首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到11条相似文献,搜索用时 15 毫秒
1.

Background

Complement 3 (C3), a key component of the innate immune system, is involved in early inflammatory responses. Acylation stimulating protein (ASP; aka C3adesArg), a C3 cleavage product, is produced in adipose tissue and stimulates lipid storage. We hypothesized that, depending on the diet, chronic ASP administration in C3−/− mice would affect lipid metabolism and insulin sensitivity via an adaptive adipose tissue inflammatory response.

Methodology/Principal Findings

C3−/− mice on normal low fat diet (ND) or high fat diet (HFD) were chronically administered recombinant ASP (rASP) for 25 days via an osmotic mini-pump. While there was no effect on food intake, there was a decrease in activity, with a relative increase in adipose tissue weight on ND, and a shift in adipocyte size distribution. While rASP administration to C3−/− mice on a ND increased insulin sensitivity, on a HFD, rASP administration had the opposite effect. Specifically, rASP administration in C3−/− HFD mice resulted in decreased gene expression of IRS1, GLUT4, SREBF1 and NFκB in muscle, and decreased C5L2 but increased JNK, CD36, CD11c, CCR2 and NFκB gene expression in adipose tissue as well as increased secretion of proinflammatory cytokines (Rantes, KC, MCP-1, IL-6 and G-CSF). In adipose tissue, although IRS1 and GLUT4 mRNA were unchanged, insulin response was reduced.

Conclusion

The effects of chronic rASP administration are tissue and diet specific, rASP administration enhances the HFD induced inflammatory response leading to an insulin-resistant state. These results suggest that, in humans, the increased plasma ASP associated with obesity and cardiovascular disease could be an additional factor directly contributing to development of metabolic syndrome, insulin resistance and diabetes.  相似文献   

2.
Valsartan has a protective effect against hypertension and atherosclerosis in humans and experimental animal models. This study aimed to determine the effect of prolonged treatment with angiotensin II (Ang II) on atherosclerosis and the effect of valsartan on the activity of CD4+ T lymphocyte subsets. The results showed that prolonged treatment (8 wks) with exogenous Ang II resulted in an increased atherosclerotic plaque size and a switch of stable-to-unstable plaque via modulating on CD4+ T lymphocyte activity, including an increase in the T helper cell type 1 (Th1) and Th17 cells and a decrease in Th2 and regulatory T (Treg) cells. In contrast, valsartan treatment efficiently reversed the imbalance in CD4+ T lymphocyte activity, ameliorated atherosclerosis and elicited a stable plaque phenotype in addition to controlling blood pressure. In addition, treatment with anti-interleukin (IL)-5 monoclonal antibodies weakened the antiatherosclerotic effects of valsartan without affecting blood pressure.  相似文献   

3.
Chronically elevated serum levels of serum amyloid A (SAA) are linked to increased risk of cardiovascular disease. However, whether SAA is directly involved in atherosclerosis development is still not known. The aim of this study was to investigate the effects of adipose tissue-derived human SAA on atherosclerosis in mice. hSAA1+/− transgenic mice (hSAA1 mice) with a specific expression of human SAA1 in adipose tissue were bred with ApoE-deficient mice. The hSAA1 mice and their wild type (wt) littermates were fed normal chow for 35 weeks. At the end of the experiment, the mice were euthanized and blood, gonadal adipose tissue and aortas were collected. Plasma levels of SAA, cholesterol and triglycerides were measured. Atherosclerotic lesion areas were analyzed in the aortic arch, the thoracic aorta and the abdominal aorta in en face preparations of aorta stained with Sudan IV. The human SAA protein was present in plasma from hSAA1 mice but undetectable in wt mice. Similar plasma levels of cholesterol and triglycerides were observed in hSAA1 mice and their wt controls. There were no differences in atherosclerotic lesion areas in any sections of the aorta in hSAA1 mice compared to wt mice. In conclusion, our data suggest that adipose tissue-derived human SAA does not influence atherosclerosis development in mice.  相似文献   

4.

Background

[18F]-fluorodeoxyglucose (FDG) has been suggested for the clinical and experimental imaging of inflammatory atherosclerotic lesions. Significant FDG uptake in brown adipose tissue (BAT) has been observed both in humans and mice. The objective of the present study was to investigate the influence of periaortic BAT on apolipoprotein E-deficient (apoE−/−) mouse atherosclerotic lesion imaging with FDG.

Methods

ApoE−/− mice (36±2 weeks-old) were injected with FDG (12±2 MBq). Control animals (Group A, n = 7) were injected conscious and kept awake at room temperature (24°C) throughout the accumulation period. In order to minimize tracer activity in periaortic BAT, Group B (n = 7) and C (n = 6) animals were injected under anaesthesia at 37°C and Group C animals were additionally pre-treated with propranolol. PET/CT acquisitions were performed prior to animal euthanasia and ex vivo analysis of FDG biodistribution.

Results

Autoradiographic imaging indicated higher FDG uptake in atherosclerotic lesions than in the normal aortic wall (all groups, P<0.05) and the blood (all groups, P<0.01) which correlated with macrophage infiltration (R = 0.47; P<0.001). However, periaortic BAT uptake was either significantly higher (Group A, P<0.05) or similar (Group B and C, P = NS) to that observed in atherosclerotic lesions and was shown to correlate with in vivo quantified aortic FDG activity.

Conclusion

Periaortic BAT FDG uptake was identified as a confounding factor while using FDG for the non-invasive imaging of mouse atherosclerotic lesions.  相似文献   

5.
The NF-κB pathway plays an important role in chronic inflammatory and autoimmune diseases. Recently, NF-κB has also been suggested as an important mechanism linking obesity, inflammation, and metabolic disorders. However, there is no current evidence regarding the mechanism of action of NF-κB inhibition in insulin resistance and diabetic nephropathy in type 2 diabetic animal models. We investigated the effects of the NF-κB inhibitor celastrol in db/db mice. The treatment with celastrol for 2 months significantly lowered fasting plasma glucose (FPG), HbA1C and homeostasis model assessment index (HOMA-IR) levels. Celastrol also exhibited significant decreases in body weight, kidney/body weight and adiposity. Celastrol reduced insulin resistance and lipid abnormalities and led to higher plasma adiponectin levels. Celastrol treatment also significantly mitigated lipid accumulation and oxidative stress in organs including the kidney, liver and adipose tissue. The treated group also exhibited significantly lower creatinine levels and urinary albumin excretion was markedly reduced. Celastrol treatment significantly lowered mesangial expansion and suppressed type IV collagen, PAI-1 and TGFβ1 expressions in renal tissues. Celastrol also improved abnormal lipid metabolism, oxidative stress and proinflammatory cytokine activity in the kidney. In cultured podocytes, celastrol treatment abolished saturated fatty acid-induced proinflammatory cytokine synthesis. Taken together, celastrol treatment not only improved insulin resistance, glycemic control and oxidative stress, but also improved renal functional and structural changes through both metabolic and anti-inflammatory effects in the kidney. These results suggest that targeted therapy for NF-κB may be a useful new therapeutic approach for the management of type II diabetes and diabetic nephropathy.  相似文献   

6.
Oxidative stress has recently been considered as a pivotal player in the pathogenesis of diabetic gastrointestinal dysfunction. We therefore investigated the role of 2, 3, 5, 4′-tetrahydroxystilbene-2-O-beta-D-glucoside (THSG) that has a strong anti-oxidant property, in diabetic gastrointestinal dysmotility as well as the underlying protective mechanisms. THSG restored the delayed gastric emptying and the increased intestinal transit in streptozotocin (STZ)-induced diabetic mice. Loss of neuronal nitric oxide synthase (nNOS) expression and impaired nonadrenergic, noncholinergic (NANC) relaxations in diabetic mice were relieved by long-term preventive treatment with THSG. Meanwhile, THSG (10−7∼10−4 mol/L) enhanced concentration-dependently NANC relaxations of isolated colons in diabetic mice. Diabetic mice displayed a significant increase in Malondialdehyde (MDA) level and decrease in the activity of glutathione peroxidase (GSH-Px), which were ameliorated by THSG. Inhibition of caspase-3 and activation of ERK phosphorylation related MAPK pathway were involved in prevention of enhanced apoptosis in diabetes afforded by THSG. Moreover, THSG prevented the significant decrease in PPAR-γ and SIRT1 expression in diabetic ileum. Our study indicates that THSG improves diabetic gastrointestinal disorders through activation of MAPK pathway and upregulation of PPAR-γ and SIRT1.  相似文献   

7.
In this study we examined the role of phosphatidic acid (PA) in hepatic glucose production (HGP) and development of hepatic insulin resistance in mice that lack 1-acylglycerol-3-phosphate O-acyltransferase 2 (AGPAT2). Liver lysophosphatidic acid and PA levels were increased ∼2- and ∼5-fold, respectively, in male Agpat2−/− mice compared with wild type mice. In the absence of AGPAT2, the liver can synthesize PAs by activating diacylglycerol kinase or phospholipase D, both of which were elevated in the livers of Agpat2−/− mice. We found that PAs C16:0/18:1 and C18:1/20:4 enhanced HGP in primary WT hepatocytes, an effect that was further enhanced in primary hepatocytes from Agpat2−/− mice. Lysophosphatidic acids C16:0 and C18:1 failed to increase HGP in primary hepatocytes. The activation of HGP was accompanied by an up-regulation of the key gluconeogenic enzymes glucose-6-phosphatase and phosphoenolpyruvate carboxykinase. This activation was suppressed by insulin in the WT primary hepatocytes but not in the Agpat2−/− primary hepatocytes. Thus, the lack of normal insulin signaling in Agpat2−/− livers allows unrestricted PA-induced gluconeogenesis significantly contributing to the development of hyperglycemia in these mice.  相似文献   

8.
Association between circulating lipopolysaccharide (LPS) and metabolic diseases (such as Type 2 Diabetes and atherosclerosis) has shifted the focus from Western diet-induced changes in gut microbiota per se to release of gut bacteria-derived products into circulation as the possible mechanism for the chronic inflammatory state underlying the development of these diseases. Under physiological conditions, an intact intestinal barrier prevents this release of LPS underscoring the importance of examining and modulating the direct effects of Western diet on intestinal barrier function. In the present study we evaluated two strategies, namely selective gut decontamination and supplementation with oral curcumin, to modulate Western-diet (WD) induced changes in intestinal barrier function and subsequent development of glucose intolerance and atherosclerosis. LDLR−/− mice were fed WD for 16 weeks and either received non-absorbable antibiotics (Neomycin and polymyxin) in drinking water for selective gut decontamination or gavaged daily with curcumin. WD significantly increased intestinal permeability as assessed by in vivo translocation of FITC-dextran and plasma LPS levels. Selective gut decontamination and supplementation with curcumin significantly attenuated the WD-induced increase in plasma LPS levels (3.32 vs 1.90 or 1.51 EU/ml, respectively) and improved intestinal barrier function at multiple levels (restoring intestinal alkaline phosphatase activity and expression of tight junction proteins, ZO-1 and Claudin-1). Consequently, both these interventions significantly reduced WD-induced glucose intolerance and atherosclerosis in LDLR−/− mice. Activation of macrophages by low levels of LPS (50 ng/ml) and its exacerbation by fatty acids is likely the mechanism by which release of trace amounts of LPS into circulation due to disruption of intestinal barrier function induces the development of these diseases. These studies not only establish the important role of intestinal barrier function, but also identify oral supplementation with curcumin as a potential therapeutic strategy to improve intestinal barrier function and prevent the development of metabolic diseases.  相似文献   

9.

Objectives

The role of angiotensin II type 2 (AT2) receptor stimulation in the pathogenesis of insulin resistance is still unclear. Therefore we examined the possibility that direct AT2 receptor stimulation by compound 21 (C21) might contribute to possible insulin-sensitizing/anti-diabetic effects in type 2 diabetes (T2DM) with PPARγ activation, mainly focusing on adipose tissue.

Methods

T2DM mice, KK-Ay, were subjected to intraperitoneal injection of C21 and/or a PPARγ antagonist, GW9662 in drinking water for 2 weeks. Insulin resistance was evaluated by oral glucose tolerance test, insulin tolerance test, and uptake of 2-[3H] deoxy-D-glucose in white adipose tissue. Morphological changes of adipose tissues as well as adipocyte differentiation and inflammatory response were examined.

Results

Treatment with C21 ameliorated insulin resistance in KK-Ay mice without influencing blood pressure, at least partially through effects on the PPARγ pathway. C21 treatment increased serum adiponectin concentration and decreased TNF-α concentration; however, these effects were attenuated by PPARγ blockade by co-treatment with GW9662. Moreover, we observed that administration of C21 enhanced adipocyte differentiation and PPARγ DNA-binding activity, with a decrease in inflammation in white adipose tissue, whereas these effects of C21 were attenuated by co-treatment with GW9662. We also observed that administration of C21 restored β cell damage in diabetic pancreatic tissue.

Conclusion

The present study demonstrated that direct AT2 receptor stimulation by C21 accompanied with PPARγ activation ameliorated insulin resistance in T2DM mice, at least partially due to improvement of adipocyte dysfunction and protection of pancreatic β cells.  相似文献   

10.
Obesity is associated with a low-grade inflammation including moderately increased serum levels of the acute phase protein serum amyloid A (SAA). In obesity, SAA is mainly produced from adipose tissue and serum levels of SAA are associated with insulin resistance. SAA has been described as a chemoattractant for inflammatory cells and adipose tissue from obese individuals contains increased numbers of macrophages. However, whether adipose tissue-derived SAA can have a direct impact on macrophage infiltration in adipose tissue or the development of insulin resistance is unknown. The aim of this study was to investigate the effects of adipose tissue-derived SAA1 on the development of insulin resistance and obesity-related inflammation. We have previously established a transgenic mouse model expressing human SAA1 in the adipose tissue. For this report, hSAA1+/− transgenic mice and wild type mice were fed with a high fat diet or normal chow. Effects of hSAA1 on glucose metabolism were assessed using an oral glucose tolerance test. Real-time PCR was used to measure the mRNA levels of macrophage markers and genes related to insulin sensitivity in adipose tissue. Cytokines during inflammation were analyzed using a Proinflammatory 7-plex Assay. We found similar insulin and glucose levels in hSAA1 mice and wt controls during an oral glucose tolerance test and no decrease in mRNA levels of genes related to insulin sensitivity in adipose tissue in neither male nor female hSAA1 animals. Furthermore, serum levels of proinflammatory cytokines and mRNA levels of macrophage markers in adipose tissue were not increased in hSAA1 mice. Hence, in this model we find no evidence that adipose tissue-derived hSAA1 influences the development of insulin resistance or obesity-related inflammation.  相似文献   

11.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号