首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
de Vienne  Dominique 《Genetica》2022,150(3-4):153-158

Even though the word “phenotype”, as well as the expression “genotype–phenotype relationship”, are a part of the everyday language of biologists, they remain abstract notions that are sometimes misunderstood or misused. In this article, I begin with a review of  the genesis of the concept of phenotype and of the meaning of the genotype-phenotype “relationship" from a historical perspective. I then illustrate how the development of new approaches for exploring the living world has enabled us to phenotype organisms at multiple levels, with traits that can either be measures or parameters of functions, leading to a virtually unlimited amount of phenotypic data. Thus, pleiotropy becomes a central issue in the study of the genotype–phenotype relationship. Finally, I provide a few examples showing that important genetic and evolutionary features clearly differ with the phenotypic level considered. The way genotypic variation propagates across the phenotypic levels to shape fitness variation is an essential research program in biology.

  相似文献   

2.
3.
Extensive biometrical and statistically oriented studies in segregation and pedigree analyses reflect current efforts to demonstrate major gene factors playing a significant role for a whole hierarchy of multifactorial diseases and related risk factors exhibiting continuous variation. The evolutionary aspects of the changes in gene frequencies of some major gene one locus models admitting a broad range of genotype-phenotype associations and different forms of selection functions are investigated. The flexibility of differences among the genotypic-phenotypic distribution can take account of variable penetrance expressivity, complex multifarious heterogeneous background effects, or partial dominance concepts. The phenotype distribution and selection function are assumed to be time invariant such that the environments with which the population interacts do not depend on either the phenotypes or the genotypes present in the population of any particular generation. Viability selection optimizing or directional acts on the phenotypic level. We consider random mating, and concentrate mostly on evaluating the nature of the equilibrium structure for the cases of “strong” and “weak” selection. For weak stabilizing selection the determinants of superior genotypic fitness in the class of phenotypic symmetric distributions reside in minimizing a combination of the phenotypic variance and the deviation of the phenotypic mean from the optimal phenotype. With equal means of central phenotype values, a canalizing selection effect signifying fitness superiority for the genotype with minimal variance is in force. For strong stabilizing selection the genotype-phenotype density at the optimal value determines the relative genotype fitness value. For directional selection the determinants of the selection realizations depend on a “standardized” deviation of the mean phenotype distributional value relative to its total variance. The effects of symmetry as against asymmetry in the genotype distributions with prescribed means and variances were investigated by numerical computations.  相似文献   

4.
The low thermal stability of DNA nanostructures is the major drawback in their practical applications. Most of the DNA nanotubes/tiles and the DNA origami structures melt below 60°C due to the presence of discontinuities in the phosphate backbone (i.e., nicks) of the staple strands. In molecular biology, enzymatic ligation is commonly used to seal the nicks in the duplex DNA. However, in DNA nanotechnology, the ligation procedures are neither optimized for the DNA origami nor routinely applied to link the nicks in it. Here, we report a detailed analysis and optimization of the conditions for the enzymatic ligation of the staple strands in four types of 2D square lattice DNA origami. Our results indicated that the ligation takes overnight, efficient at 37°C rather than the usual 16°C or room temperature, and typically requires much higher concentration of T4 DNA ligase. Under the optimized conditions, up to 10 staples ligation with a maximum ligation efficiency of 55% was achieved. Also, the ligation is found to increase the thermal stability of the origami as low as 5°C to as high as 20°C, depending on the structure. Further, our studies indicated that the ligation of the staple strands influences the globular structure/planarity of the DNA origami, and the origami is more compact when the staples are ligated. The globular structure of the native and ligated origami was also found to be altered dynamically and progressively upon ethidium bromide intercalation in a concentration-dependent manner.  相似文献   

5.
A synergetic law, being of common physicochemical and biological sense, is formulated: any evolving system that possesses an excess of free energy and elements with chiral asymmetry, while being within one hierarchical level, is able to change the type of symmetry in the process of self-organization increasing its complexity but preserving the sign of prevailing chirality (left — L or right — D twist). The same system tends to form spontaneously a sequence of hierarchical levels with alternating chirality signs of de novo formed structures and with an increase of the structures’ relative scales. In living systems, the hierarchy of conjugated levels of macromolecular structures that begins from the “lowest” asymmetric carbon serves as an anti-entropic factor as well as the structural basis of “selected mechanical degrees of freedom” in molecular machines. During transition of DNA to a higher level of structural and functional organization, regular alterations of the chirality sign D-L-D-L and L-D-L-D for DNA and protein structures, respectively, are observed. Sign-alternating chiral hierarchies of DNA and protein structure, in turn, form a complementary conjugated chiral pair that represents an achiral invariant that “consummates” the molecular-biological block of living systems. The ability of a carbon atom to form chiral compounds is an important factor that determined the carbon basis of living systems on the Earth as well as their development though a series of chiral bifurcations. The hierarchy of macromolecular structures demarcated by the chirality sign predetermined the possibility of the “block” character of biological evolution.  相似文献   

6.
7.
DNA is a useful material for constructing nanoscale structures in nearly any three-dimensional (3D) shape desired. The DNA nanostructure can also be equipped with specific docking sites for proteins. Cellular processes and chemical transformations take place in several reaction steps. Multiple enzymes cooperate in specific fashion to catalyze the sequential chemical transformation steps. Such natural systems are effectively reconstructed in vitro if the individual enzymes locate in the correct relative orientations. DNA-origami structures can be used as “molecular switchboards” to arrange enzymes and other proteins with nanometer-scale precision. A new method was developed for locating the proteins by means of special “adapters” known as zinc-finger proteins based only on proteins. Zinc fingers are suitable site-selective adapters for targeting specific locations within DNA-origami structures. Several different adapters carrying different proteins can independently bind at defined locations on this type of nanostructure. A basic leucine zipper (bZIP) protein is also a candidate for the site-selective adaptor. A well-characterized bZIP protein GCN4 was chosen as an adaptor for specific addresses. Analyses by atomic force microscopy and gel electrophoreses demonstrate specific binding of GCN4 adaptor to the addresses containing the GCN4 binding sites on DNA origami. The adaptor derived from GCN4 and that form a zinc-finger protein zif268, for which we have reported previously, acted as orthogonal adaptors to the respective addresses on DNA origami. Therefore, these orthogonal adaptors would be useful to place multiple engineered proteins at different addresses on DNA origami. Especially, the homodimeric nature of GCN4 adaptor is indispensable for constructing the assembly of the naturally abundant dimeric proteins and/or enzymes to efficiently carry out chemical reactions and signal transductions in vitro on DNA origami.  相似文献   

8.
The founders of modern biology (Jean Lamarck, Charles Darwin, August Weismann etc.) were organismic life scientists who attempted to understand the morphology and evolution of living beings as a whole (i.e., the phenotype). However, with the emergence of the study of animal and plant physiology in the nineteenth century, this “holistic view” of the living world changed and was ultimately replaced by a reductionistic perspective. Here, I summarize the history of systems biology, i.e., the modern approach to understand living beings as integrative organisms, from genotype to phenotype. It is documented that the physiologists Claude Bernard and Julius Sachs, who studied humans and plants, respectively, were early pioneers of this discipline, which was formally founded 50 years ago. In 1968, two influential monographs, authored by Ludwig von Bertalanffy and Mihajlo D. Mesarovi?, were published, wherein a “systems theory of biology” was outlined. Definitions of systems biology are presented with reference to metabolic or cell signaling networks, analyzed via genomics, proteomics, and other methods, combined with computer simulations/mathematical modeling. Then, key insights of this discipline with respect to epiphytic microbes (Methylobacterium sp.) and simple bacteria (Mycoplasma sp.) are described. The principles of homeostasis, molecular systems energetics, gnotobiology, and holobionts (i.e., complexities of host–microbiota interactions) are outlined, and the significance of systems biology for evolutionary theories is addressed. Based on the microbe—Homo sapiens—symbiosis, it is concluded that human biology and health should be interpreted in light of a view of the biomedical sciences that is based on the holobiont concept.  相似文献   

9.
The organised state of living cells must derive from information internal to the system; however, there are strong reasons, based on sound evidence, to reject the base sequence information encoded in the genomic DNA as being directly relevant to the regulation of cellular phenotype. Rather, it is argued here that highly specific relational information, encoded on the gene products, mainly proteins, is responsible for phenotype. This regulatory information emerges as the peptide folds into a tertiary structure in much the same way as enzymic activity emerges under the same circumstances. The DNA coding sequence serves as a “data base” in which a second category of relational information is stored to enable accurate reproduction of the cellular peptides. In the context of the cell, therefore, information is physical in character and contributes, through its ability to dissipate free energy, to the maximisation of the entropy of the cell according to the 2nd law of thermodynamics.  相似文献   

10.
I have constructed, for developmental processes, a qualitative model similar to the compartment hypothesis in Drosophila, and examined its relevance to vertebrate systems. In this model a polarized “cluster” of interacting cells will be the unit for “bifurcation” of the developmental pathway into two alternative states of “locon” which is the genetic unit controlling this process. The minimum size of the cluster critical for bifurcation and the size of the emerging subclusters will be dictated by the cognate locon. This will obviate the need for an extrinsically imposed threshold of some state variable for the boundary of the two subclusters. However, the orientation of bifurcation will be determined by the polarity of the cluster. A physiological factor of competence will impose a temporal constraint to bifurcation.Thus, combinatorial binary codes for a set of locons, like those originally devised by Kauffman (1973), can be assigned to developmental pathways. One of the clusters emerging from a sequence of bifurcations will have the same code as the mother cluster. It will represent the “developmental sink”, and will not recycle through the bifurcation series originating from the initial mother cluster, because of the difference in spatio-temporal factors incorporated in the size and competence of the individual clusters. If bifurcations are prevented, the mother cluster will be forced along the pathway of the developmental sink.I have applied the model to cases in vertebrate development where commitments to developmental pathways for aperiodic or periodic segmentations may follow a linear temporal sequence, producing, in turn, subclusters of uncommitted, or stem, cells towards the more intensely polarized end of the mother cluster. Such cases include limb, somite and tail formation and several stem cell systems with a finite lifespan. I have discussed some possible experimentation which emerges from the model.  相似文献   

11.
Studies performed in absence of gravitational constraint show that a living system is unable to choose between two different phenotypes, thus leading cells to segregate into different, alternative stable states. This finding demonstrates that the genotype does not determine by itself the phenotype but requires additional, physical constraints to finalize cell differentiation. Constraints belong to two classes: holonomic (independent of the system's dynamical states, as being established by the space-time geometry of the field) and non-holonomic (modified during those biological processes to which they contribute in shaping). This latter kind of “constraints”, in which dynamics works on the constraint to recreate them, have emerged as critical determinants of self-organizing systems, by manifesting a “closure of constraints.” Overall, the constraints act by harnessing the “randomness” represented by the simultaneous presence of equiprobable events restraining the system within one attractor. These results cast doubt on the mainstream scientific concept and call for a better understanding of causation in cell biology.  相似文献   

12.
13.
The DNA nanorobot is a hollow hexagonal nanometric device, designed to open in response to specific stimuli and present cargo sequestered inside. Both stimuli and cargo can be tailored according to specific needs. Here we describe the DNA nanorobot fabrication protocol, with the use of the DNA origami technique. The procedure initiates by mixing short single-strand DNA staples into a stock mixture which is then added to a long, circular, single-strand DNA scaffold in presence of a folding buffer. A standard thermo cycler is programmed to gradually lower the mixing reaction temperature to facilitate the staples-to-scaffold annealing, which is the guiding force behind the folding of the nanorobot. Once the 60 hr folding reaction is complete, excess staples are discarded using a centrifugal filter, followed by visualization via agarose-gel electrophoresis (AGE). Finally, successful fabrication of the nanorobot is verified by transmission electron microscopy (TEM), with the use of uranyl-formate as negative stain.  相似文献   

14.
DNA纳米技术是基于沃森克里克碱基配对原则产生可编程核酸结构的技术。因其具有高精度的工程设计、前所未有的可编程性和内在的生物相容性等特点,运用该技术合成的纳米结构不仅可以与小分子、核酸、蛋白质、病毒和癌细胞相互作用,还可以作为纳米载体,递送不同的治疗药物。DNA折纸作为一种有效的、多功能的方法来构建二维和三维可编程的纳米结构,是DNA纳米技术发展的一个里程碑。由于其高度可控的几何形状、空间寻址性、易于化学修饰,DNA折纸在许多领域具有巨大的应用潜力。本文通过介绍DNA折纸的起源、基本原理和目前进展,归纳总结了运用DNA折纸进行药物装载和释放的方式,并基于此技术,展望了今后的发展趋势以及所面临的机遇和挑战。  相似文献   

15.
Although Mendel’s first laws explain the transmission of most characteristics, there has recently been a renewed interest in the notion that DNA is not the sole determinant of our inherited phenotype. Human epidemiology studies and animal and plant genetic studies have provided evidence that epigenetic information (“epigenetic” describes an inherited effect on chromosome or gene function that is not accompanied by any alteration of the nucleotide sequence) can be inherited from parents to offspring. Most of the mechanisms involved in epigenetic “memory” are paramutation events, which are heritable epigenetic changes in the phenotype of a “paramutable” allele. Initially demonstrated in plants, paramutation is defined as an interaction between two alleles of a single locus that results in heritable changes of one allele that is induced by the other. The authors describe an unexpected example of paramutation in the mouse revealed by a recent analysis of an epigenetic variation modulating expression of theKit locus. The progeny of hétérozygote intercrosses (carrying one mutant and one wild-type allele) showed persistence of the white patches (characteristic of hétérozygotes) in the homozygous Kit+/+ progeny. The DNA sequences of the two wild-type alleles were structurally normal, revealing an epigenetic modification. Further investigations showed that RNA and microRNA, released by sperm, mediate this epigenetic inheritance. The molecular mechanisms involved in this unexpected mode of inheritance and the role of RNA molecules in the spermatozoon head as possible vectors for the hereditary transfer of such modifications — implying that paternal inheritance is not limited to just one haploid copy of the genome — are still a matter of debate. Paramutations may be considered to be one possibility of epigenetic modification in the case of familial disease predispositions not fully explained by Mendelian analysis.  相似文献   

16.
The evolution and adaptation of molecular populations is constrained by the diversity accessible through mutational processes. RNA is a paradigmatic example of biopolymer where genotype (sequence) and phenotype (approximated by the secondary structure fold) are identified in a single molecule. The extreme redundancy of the genotype-phenotype map leads to large ensembles of RNA sequences that fold into the same secondary structure and can be connected through single-point mutations. These ensembles define neutral networks of phenotypes in sequence space. Here we analyze the topological properties of neutral networks formed by 12-nucleotides RNA sequences, obtained through the exhaustive folding of sequence space. A total of 4(12) sequences fragments into 645 subnetworks that correspond to 57 different secondary structures. The topological analysis reveals that each subnetwork is far from being random: it has a degree distribution with a well-defined average and a small dispersion, a high clustering coefficient, and an average shortest path between nodes close to its minimum possible value, i.e. the Hamming distance between sequences. RNA neutral networks are assortative due to the correlation in the composition of neighboring sequences, a feature that together with the symmetries inherent to the folding process explains the existence of communities. Several topological relationships can be analytically derived attending to structural restrictions and generic properties of the folding process. The average degree of these phenotypic networks grows logarithmically with their size, such that abundant phenotypes have the additional advantage of being more robust to mutations. This property prevents fragmentation of neutral networks and thus enhances the navigability of sequence space. In summary, RNA neutral networks show unique topological properties, unknown to other networks previously described.  相似文献   

17.
Parental effects are a major source of phenotypic plasticity and may influence offspring phenotype in concert with environmental demands. Studies of “environmental epigenetics” suggest that (1) DNA methylation states are variable and that both demethylation and remethylation occur in post‐mitotic cells, and (2) that remodeling of DNA methylation can occur in response to environmentally driven intracellular signaling pathways. Studies of mother‐offspring interactions in rodents suggest that parental signals influence the DNA methylation, leading to stable changes in gene expression. If parental effects do indeed enhance the “match” between prevailing environmental demands and offspring phenotype, then the potential for variation in environmental conditions over time would suggest a mechanism that requires active maintenance across generations through parental signaling. We suggest that parental regulation of DNA methylation states is thus an ideal candidate mechanism for parental effects on phenotypic variation.  相似文献   

18.
There is growing interest in conducting cluster randomized trials (CRTs). For simplicity in sample size calculation, the cluster sizes are assumed to be identical across all clusters. However, equal cluster sizes are not guaranteed in practice. Therefore, the relative efficiency (RE) of unequal versus equal cluster sizes has been investigated when testing the treatment effect. One of the most important approaches to analyze a set of correlated data is the generalized estimating equation (GEE) proposed by Liang and Zeger, in which the “working correlation structure” is introduced and the association pattern depends on a vector of association parameters denoted by ρ. In this paper, we utilize GEE models to test the treatment effect in a two‐group comparison for continuous, binary, or count data in CRTs. The variances of the estimator of the treatment effect are derived for the different types of outcome. RE is defined as the ratio of variance of the estimator of the treatment effect for equal to unequal cluster sizes. We discuss a commonly used structure in CRTs—exchangeable, and derive the simpler formula of RE with continuous, binary, and count outcomes. Finally, REs are investigated for several scenarios of cluster size distributions through simulation studies. We propose an adjusted sample size due to efficiency loss. Additionally, we also propose an optimal sample size estimation based on the GEE models under a fixed budget for known and unknown association parameter (ρ) in the working correlation structure within the cluster.  相似文献   

19.
Wireframe DNA origami assemblies can now be programmed automatically from the top-down using simple wireframe target geometries, or meshes, in 2D and 3D, using either rigid, six-helix bundle (6HB) or more compliant, two-helix bundle (DX) edges. While these assemblies have numerous applications in nanoscale materials fabrication due to their nanoscale spatial addressability and high degree of customization, no easy-to-use graphical user interface software yet exists to deploy these algorithmic approaches within a single, standalone interface. Further, top-down sequence design of 3D DX-based objects previously enabled by DAEDALUS was limited to discrete edge lengths and uniform vertex angles, limiting the scope of objects that can be designed. Here, we introduce the open-source software package ATHENA with a graphical user interface that automatically renders single-stranded DNA scaffold routing and staple strand sequences for any target wireframe DNA origami using DX or 6HB edges, including irregular, asymmetric DX-based polyhedra with variable edge lengths and vertices demonstrated experimentally, which significantly expands the set of possible 3D DNA-based assemblies that can be designed. ATHENA also enables external editing of sequences using caDNAno, demonstrated using asymmetric nanoscale positioning of gold nanoparticles, as well as providing atomic-level models for molecular dynamics, coarse-grained dynamics with oxDNA, and other computational chemistry simulation approaches.  相似文献   

20.
Genotype to phenotype: a technological challenge   总被引:1,自引:0,他引:1  
Our ability to ascribe protein function from primary DNA sequence or to predict the wide‐ranging effects of up or down regulating a single gene is still almost non‐existent. While the acquisition of raw genomic data proceeds apace, our capacity for converting this information into useful knowledge is limited. Within the next few years this “gap” will no doubt become an issue with both company and government fund providers as the drive to maximise profit and justify public expenditure becomes harder to resist. What follows is a whistle stop tour of some of the technologies that may help researchers to bridge this genotype‐phenotype gap!  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号