首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The adhesion of cells to surfaces plays a crucial role in processes related to motility and tissue growth. Nonspecific interactions with a surface, e.g., by electrostatic or van der Waals forces, can complement specific molecular interactions and can themselves support strong adhesion. In order to understand the mechanism by which cells establish an adhesive interface in the absence of specific proteins, we have studied the detachment kinetics of monocytic cells from glass surfaces coated with poly-l-lysine. We exposed adhering cells to a shear flow and studied their deformation and detachment trajectories. Our experiments reveal that between 20 and 60 parallel membrane tethers form prior to detachment from the surface. We propose that the extraction of tethers is the consequence of an inhomogeneous adhesion interface and model the detachment mechanism as the dynamic extrusion of cooperatively loaded tethers. In our model, individual tethers detach by a peeling process in which a zone of a few nanometers is loaded by the externally applied force. Our findings suggest that the formation of an inhomogeneous non-specific adhesion interface between a cell and its substrate gives rise to more complex dynamics of detachment than previously discussed.  相似文献   

2.
Akt1 belongs to the three-gene Akt family and functions as a serine-threonine kinase regulating phosphorylation of an array of substrates and mediating cellular processes such as cell migration, proliferation, survival, and cell cycle. Our previous studies have established the importance of Akt1 in angiogenesis and absence of Akt1 resulted in impaired integrin activation, adhesion, migration, and extracellular matrix assembly by endothelial cells and fibroblasts. In this study, we identify the downstream signaling pathways activated by Akt1 in the regulation of these cellular events. We demonstrate here that Akt1 is necessary for the growth factor stimulated activation of 14-3-3beta-Rac1-p21 activated kinase (Pak) pathway in endothelial cells and fibroblasts. While activation of Akt1 resulted in translocation of Rac1 to membrane ruffles, enhanced Rac1 activity, Pak1 phosphorylation, and lamellipodia formation, resulting in enhanced adhesion and assembly of fibronectin, inhibition of Akt1 resulted in inhibition of these processes due to impaired Rac1-Pak signaling. Formation of lamellipodia, adhesion, and fibronectin assembly by myristoylated Akt1 expression in NIH 3T3 fibroblasts was inhibited by co-expression with either dominant negative Rac1 or dominant negative Pak1. In contrast, impaired lamellipodia formation, adhesion, and fibronectin assembly by dominant negative-Akt1 expression was rescued by co-expression with either constitutively active-Rac1 or -Pak1. Moreover, previously reported defects in adhesion and extracellular matrix assembly by Akt1(-/-) fibroblasts could be rescued by expression with either active-Rac1 or -Pak1, implying the importance of Rac1-Pak signaling in growth factor stimulated cytoskeletal assembly, lamellipodia formation and cell migration in endothelial cells and fibroblasts downstream of Akt1 activation.  相似文献   

3.
Ca(2+) signals regulate polarization, speed, and turning of migrating cells. However, the molecular mechanism by which Ca(2+) acts on moving cells is not understood. Here we show that local Ca(2+) pulses along the front of migrating human endothelial cells trigger cycles of retraction of local lamellipodia and, concomitantly, strengthen local adhesion to the extracellular matrix. These Ca(2+) release pulses had small amplitudes and diameters and were triggered repetitively near the leading plasma membrane with only little coordination between different regions. We show that each Ca(2+) pulse triggers contraction of actin filaments by activating myosin light-chain kinase and myosin II behind the leading edge. The cyclic force generated by myosin II operates locally, causing a partial retraction of the nearby protruding lamellipodia membrane and a strengthening of paxillin-based focal adhesion within the same lamellipodia. Photo release of Ca(2+) demonstrated a direct role of Ca(2+) in triggering local retraction and adhesion. Together, our study suggests that spatial sensing, forward movement, turning, and chemotaxis are in part controlled by confined Ca(2+) pulses that promote local lamellipodia retraction and adhesion cycles along the leading edge of moving cells.  相似文献   

4.
Although it is unclear how a living cell senses gravitational forces there is no doubt that perturbation of the gravitational environment results in profound alterations in cellular function. In the present study, we have focused our attention on how acute microgravity exposure during parabolic flight affects the skeletal muscle cell plasma membrane (i.e. sarcolemma), with specific reference to a mechanically-reactive signaling mechanism known as mechanically-induced membrane disruption or "wounding". Both membrane rupture and membrane resealing events mediated by membrane-membrane fusion characterize this response. We here present experimental evidence that acute microgravity exposure can inhibit membrane-membrane fusion events essential for the resealing of sarcolemmal wounds in individual human myoblasts. Additional evidence to support this contention comes from experimental studies that demonstrate acute microgravity exposure also inhibits secretagogue-stimulated intracellular vesicle fusion with the plasma membrane in HL-60 cells. Based on our own observations and those of other investigators in a variety of ground-based models of membrane wounding and membrane-membrane fusion, we suggest that the disruption in the membrane resealing process observed during acute microgravity is consistent with a microgravity-induced decrease in membrane order.  相似文献   

5.
Initiation of reepithelialization upon wounding is still poorly understood. To enhance this understanding, we focus here on changes in the adhesive state of desmosomes of cultured Madin-Darby canine kidney cells in response to wounding of confluent cell sheets. Previous results show that desmosomal adhesion in Madin-Darby canine kidney cells changes from a calcium-dependent state to calcium independence in confluent cell sheets. We show that this change, which requires culture confluence to develop, is rapidly reversed upon wounding of confluent cell sheets. Moreover, the change to calcium dependence in wound edge cells is propagated to cells hundreds of micrometers away from the wound edge. Rapid transition from calcium independence to calcium dependence also occurs when cells are treated with phorbol esters that activate PKC. PKC inhibitors, including the conventional isoform inhibitor G?6976, cause rapid transition from calcium dependence to calcium independence, even in subconfluent cells. The cellular location of the alpha isoform of PKC correlates with the calcium dependence of desmosomes. Upon monolayer wounding, PKCalpha translocates rapidly to the cell periphery, becomes Triton X-100 insoluble, and also becomes concentrated in lamellipodia. The PKCalpha translocation upon wounding precedes both the increase in PKC activity in the membrane fraction and the reversion of desmosomes to calcium dependence. Specific depletion of PKCalpha with an antisense oligonucleotide increases the number of cells with calcium-independent desmosomes. These results show that PKCalpha participates in a novel signaling pathway that modulates desmosomal adhesion in response to wounding.  相似文献   

6.
Numb is an endocytic adaptor protein that regulates internalization and post-endocytic trafficking of cell surface proteins. In polarized epithelial cells Numb is localized to the basolateral membrane, and recent work has implicated Numb in regulation of cell adhesion and migration, suggesting a role for Numb in epithelial–mesenchymal transition (EMT). We depleted MDCK cells of Numb and examined the effects downstream of EMT-promoting stimuli. While knockdown of Numb did not affect apicobasal polarity, we show that depletion of Numb destabilizes E-cadherin-based cell–cell adhesion and promotes loss of epithelial cell morphology. In addition, Numb knockdown in MDCK cells potentiates HGF-induced lamellipodia formation and cell dispersal. Examination of Rac1-GTP levels in Numb knockdown cells revealed hyperactivation of Rac1 following extracellular calcium depletion and HGF stimulation, which corresponds with enhanced loss of cell adhesions and lamellipodia formation. Furthermore, inhibition of Rac1 in Numb depleted cells stabilized cell–cell contacts following depletion of extracellular calcium. Together, these data indicate that Numb acts to suppress Rac1-GTP accumulation, and its loss leads to increased sensitivity toward extracellular signals that disrupt cell–cell adhesion to induce epithelial–mesenchymal transition (EMT) and cell dispersal.  相似文献   

7.
Cell migration occurs as a highly-regulated cycle of cell polarization, membrane extension at the leading edge, adhesion, contraction of the cell body, and release from the extracellular matrix at the trailing edge. In this study, we investigated the involvement of SNARE-mediated membrane trafficking in cell migration. Using a dominant-negative form of the enzyme N-ethylmaleimide-sensitive factor as a general inhibitor of SNARE-mediated membrane traffic and tetanus toxin as a specific inhibitor of VAMP3/cellubrevin, we conducted transwell migration assays and determined that serum-induced migration of CHO-K1 cells is dependant upon SNARE function. Both VAMP3-mediated and VAMP3-independent traffic were involved in regulating this cell migration. Inhibition of SNARE-mediated membrane traffic led to a decrease in the protrusion of lamellipodia at the leading edge of migrating cells. Additionally, the reduction in cell migration resulting from the inhibition of SNARE function was accompanied by perturbation of a Rab11-containing alpha(5)beta(1) integrin compartment and a decrease in cell surface alpha(5)beta(1) without alteration to total cellular integrin levels. Together, these observations suggest that inhibition of SNARE-mediated traffic interferes with the intracellular distribution of integrins and with the membrane remodeling that contributes to lamellipodial extension during cell migration.  相似文献   

8.
Integrin CD11b/CD18 is a key adhesion receptor that mediates leukocyte migration and immune functions. Leukadherin-1 (LA1) is a small molecule agonist that enhances CD11b/CD18-dependent cell adhesion to its ligand ICAM-1. Here, we used single-molecule force spectroscopy to investigate the biophysical mechanism by which LA1-activated CD11b/CD18 mediates leukocyte adhesion. Between the two distinct populations of CD11b/CD18:ICAM-1 complex that participate in cell adhesion, the cytoskeleton(CSK)-anchored elastic elements and the membrane tethers, we found that LA1 enhanced binding of CD11b/CD18 on K562 cells to ICAM-1 via the formation of long membrane tethers, whereas Mn2+ additionally increased ICAM-1 binding via CSK-anchored bonds. LA1 activated wild-type and LFA1−/− neutrophils also showed longer detachment distances and time from ICAM-1-coated atomic force microscopy tips, but significantly lower detachment force, as compared to the Mn2+-activated cells, confirming that LA1 primarily increased membrane-tether bonds to enhance CD11b/CD18:ICAM-1 binding, whereas Mn2+ induced additional CSK-anchored bond formation. The results suggest that the two types of agonists differentially activate integrins and couple them to the cellular machinery, providing what we feel are new insights into signal mechanotransduction by such agents.  相似文献   

9.
Integrin CD11b/CD18 is a key adhesion receptor that mediates leukocyte migration and immune functions. Leukadherin-1 (LA1) is a small molecule agonist that enhances CD11b/CD18-dependent cell adhesion to its ligand ICAM-1. Here, we used single-molecule force spectroscopy to investigate the biophysical mechanism by which LA1-activated CD11b/CD18 mediates leukocyte adhesion. Between the two distinct populations of CD11b/CD18:ICAM-1 complex that participate in cell adhesion, the cytoskeleton(CSK)-anchored elastic elements and the membrane tethers, we found that LA1 enhanced binding of CD11b/CD18 on K562 cells to ICAM-1 via the formation of long membrane tethers, whereas Mn2+ additionally increased ICAM-1 binding via CSK-anchored bonds. LA1 activated wild-type and LFA1−/− neutrophils also showed longer detachment distances and time from ICAM-1-coated atomic force microscopy tips, but significantly lower detachment force, as compared to the Mn2+-activated cells, confirming that LA1 primarily increased membrane-tether bonds to enhance CD11b/CD18:ICAM-1 binding, whereas Mn2+ induced additional CSK-anchored bond formation. The results suggest that the two types of agonists differentially activate integrins and couple them to the cellular machinery, providing what we feel are new insights into signal mechanotransduction by such agents.  相似文献   

10.
Physical interactions between cells and the extracellular matrix (ECM) guide directional migration by spatially controlling where cells form focal adhesions (FAs), which in turn regulate the extension of motile processes. Here we show that physical control of directional migration requires the FA scaffold protein paxillin. Using single-cell sized ECM islands to constrain cell shape, we found that fibroblasts cultured on square islands preferentially activated Rac and extended lamellipodia from corner, rather than side regions after 30 min stimulation with PDGF, but that cells lacking paxillin failed to restrict Rac activity to corners and formed small lamellipodia along their entire peripheries. This spatial preference was preceded by non-spatially constrained formation of both dorsal and lateral membrane ruffles from 5-10 min. Expression of paxillin N-terminal (paxN) or C-terminal (paxC) truncation mutants produced opposite, but complementary, effects on lamellipodia formation. Surprisingly, pax-/- and paxN cells also formed more circular dorsal ruffles (CDRs) than pax+ cells, while paxC cells formed fewer CDRs and extended larger lamellipodia even in the absence of PDGF. In a two-dimensional (2D) wound assay, pax-/- cells migrated at similar speeds to controls but lost directional persistence. Directional motility was rescued by expressing full-length paxillin or the N-terminus alone, but paxN cells migrated more slowly. In contrast, pax-/- and paxN cells exhibited increased migration in a three-dimensional (3D) invasion assay, with paxN cells invading Matrigel even in the absence of PDGF. These studies indicate that paxillin integrates physical and chemical motility signals by spatially constraining where cells will form motile processes, and thereby regulates directional migration both in 2D and 3D. These findings also suggest that CDRs may correspond to invasive protrusions that drive cell migration through 3D extracellular matrices.  相似文献   

11.
Kim H  McCulloch CA 《FEBS letters》2011,585(1):760-22
Cell adhesion, spreading and migration on extracellular matrices are regulated by complex processes that involve the cytoskeleton and a large array of adhesion receptors, including the β1 integrin. Filamin A is a large, multi-domain, homodimeric actin binding protein that contributes to the mechanical stability of cells and interacts with several proteins that regulate cell adhesion including β1 integrin and several protein kinases. Here we review current data on the structure, mechanical properties and intracellular signaling functions of filamin that regulate cell adhesion. We also consider new data showing that interactions of filamin A with intermediate filaments and protein kinase C enable tight regulation of β1 integrin function and consequently early events in cell adhesion and migration on extracellular matrix proteins.  相似文献   

12.
In order to investigate the mechanism of the formation of the mesodermal layer during chick gastrulation, we observed the behavior of fragments of mesodermal cells explanted and cultured on substrata coated with parallel lines of fibronectin (FN). We also examined the distribution of F-actin, alpha-actinin, and vinculin in explanted fragments by immunocytochemical methods noting particularly their distribution with respect to FN lines. Explants of mesodermal cells flattened on FN-coated substrata and then became elliptical with the major axis of the ellipse oriented along the FN lines and migrated along them. The peripheral cells of explants extended filopodia and lamellipodia which attached preferentially to FN lines and then contracted, pulling other mesodermal cells in explants along passively. Vinculin and alpha-actinin in peripheral anchoring filopodia and lamellipodia co-localized with the terminations of F-actin bundles and with FN lines, suggesting that the peripheral cells were the moving force for explant translocation. We propose based on these results that in vivo, peripheral cells of invaginated cell mass are guided by the known FN-rich fibrous extracellular matrix on the basal surface of epiblast to move outwards; the rest linked to the peripheral cells are pulled away from the primitive streak to spread in tandem to form the mesodermal layer.  相似文献   

13.
The mechanical properties of living cells reflect their propensity to migrate and respond to external forces. Both cellular and nuclear stiffnesses are strongly influenced by the rigidity of the extracellular matrix (ECM) through reorganization of the cyto- and nucleoskeletal protein connections. Changes in this architectural continuum affect cell mechanics and underlie many pathological conditions. In this context, an accurate and combined quantification of the mechanical properties of both cells and nuclei can contribute to a better understanding of cellular (dys-)function. To address this challenge, we have established a robust method for probing cellular and nuclear deformation during spreading and detachment from micropatterned substrates. We show that (de-)adhesion kinetics of endothelial cells are modulated by substrate stiffness and rely on the actomyosin network. We combined this approach with measurements of cell stiffness by magnetic tweezers to show that relaxation dynamics can be considered as a reliable parameter of cellular pre-stress in adherent cells. During the adhesion stage, large cellular and nuclear deformations occur over a long time span (>60 min). Conversely, nuclear deformation and condensed chromatin are relaxed in a few seconds after detachment. Finally, our results show that accumulation of farnesylated prelamin leads to modifications of the nuclear viscoelastic properties, as reflected by increased nuclear relaxation times. Our method offers an original and non-intrusive way of simultaneously gauging cellular and nuclear mechanics, which can be extended to high-throughput screens of pathological conditions and potential countermeasures.  相似文献   

14.
Cellular membranes, which can serve as scaffolds for signal transduction, dynamically change their characteristics upon cell detachment. Src family kinases undergo post-translational lipid modification and are involved in a wide range of signaling events at the plasma membrane, such as cell proliferation, cell adhesion, and survival. Previously, we showed the differential membrane distributions among the members of Src family kinases by sucrose density gradient fractionation. However, little is known about the regulation of the membrane distribution of Src family kinases upon cell detachment. Here, we show that cell detachment shifts the main peak of the membrane distribution of Lyn, a member of Src family kinase, from the low density to the high density membrane fractions and enhances the kinase activity of Lyn. The change in Lyn distribution upon cell detachment involves both dynamin activity and a decrease in membrane cholesterol. Cell detachment activates Lyn through decreased membrane cholesterol levels during a change in its membrane distribution. Furthermore, cholesterol incorporation decreases Lyn activity and reduces the viability of suspension cells. These results suggest that cell detachment-induced Lyn activation through the change in the membrane distribution of Lyn plays an important role in survival of suspension cells.  相似文献   

15.
pH nanoenvironment at the surface of single melanoma cells.   总被引:5,自引:0,他引:5  
Extracellular pH and the Na(+)/H(+) exchanger (NHE1) modulate tumor cell migration. Yet, the pH nanoenvironment at the outer surface of the cell membrane (pH(em)) where cell/matrix interaction occurs and matrix metalloproteinases work was never measured. We present a method to measure this pH nanoenvironment using proton-sensitive dyes to label the outer leaflet of the plasma membrane or the glycocalyx of human melanoma cells. Polarized cells generate an extracellular proton gradient at their surface that increases from the rear end to the leading edge of the lamellipodium along the direction of movement. This gradient collapses upon NHE1 inhibition by HOE642. NHE1 stimulation by intracellular acidification increases the difference in pH(em) between the tips of lamellipodia and the cell body in a Na(+) dependent way. Thus, cells create a pH nanoenvironment that promotes cell migration by facilitating cell adhesion at their front and the release of cell/matrix contacts at their rear part.  相似文献   

16.
Directed cell migration is mediated by cycles of protrusion, adhesion, traction generation on the extracellular matrix and retraction. However, how the events after protrusion are timed, and what dictates their temporal order is completely unknown. We used acute epidermal growth factor (EGF) stimulation of epidermal keratinocytes to initiate the cell migration cycle to study the mechanism of the timing of adhesion, traction generation, and de-adhesion. Using microscopic and biochemical assays, we surprisingly found that at ∼2 min after EGF stimulation protrusion, activation of myosin-II, traction generation, adhesion assembly, and paxillin phosphorylation occurred nearly simultaneously, followed by a 10-min delay during which paxillin became dephosphorylated before cell retraction. Inhibition of myosin-II blocked both the EGF-stimulated paxillin phosphorylation and cell retraction, and a paxillin phosphomimic blocked retraction. These results suggest that EGF-mediated activation of myosin-II acts as a mechanical signal to promote a cycle of paxillin phosphorylation/dephosphorylation that mediates a cycle of adhesion strengthening and weakening that delays cell retraction. Thus, we reveal for the first time a mechanism by which cells may temporally segregate protrusion, adhesion, and traction generation from retraction during EGF-stimulated cell migration.  相似文献   

17.
Micro-environmental clues, including the biophysical interpretation of the extracellular matrix, are critical to proliferation, apoptosis and migration. Here, we show that metastatic human colon cancer cell lines display altered matrix interaction. Interaction of colon cancer cells with collagen I depends on integrins (mainly alpha(1)/beta(1)) but metastatic cells display delayed spreading and reduced extension of lamellipodia. In addition, cells show defective strengthening of integrin-cytoskeleton linkages upon mechanical stimulation, as determined by laser trapping experiments and binding of large beads to the cell surface. However, adhesion to pliable surfaces is ameliorated in metastatic variants. These changes are caused by constitutive activation of focal adhesion kinase (FAK) and can be modulated by changing expression and/or activity of FAK via RNA-interference or expression of inhibitory constructs, respectively. In addition, consistent with defective strengthening of integrin-cytoskeleton linkages, metastatic cell lines show reduced random motility. Taken together these data suggest that constitutive activation of FAK causes defects in spreading, reinforcement of integrin-cytoskeleton linkages and migration and at the same time could ameliorate the adhesion of metastatic cells to suboptimal surfaces.  相似文献   

18.
Fundamental to all mammalian cells is the adherence of the lipid bilayer membrane to the underlying membrane associated cytoskeleton. To investigate this adhesion, we physically detach the lipid membrane from the cell by mechanically forming membrane tethers. For the most part these have been tethers formed from either neutrophils or red cells. Here we do a simple thermodynamic analysis of the tether formation process using the entire cell, including tether, as the control volume. For a neutrophil, we show that the total adhesion energy per unit area between lipid membrane and cytoskeleton depends on the square of the tether force. For a flaccid red cell, we show that the total adhesion energy minus the tension in the spectrin cytoskeleton depends also on the square of the tether force. Finally, we discuss briefly the viscous flow of membrane. Using published data we calculate and compare values for the various adhesion energies and viscosities.  相似文献   

19.
Laminin 5 is a basement membrane component that actively promotes adhesion and migration of epithelial cells. Laminin 5 undergoes extracellular proteolysis of the gamma2 chain that removes the NH(2)-terminal short arm of the polypeptide and reduces the size of laminin 5 from 440 to 400 kD. The functional consequence of this event remains obscure, although lines of evidence indicate that cleavage of the gamma2 chain potently stimulated scattering and migration of keratinocytes and cancer cells. To define the biological role of the gamma2 chain short arm, we expressed mutated gamma2 cDNAs into immortalized gamma2-null keratinocytes. By immunofluorescence and immunohistochemical studies, cell detachment, and adhesion assays, we found that the gamma2 short arm drives deposition of laminin 5 into the extracellular matrix (ECM) and sustains cell adhesion. Our results demonstrate that the unprocessed 440-kD form of laminin 5 is a biologically active adhesion ligand, and that the gamma2 globular domain IV is involved in intermolecular interactions that mediate integration of laminin 5 in the ECM and cell attachment.  相似文献   

20.
The properties of substrates and extracellular matrices (ECM) are important factors governing the functions and fates of mammalian adherent cells. For example, substrate stiffness often affects cell differentiation. At focal adhesions, clustered–integrin bindings link cells mechanically to the ECM. In order to quantitate the affinity between cell and substrate, the cell adhesion force must be measured for single cells. In this study, forcible detachment of a single cell in the vertical direction using AFM was carried out, allowing breakage of the integrin–substrate bindings. An AFM tip was fabricated into an arrowhead shape to detach the cell from the substrate. Peak force observed in the recorded force curve during probe retraction was defined as the adhesion force, and was analyzed for various types of cells. Some of the cell types adhered so strongly that they could not be picked up because of plasma membrane breakage by the arrowhead probe. To address this problem, a technique to reinforce the cellular membrane with layer-by-layer nanofilms composed of fibronectin and gelatin helped to improve insertion efficiency and to prevent cell membrane rupture during the detachment process, allowing successful detachment of the cells. This method for detaching cells, involving cellular membrane reinforcement, may be beneficial for evaluating true cell adhesion forces in various cell types.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号