首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The human apical sodium-dependent bile acid transporter (hASBT, SLC10A2) plays a critical role in the enterohepatic circulation of bile acids, as well as in cholesterol homeostasis. ASBT reclaims bile acids from the distal ileum via active sodium co-transport, in a multistep process, orchestrated by key residues in exofacial loop regions, as well as in membrane-spanning helices. Here, we unravel the functional contribution of highly conserved transmembrane helix 1 (TM1) on the hASBT transport cycle. Consecutive cysteine substitution of individual residues along the TM1 helix (Ile(29)-Gly(50)), as well as exofacial Asn(27) and Asn(28), resulted in functional impairment of ~70% of mutants, despite appreciable cell surface expression for all but G50C. Cell surface expression of G50C and G50A was rescued upon MG132 treatment as well as cyclosporine A, but not by FK506 or bile acids, suggesting that Gly(50) is involved in hASBT folding. TM1 accessibility to membrane-impermeant MTSET remains confined to the exofacial half of the helix along a single, discrete face. Substrate protection from MTSET labeling was temperature-dependent for L34C, T36C, and L38C, consistent with conformational changes playing a role in solvent accessibility for these mutants. Residue Leu(30) was shown to be critical for both bile acid and sodium affinity, while Asn(27), Leu(38), Thr(39), and Met(46) participate in sodium co-transport. Combined, our data demonstrate that TM1 plays a pivotal role in ASBT function and stability, thereby providing further insight in its dynamic transport mechanism.  相似文献   

2.
NBCe1-A and AE1 both belong to the SLC4 HCO3 transporter family. The two transporters share 40% sequence homology in the C-terminal transmembrane region. In this study, we performed extensive substituted cysteine-scanning mutagenesis analysis of the C-terminal region of NBCe1-A covering amino acids Ala800–Lys967. Location of the introduced cysteines was determined by whole cell labeling with a membrane-permeant biotin maleimide and a membrane-impermeant 2-((5(6)-tetramethylrhodamine)carboxylamino) ethyl methanethiosulfonate (MTS-TAMRA) cysteine-reactive reagent. The results show that the extracellular surface of the NBCe1-A C-terminal transmembrane region is minimally exposed to aqueous media with Met858 accessible to both biotin maleimide and TAMRA and Thr926–Ala929 only to TAMRA labeling. The intracellular surface contains a highly exposed (Met813–Gly828) region and a cryptic (Met887–Arg904) connecting loop. The lipid/aqueous interface of the last transmembrane segment is at Asp960. Our data clearly determined that the C terminus of NBCe1-A contains 5 transmembrane segments with greater average size compared with AE1. Functional assays revealed only two residues in the region of Pro868–Leu967 (a functionally important region in AE1) that are highly sensitive to cysteine substitution. Our findings suggest that the C-terminal transmembrane region of NBCe1-A is tightly folded with unique structural and functional features that differ from AE1.  相似文献   

3.
The Na+/H+ exchanger isoform 1 is a ubiquitously expressed integral membrane protein. It resides on the plasma membrane of cells and regulates intracellular pH in mammals by extruding an intracellular H+ in exchange for one extracellular Na+. We characterized structural and functional aspects of the transmembrane segment (TM) VI (residues 227–249) by using cysteine scanning mutagenesis and high resolution NMR. Each residue of TM VI was mutated to cysteine in the background of the cysteineless NHE1 protein, and the sensitivity to water-soluble sulfhydryl-reactive compounds (2-(trimethylammonium)ethyl)methanethiosulfonate (MTSET) and (2-sulfonatoethyl)methanethiosulfonate (MTSES) was determined for those residues with significant activity remaining. Three residues were essentially inactive when mutated to Cys: Asp238, Pro239, and Glu247. Of the remaining residues, proteins with the mutations N227C, I233C, and L243C were strongly inhibited by MTSET, whereas amino acids Phe230, Gly231, Ala236, Val237, Ala244, Val245, and Glu248 were partially inhibited by MTSET. MTSES did not affect the activity of the mutant NHE1 proteins. The structure of a peptide representing TM VI was determined using high resolution NMR spectroscopy in dodecylphosphocholine micelles. TM VI contains two helical regions oriented at an approximate right angle to each other (residues 229–236 and 239–250) surrounding a central unwound region. This structure bears a resemblance to TM IV of the Escherichia coli protein NhaA. The results demonstrate that TM VI of NHE1 is a discontinuous pore-lining helix with residues Asn227, Ile233, and Leu243 lining the translocation pore.  相似文献   

4.
The first extracellular loop (ECL1) of claudins forms paracellular pores in the tight junction that determine ion permselectivity. We aimed to map the pore-lining residues of claudin-2 by comprehensive cysteine-scanning mutagenesis of ECL1. We screened 45 cysteine mutations within the ECL1 by expression in polyclonal Madin-Darby canine kidney II Tet-Off cells and found nine mutants that displayed a significant decrease of conductance after treatment with the thiol-reactive reagent 2-(trimethylammonium)ethyl methanethiosulfonate, indicating the location of candidate pore-lining residues. Next, we stably expressed these candidates in monoclonal Madin-Darby canine kidney I Tet-Off cells and exposed them to thiol-reactive reagents. The maximum degree of inhibition of conductance, size selectivity of degree of inhibition, and size dependence of the kinetics of reaction were used to deduce the location of residues within the pore. Our data support the following sequence of pore-lining residues located from the narrowest to the widest part of the pore: Ser68, Ser47, Thr62/Ile66, Thr56, Thr32/Gly45, and Met52. The paracellular pore appears to primarily be lined by polar side chains, as expected for a predominantly aqueous environment. Furthermore, our results strongly suggest the existence of a continuous sequence of residues in the ECL1 centered around Asp65–Ser68 that form a major part of the lining of the pore.  相似文献   

5.
The complete amino acid sequence of human A-I has been determined by manual and automated Edman degradation of intact and peptide fragments of A-I. A-I is a single chain protein of 243 residues with the following amino acid composition: Asp16, Asn5, Thr10, Ser15, Glu27, Gln19, Pro10, Gly10, Ala19, Val13, Met3, Leu37, Tyr7, Phe6, Trp4, Lys21, His5, and Arg16. The amino acid sequence contains no linear segments of hydrophobic or hydrophilic residues. A detailed correlation of the amino acid sequence, conformation, and self association of A-I will add further insight into the molecular mechanisms involved in protein-protein and protein-lipid interactions.  相似文献   

6.
Megumi Hirono 《BBA》2007,1767(12):1401-1411
The H+-translocating inorganic pyrophosphatase is a proton pump that hydrolyzes inorganic pyrophosphate. It consists of a single polypeptide with 14-17 transmembrane domains (TMs). We focused on the third quarter region of Streptomyces coelicolor A3(2) H+-pyrophosphatase, which contains a long conserved cytoplasmic loop. We assayed 1520 mutants for pyrophosphate hydrolysis and proton translocation, and selected 34 single-residue substitution mutants with low substrate hydrolysis and proton-pump activities. We also generated 39 site-directed mutant enzymes and assayed their activity. The mutation of 5 residues in TM10 resulted in low energy-coupling efficiencies, and mutation of conserved residues Thr409, Val411, and Gly414 showed neither hydrolysis nor pumping activity. The mutation of six, five, and four residues in TM11, 12, and 13, respectively, gave a negative effect. Phe388, Thr389, and Val396 in cytoplasmic loop i were essential for efficient H+ translocation. Ala436 and Pro560 in the periplasmic loops were critical for coupling efficiency. These low-efficiency mutants showed dysfunction of the energy-conversion and/or proton-translocation activity. The energy efficiency was increased markedly by the mutation of two and six residues in TM9 and 12, respectively. These results suggest that TM10 is involved in enzyme function, and that TM12 regulate the energy-conversion efficiency. H+-pyrophosphatase might involve dynamic linkage between the hydrophilic loops and TMs through the central half region of the enzyme.  相似文献   

7.
Klebsiella pneumoniae strain DF12SA (HQ114261) was isolated from diabetic foot wounds. The strain showed resistance against ampicillin, kanamycin, gentamicin, streptomycin, spectinomycin, trimethoprim, tetracycline, meropenem, amikacin, piperacillin/tazobactam, augmentin, co-trimoxazole, carbapenems, penicillins and cefoperazone, and was sensitive to clindamycin. Molecular characterization of the multidrug-resistance phenotype revealed the presence of a class 1 integron containing two genes, a dihydrofolate reductase (DHFR) (PF00186), which confers resistance to trimethoprim; and aminoglycoside adenyltransferase (AadA) (PF01909), which confers resistance to streptomycin and spectinomycin. A class 1 integron in K. pneumoniae containing these two genes was present in eight (18.18 %) out of 44 different diabetic foot ulcer (DFU) patients. Hence, there is a need to develop therapeutics that inhibit growth of multidrug resistant K. pneumoniae in DFU patients and still achieve amputation control. Am attempt was made to create a 3D model and find a suitable inhibitor using an in silico study. Rational drug design/testing requires crystal structures for DHFR and AadA. However, the structures of DHFR and AadA from K. pneumoniae are not available. Modelling was performed using Swiss Model Server and Discovery Studio 3.1. The PDBSum server was used to check stereo chemical properties using Ramachandran plot analysis of modeled structures. Clindamycin was found to be suitable inhibitor of DHFR and AadA. A DockingServer based on Autodock & Mopac was used for docking calculations. The amino acid residues Ser32, Ile46, Glu53, Gln54, Phe57, Thr72, Met76, Val78, Leu79, Ser122, Tyr128, Ile151 in case of DHFR and Phe34, Asp60, Arg63, Gln64, Leu68, Glu87, Thr89, Val90 for AadA were found to be responsible for positioning clindamycin into the active site. The study identifies amino acid residues crucial to ‘DHFR and AadA -drug’ and ‘DHFR and AadA -inhibitor’ interactions that might be useful in the ongoing search for a versatile DHFR and AadA -inhibitor.  相似文献   

8.
We previously identified Asn331 in transmembrane segment 7 (TM7) as a key residue determining substrate affinity in Hxt2, a moderately high-affinity facilitative glucose transporter of Saccharomyces cerevisiae. To gain further insight into the structural basis of substrate recognition by yeast glucose transporters, we have now studied Hxt7, whose affinity for glucose is the highest among the major hexose transporters. The functional role of Asp340 in Hxt7, the residue corresponding to Asn331 of Hxt2, was examined by replacing it with each of the other 19 amino acids. Such replacement of Asp340 generated transporters with various affinities for glucose, with the affinity of the Cys340 mutant surpassing that of the wild-type Hxt7. To examine the structural role of Asp340 in the substrate translocation pathway, we performed cysteine-scanning mutagenesis of the 21 residues in TM7 of a functional Cys-less Hxt7 mutant in conjunction with exposure to the hydrophilic sulfhydryl reagent p-chloromercuribenzenesulfonate (pCMBS). The transport activity of the D340C mutant of Cys-less Hxt7, in which Asp340 is replaced with Cys, was completely inhibited by pCMBS, indicating that Asp340 is located in a water-accessible position. This D340C mutant showed a sensitivity to pCMBS that was ∼70 times that of the wild-type Hxt7, and it was protected from pCMBS inhibition by the substrates d-glucose and 2-deoxy-d-glucose but not by l-glucose. These results indicate that Asp340 is situated at or close to a substrate recognition site and is a key residue determining high-affinity glucose transport by Hxt7, supporting the notion that yeast glucose transporters share a common mechanism for substrate recognition.  相似文献   

9.
Glucagon-like peptide-1 (GLP-1) plays a pivotal role in glucose homeostasis through its receptor GLP1R. Due to its multiple beneficial effects, GLP-1 has gained great attention for treatment of type 2 diabetes and obesity. However, little is known about the molecular mechanism underlying the interaction of GLP-1 with the heptahelical core domain of GLP1R conferring high affinity ligand binding and ligand-induced receptor activation. Here, using chimeric and point-mutated GLP1R, we determined that the evolutionarily conserved amino acid residue Arg380 flanked by hydrophobic Leu379 and Phe381 in extracellular loop 3 (ECL3) may have an interaction with Asp9 and Gly4 of the GLP-1 peptide. The molecular modeling study showed that Ile196 at transmembrane helix 2, Met233 at ECL1, and Asn302 at ECL2 of GLP1R have contacts with His1 and Thr7 of GLP-1. This study may shed light on the mechanism underlying high affinity interaction between the ligand and the binding pocket that is formed by these conserved residues in the GLP1R core domain.  相似文献   

10.
We examined the relationship between transmembrane domain (TM) 10 and TM11/12 in NKCC1, testing homology models based on the structure of AdiC in the same transporter superfamily. We hypothesized that introduced cysteine pairs would be close enough for disulfide formation and would alter transport function: indeed, evidence for cross-link formation with low micromolar concentrations of copper phenanthroline or iodine was found in 3 of 8 initially tested pairs and in 1 of 26 additionally tested pairs. Inhibition of transport was observed with copper phenanthroline and iodine treatment of P676C/A734C and I677C/A734C, consistent with the proximity of these residues and with movement of TM10 during the occlusion step of ion transport. We also found Cu2+ inhibition of the single-cysteine mutant A675C, suggesting that this residue and Met382 of TM3 are involved in a Cu2+-binding site. Surprisingly, cross-linking of P676C/I730C was found to prevent rapid deactivation of the transporter while not affecting the dephosphorylation rate, thus uncoupling the phosphorylation and activation steps. Consistent with this, (a) cross-linking of P676C/I730C was dependent on activation state, and (b) mutants lacking the phosphoregulatory domain could still be activated by cross-linking. These results suggest a model of NKCC activation that involves movement of TM12 relative to TM10, which is likely tied to movement of the large C terminus, a process somehow triggered by phosphorylation of the regulatory domain in the N terminus.  相似文献   

11.
The bacterial sodium-coupled leucine/alanine transporter LeuT is broadly used as a model system for studying the transport mechanism of neurotransmitters because of its structural and functional homology to mammalian transporters such as serotonin, dopamine, or norepinephrine transporters, and because of the resolution of its structure in different states. Although the binding sites (S1 for substrate, and Na1 and Na2 for two co-transported sodium ions) have been resolved, we still lack a mechanistic understanding of coupled Na+- and substrate-binding events. We present here results from extensive (>20 μs) unbiased molecular dynamics simulations generated using the latest computing technology. Simulations show that sodium binds initially the Na1 site, but not Na2, and, consistently, sodium unbinding/escape to the extracellular (EC) region first takes place at Na2, succeeded by Na1. Na2 diffusion back to the EC medium requires prior dissociation of substrate from S1. Significantly, Na+ binding (and unbinding) consistently involves a transient binding to a newly discovered site, Na1″, near S1, as an intermediate state. A robust sequence of substrate uptake events coupled to sodium bindings and translocations between those sites assisted by hydration emerges from the simulations: (i) bindings of a first Na+ to Na1″, translocation to Na1, a second Na+ to vacated Na1″ and then to Na2, and substrate to S1; (ii) rotation of Phe253 aromatic group to seclude the substrate from the EC region; and (iii) concerted tilting of TM1b and TM6a toward TM3 and TM8 to close the EC vestibule.  相似文献   

12.
The hASBT (human apical Na(+)-dependent bile acid transporter) constitutes a key target of anti-hypercholesterolaemic therapies and pro-drug approaches; physiologically, hASBT actively reclaims bile acids along the terminal ileum via Na(+) co-transport. Previously, TM (transmembrane segment) 7 was identified as part of the putative substrate permeation pathway using SCAM (substitute cysteine accessibility mutagenesis). In the present study, SCAM was extended through EL3 (extracellular loop 3; residues Arg(254)-Val(286)) that leads into TM7 from the exofacial matrix. Activity of most EL3 mutants was significantly hampered upon cysteine substitution, whereas ten (out of 31) were functionally inactive (<10% activity). Since only E282C lacked plasma membrane expression, EL3 amino acids predominantly fulfill critical functional roles during transport. Oppositely charged membrane-impermeant MTS (methanethiosulfonate) reagents {MTSET [(2-trimethylammonium) ethyl MTS] and MTSES [(2-sulfonatoethyl) MTS]} produced mostly similar inhibition profiles wherein only middle and descending loop segments (residues Thr(267)-Val(286)) displayed significant MTS sensitivity. The presence of bile acid substrate significantly reduced the rates of MTS modification for all MTS-sensitive mutants, suggesting a functional association between EL3 residues and bile acids. Activity assessments at equilibrative [Na(+)] revealed numerous Na(+)-sensitive residues, possibly performing auxiliary functions during transport such as transduction of protein conformational changes during translocation. Integration of these data suggests ligand interaction points along EL3 via electrostatic interactions with Arg(256), Glu(261) and probably Glu(282) and a potential cation-pi interaction with Phe(278). We conclude that EL3 amino acids are essential for hASBT activity, probably as primary substrate interaction points using long-range electrostatic attractive forces.  相似文献   

13.
Abstract: In search of the molecular mechanisms underlying the broad substrate and inhibitor specificities of butyrylcholinesterase (BuChE), we employed site-directed mutagenesis to modify the catalytic triad residue Ser198, the acyl pocket Leu286 and adjacent Phe329 residues, and Met437 and Tyr440 located near the choline binding site. Mutant proteins were produced in microinjected Xenopus oocytes, and Km values towards butyrylthiocholine and IC50 values for the organophosphates diisopropylfluorophosphonate (DFP), diethoxyphosphinylthiocholine iodide (echothiophate), and tetraisopropylpyrophosphoramide (iso-OMPA) were determined. Substitution of Ser198 by cysteine and Met437 by aspartate nearly abolished activity, and other mutations of Ser198 completely abolished it. Tyr440 and Leu286 mutants remained active, but with higher Km and IC50 values. Rates of inhibition by DFP were roughly parallel to IC50 values for several Leu286 mutants. Both Km and IC50 values increased for Leu286 mutants in the order Asp < Gln < Lys. In contrast, cysteine, leucine, and glutamine mutants of Phe329 displayed unmodified Km values toward butyrylthiocholine, but up to 10-fold decreased IC50 values for DFP, iso-OMPA, and echothiophate. These findings add Tyr440 and Phe329 to the list of residues interacting with substrate and ligands, demonstrate plasticity in the active site region of BuChE, and foreshadow the design of recombinant BuChEs with tailored scavenging properties.  相似文献   

14.
ABSTRACT

The lid and flap domains control the catalytic activity of lipase through the opening and closing motion. However, this gating mechanism of diacylglycerol (DAG) lipase is poorly understood due to the lack of 3D structures in open conformations. In this study, the opening and closing states of Mrlip1 DAG lipase are revealed by the homology modelling and molecular dynamic simulations. It was found that the active residues (Ser171, His281 and Asp228) in the catalytic pocket of Mrlip1 DAG lipase are covered by the lid domain in the closed conformation, and exposed to the solvent in the open conformation. The role of residues Phe278 and Gln282 in the flap domain, as well as that of Thr101 and Thr107 in the lid domains are also identified in gating mechanism. The site-directed mutagenesis have been carried out to illustrate the putative alterations of enzyme specificity. Our results suggest that the substrate specificity is achieved by these two key residues Phe278 and Gln282, and the irreversible conversion from DAG to TAG (Triacylglycerol) lipase are enabled by the two-point mutations.  相似文献   

15.
The glutamate transporter excitatory amino acid carrier 1 (EAAC1) catalyzes the co-transport of three Na+ ions, one H+ ion, and one glutamate molecule into the cell, in exchange for one K+ ion. Na+ binding to the glutamate-free form of the transporter generates a high affinity binding site for glutamate and is thus required for transport. Moreover, sodium binding to the transporters induces a basal anion conductance, which is further activated by glutamate. Here, we used the [Na+] dependence of this conductance as a read-out of Na+ binding to the substrate-free transporter to study the impact of a highly conserved amino acid residue, Thr101, in transmembrane domain 3. The apparent affinity of substrate-free EAAC1 for Na+ was dramatically decreased by the T101A but not by the T101S mutation. Interestingly, in further contrast to EAAC1WT, in the T101A mutant this [Na+] dependence was biphasic. This behavior can be explained by assuming that the binding of two Na+ ions prior to glutamate binding is required to generate a high affinity substrate binding site. In contrast to the dramatic effect of the T101A mutation on Na+ binding, other properties of the transporter, such as its ability to transport glutamate, were impaired but not eliminated. Our results are consistent with the existence of a cation binding site deeply buried in the membrane and involving interactions with the side chain oxygens of Thr101 and Asp367. A theoretical valence screening approach confirms that the predicted site of cation interaction has the potential to be a novel, so far undetected sodium binding site.  相似文献   

16.
Amino-terminal regions of secretin-family peptides contain key determinants for biological activity and binding specificity, although the nature of interactions with receptors is unclear. A helix N-capping motif within this region has been postulated to directly contribute to agonist activity while also stabilizing formation of a helix extending toward the peptide carboxyl terminus and docking within the receptor amino terminus. We used cysteine trapping to systematically explore spatial approximations between cysteines replacing each residue in this motif of secretin (sec), Phe6, Thr7, and Leu10, and cysteines incorporated into the extracellular face of the receptor. Each peptide was a full agonist for cAMP, but had a lower binding affinity than natural hormone. These bound to COS cells expressing 61 receptor constructs incorporating cysteines in every position along each extracellular loop (ECL) and adjacent parts of transmembrane (TM) segments. Patterns of covalent labeling were distinct for each probe, with Cys6-sec labeling multiple residues in the carboxyl-terminal half of ECL2 and throughout ECL3, Cys7-sec predominantly labeling only single residues in the carboxyl-terminal end of ECL2 and the amino-terminal end of ECL3, and Cys10-sec not efficiently labeling any of these residues. These spatial constraints were used to refine our model of secretin bound to its receptor, now bringing ECL3 above the amino terminus of the ligand and revealing possible charge-charge interactions between this part of secretin and receptor residues in TM5, TM6, ECL2, and ECL3, which can orient and stabilize the peptide-receptor complex. This was validated by testing predicted approximations by mutagenesis and residue-residue complementation studies.  相似文献   

17.
S100A7 (psoriasin) is a calcium‐ and zinc‐binding protein implicated in breast cancer. We have shown previously that S100A7 enhances survival mechanisms in breast cells through an interaction with c‐jun activation domain binding protein 1 (Jab1), and an engineered S100A7 triple mutant (Asp56Gly, Leu78Met, and Gln88Lys—S100A73) ablates Jab1 binding. We extend these results to include defined breast cancer cell lines and demonstrate a disrupted S100A73/Jab1 phenotype is maintained. To establish the basis for the abrogated Jab1 binding, we have recombinantly produced S100A73, demonstrated that it retains the ability to form an exceptionally thermostable dimer, and solved the three dimensional crystal structure to 1.6 Å. Despite being positioned at the dimer interface, the Leu78Met mutation is easily accommodated and contributes to a methionine‐rich pocket formed by Met12, Met15, and Met34. In addition to altering the surface charge, the Gln88Lys mutation results in a nearby rotameric shift in Tyr85, leading to a substantially reorganized surface cavity and may influence zinc binding. The final mutation of Asp56 to Gly results in the largest structural perturbation shortening helix IV by one full turn. It is noteworthy that position 56 lies in one of two divergent clusters between S100A7 and the functionally distinct yet highly homologous S100A15. The structure of S100A73 provides a unique perspective from which to characterize the S100A7‐Jab1 interaction and better understand the distinct functions between S100A7, and it is closely related paralog S100A15.  相似文献   

18.
The human genome encodes six proteins of family 18 glycosyl hydrolases, two active chitinases and four chitinase-like lectins (chi-lectins) lacking catalytic activity. The present article is dedicated to homology modeling of 3D structure of human chitinase 3-like 2 protein (CHI3L2), which is overexpressed in glial brain tumors, and its structural comparison with homologous chi-lectin CHI3L1. Two crystal structures of CHI3L1 in free state (Protein Data Bank codes 1HJX and 1NWR) were used as structural templates for the homology modeling by Modeller 9.7 program, and the best quality model structure was selected from the obtained model ensemble. Analysis of potential oligosaccharide-binding groove structures of CHI3L1 and CHI3L2 revealed significant differences between these two homologous proteins. 8 of 19 amino acid residues important for ligand binding are substituted in CHI3L2: Tyr34/Asp39, Trp69/Lys74, Trp71/Lys76, Trp99/Tyr104, Asn100/Leu105, Met204/Leu210, Tyr206/Phe212 and Arg263/His271. The differences between these residues could influence the structure of the ligand-binding groove and substantially change the ability of CHI3L2 to bind oligosaccharide ligands.  相似文献   

19.
Khantwal CM  Swaan PW 《Biochemistry》2008,47(12):3606-3614
We report the involvement of transmembrane domain 4 (TM4) of hASBT in forming the putative translocation pathway, using cysteine-scanning mutagenesis in conjunction with solvent-accessibility studies using the membrane-impermeant, sulfhydryl-specific methanethiosulfonate reagents. We individually mutated each of the 21 amino acids in TM4 to cysteine on a fully functional, MTS-resistant C270A-hASBT template. The single-cysteine mutants were expressed in COS-1 cells, and their cell surface expression levels, transport activities [uptake of the prototypical hASBT substrate taurocholic acid (TCA)], and sensitivities to MTS exposure were determined. Only P161 lacked cell-surface expression. Overall, cysteine replacement was tolerated at charged and polar residues, except for mutants I160C, Y162C, I165C, and G179C (相似文献   

20.
Structural characterization of the human Y4 receptor (hY4R) interaction with human pancreatic polypeptide (hPP) is crucial, not only for understanding its biological function but also for testing treatment strategies for obesity that target this interaction. Here, the interaction of receptor mutants with pancreatic polypeptide analogs was studied through double-cycle mutagenesis. To guide mutagenesis and interpret results, a three-dimensional comparative model of the hY4R-hPP complex was constructed based on all available class A G protein-coupled receptor crystal structures and refined using experimental data. Our study reveals that residues of the hPP and the hY4R form a complex network consisting of ionic interactions, hydrophobic interactions, and hydrogen binding. Residues Tyr2.64, Asp2.68, Asn6.55, Asn7.32, and Phe7.35 of Y4R are found to be important in receptor activation by hPP. Specifically, Tyr2.64 interacts with Tyr27 of hPP through hydrophobic contacts. Asn7.32 is affected by modifications on position Arg33 of hPP, suggesting a hydrogen bond between these two residues. Likewise, we find that Phe7.35 is affected by modifications of hPP at positions 33 and 36, indicating interactions between these three amino acids. Taken together, we demonstrate that the top of transmembrane helix 2 (TM2) and the top of transmembrane helices 6 and 7 (TM6–TM7) form the core of the peptide binding pocket. These findings will contribute to the rational design of ligands that bind the receptor more effectively to produce an enhanced agonistic or antagonistic effect.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号