dense sympathetic innervation and vascularisation, high lipolytic capacity and mitochondrial density and the unique expression of uncoupling protein 1 (UCP1). This mitochondrial carrier protein is inserted into the inner mitochondrial membrane and stimulates maximum mitochondrial respiration by dissipating proton-motive force as heat. Studies in knockout mice have clearly demonstrated that UCP1 is essential for nonshivering thermogenesis in brown adipose tissue. For a long time it had been presumed that brown adipose tissue and UCP1 emerged in placental mammals providing them with a unique advantage to survive in the cold. Our subsequent discoveries of UCP1 orthologues in ectotherm vertebrates and marsupials clearly refute this presumption. We can now initiate comparative studies on the structure-function relationships in UCP1 orthologues from different vertebrates to elucidate when during vertebrate evolution UCP1 gained the biochemical properties required for nonshivering thermogenesis.  相似文献   

20.
Brown adipose tissue serves as a thermogenic organ in placental mammals to defend body temperature in the cold by nonshivering thermogenesis. The thermogenic function of brown adipose tissue is enabled by several specialised features on the organ as well as on the cellular level, including dense sympathetic innervation and vascularisation, high lipolytic capacity and mitochondrial density and the unique expression of uncoupling protein 1 (UCP1). This mitochondrial carrier protein is inserted into the inner mitochondrial membrane and stimulates maximum mitochondrial respiration by dissipating proton-motive force as heat. Studies in knockout mice have clearly demonstrated that UCP1 is essential for nonshivering thermogenesis in brown adipose tissue. For a long time it had been presumed that brown adipose tissue and UCP1 emerged in placental mammals providing them with a unique advantage to survive in the cold. Our subsequent discoveries of UCP1 orthologues in ectotherm vertebrates and marsupials clearly refute this presumption. We can now initiate comparative studies on the structure–function relationships in UCP1 orthologues from different vertebrates to elucidate when during vertebrate evolution UCP1 gained the biochemical properties required for nonshivering thermogenesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号