首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The tear film lipid layer (TFLL), the final layer of the human tear film is responsible for surface tension reduction while blinking, water evaporation retardation and maintaining the stability of the tear film. The study of the composition-structure-function relationship of TFLL is paramount, as a compromised structure of TFLL leads to the emergence of dry eye disease (DED) which is one the most prevalent ophthalmic surface diseases of the modern world, associated with chronic pain and reduced visual capability. In this model membrane study, a systematic approach is used to study the biophysical properties of TFLL model membranes as a function of composition. Three mixed-lipid model membranes are studied along with their individual components comprising cholesteryl oleate (CO), glyceryl trioleate (GT), L-α-phosphatidylcholine (egg PC) and a free fatty acid mixture. The models become progressively more complex from binary to quaternary mixtures, allowing the role of each individual lipid to be derived. Langmuir balance, Brewster Angle Microscopy (BAM) and Profile Analysis Tensiometer (PAT) are used to study the surface activity and compression-expansion cycles, morphology, and rheological behaviour of the model membranes, respectively. Evidence of multilayering is observed with inclusion of CO and a reversible collapse is associated with the GT phase transition. An initially more coherent film is observed due to the addition of polar PC. Notably, these individual behaviours are retained in the mixed films and suggest a possible role for each physiological component of TFLL.  相似文献   

2.
《Biophysical journal》2022,121(3):451-458
Fatty acid esters of hydroxy fatty acids (FAHFAs) are a newly discovered class of endogenous lipids that consist of two acyl chains connected through a single ester bond. Being a unique species of FAHFAs, (O-acyl)-ω-hydroxy fatty acids (OAHFAs) differ from other FAHFAs in that their hydroxy fatty acid backbones are ultralong and their hydroxy esterification is believed to be solely at the terminal (ω-) position. Only in recent years with technological advances in lipidomics have OAHFAs been identified as an important component of the tear film lipid layer (TFLL). It was found that OAHFAs account for approximately 4 mol% of the total lipids and 20 mol% of the polar lipids in the TFLL. However, their biophysical function and contribution to the TFLL is still poorly understood. Here we studied the molecular biophysical mechanisms of OAHFAs using palmitic-acid-9-hydroxy-stearic-acid (PAHSA) as a model. PAHSA and OAHFAs share key structural similarities that could result in comparable biophysical properties and molecular mechanisms. With combined biophysical experiments, atomic force microscopy observations, and all-atom molecular dynamics simulations, we found that the biophysical properties of a dynamic PAHSA monolayer under physiologically relevant conditions depend on a balance between kinetics and thermal relaxation. PAHSA molecules at the air-water surface demonstrate unique polymorphic behaviors, which can be explained by configurational transitions of the molecules under various lateral pressures. These findings could have novel implications in understanding biophysical functions that FAHFAs, in general, or OAHFAs, specifically, play in the TFLL.  相似文献   

3.
The tear fluid lipid layer is present at the outermost part of the tear film which lines the ocular surface and functions to maintain the corneal surface moist by retarding evaporation. Instability in the structure of the tear fluid lipid layer can cause an increased rate of evaporation and thus dry eye syndrome. Ectoine has been previously shown to fluidize lipid monolayers and alter the phase behavior. In the current study we have investigated the effect of ectoine on the artificial tear fluid lipid layer composed of binary and ternary lipid mixtures of dipalmitoyl phosphatidylcholine (DPPC), cholesteryl esters and tri-acyl-glycerols. The focus of our study was mainly the structural and the biophysical aspects of the artificial tear fluid lipid layer using surface activity studies and topology analysis. The presence of ectoine consistently causes an expansion of the pressure–area isotherm indicating increased intermolecular spacing. The topology studies showed the formation of droplet-like structures due to the addition of ectoine only when tri-acyl-glycerol is present in the mixture of DPPC and chol-palmitate, similar to the natural meibomian lipids. Consequently, the hypothesis of an exclusion of tri/di-acyl-glycerol from the meibomian lipid film in the presence of ectoine in the subphase is confirmed. A model describing the effect of ectoine on meibomian lipid films is further presented which may have an application for the use of ectoines in eye drops as a treatment for the dry eye syndrome.  相似文献   

4.
The tear fluid protects the corneal epithelium from drying out as well as from invasion by pathogens. It also provides cell nutrients. Similarly to lung surfactant, it is composed of an aqueous phase covered by a lipid layer. Here we describe the molecular organization of the anterior lipid layer of the tear film. Artificial tear fluid lipid layers (ATFLLs) composed of egg yolk phosphatidylcholine (60 mol %), free fatty acids (20 mol %), cholesteryl oleate (10 mol %), and triglycerides (10 mol %) were deposited on the air-water interface and their physico-chemical behavior was compared to egg-yolk phosphatidylcholine monolayers by using Langmuir-film balance techniques, x-ray diffraction, and imaging techniques as well as in silico molecular level simulations. At low surface pressures, ATFLLs were organized at the air-water interface as heterogeneous monomolecular films. Upon compression the ATFLLs collapsed toward the air phase and formed hemispherelike lipid aggregates. This transition was reversible upon relaxation. These results were confirmed by molecular-level simulations of ATFLL, which further provided molecular-scale insight into the molecular distributions inside and dynamics of the tear film. Similar type of behavior is observed in lung surfactant but the folding takes place toward the aqueous phase. The results provide novel information of the function of lipids in the tear fluid.  相似文献   

5.
The interaction of a purified human plasma lipid transfer complex with cholesteryl ester, triacylglycerol and phosphatidylcholine in binary and ternary lipid monolayers was investigated. The lipid transfer complex, designated LTC, catalyzes the removal of cholesteryl oleate and triacylglycerol from phosphatidylcholine monolayers. Preincubation of LTC with p-chloromercuriphenyl sulfonate inhibits LTC-catalyzed removal of triacylglycerol; cholesteryl ester removal is not affected. The rate of LTC-facilitated removal of cholesteryl oleate from a phosphatidylcholine monolayer depends on the amount of LTC added to the subphase up to 100 μg protein. In addition, the rate of the LTC-catalyzed transfer of cholesteryl oleate to the subphase increases linearly as the amount of cholesteryl oleate in the monolayer increases to 6 mol%. LTC also removes cholesterol from phosphatidylcholine-cholesterol monolayers, albeit at a rate which is 15% of that for removal of cholesteryl oleate. The ability of LTC to facilitate triacylglycerol and cholesteryl ester removal depends on the composition of the monolayer. Phosphatidylcholine supports cholesteryl ester transfer whereas sphingomyelin-cholesteryl ester monolayers are almost refractory to LTC. In contrast, LTC removes triacylglycerol from either a phosphatidylcholine or a sphingomyelin monolayer. The results suggest the existence of at least two lipid transfer proteins, one of which catalyzes the removal of cholesteryl ester and the other triacylglycerol. The role of these proteins as they relate to lipoprotein metabolism is discussed.  相似文献   

6.
The human tear fluid film consists of a superficial lipid layer, an aqueous middle layer, and a hydrated mucin layer located next to the corneal epithelium. The superficial lipid layer protects the eye from drying and is composed of polar and neutral lipids provided by the meibomian glands. Excess accumulation of lipids in the tear film may lead to drying of the corneal epithelium. In the circulation, phospholipid transfer protein (PLTP) and cholesteryl ester transfer protein (CETP) mediate lipid transfers. To gain insight into the formation of tear film, we investigated whether PLTP and CETP are present in human tear fluid. Tear fluid samples were collected with microcapillaries. The presence of PLTP and CETP was studied in tear fluid by Western blotting, and the PLTP concentration was determined by ELISA. The activities of the enzymes were determined by specific lipid transfer assays. Size-exclusion and heparin-affinity chromatography assessed the molecular form of PLTP. PLTP is present in tear fluid, whereas CETP is not. Quantitative assessment of PLTP by ELISA indicated that the PLTP concentration in tear fluid, 10.9 +/- 2.4 microg/mL, is about 2-fold higher than that in human plasma. PLTP-facilitated phospholipid transfer activity in tears, 15.1 +/- 1.8 micromol mL(-)(1) h(-)(1), was also significantly higher than that measured in plasma. Inactivation of PLTP by heat treatment (+58 degrees C, 60 min) or immunoinhibition abolished the phospholipid transfer activity in tear fluid. Size-exclusion chromatography of tear fluid indicated that PLTP eluted in a position corresponding to a size of 160-170 kDa. Tear fluid PLTP was quantitatively bound to Heparin-Sepharose and could be eluted as a single peak by 0.5 M NaCl. These data indicate that human tear fluid contains catalytically active PLTP protein, which resembles the active form of PLTP present in plasma. The results suggest that PLTP may play a role in the formation of the tear film by supporting phospholipid transfer.  相似文献   

7.
Dry eye disease (DED) is a multifactorial chronic inflammatory disease of the ocular surface characterized by tear film instability, hyperosmolarity, cell damage and inflammation. Hyperosmolarity is strongly established as the core mechanism of the DED. Benzalkonium chloride (BAK) - a quaternary ammonium salt commonly used in eye drops for its microbicidal properties - is well known to favor the onset of DED. Currently, little data are available regarding lipid metabolism alteration in ocular surface epithelial cells in the course of DED. Our aim was to explore the effects of benzalkonium chloride or hyperosmolarity exposure on the human corneal epithelial (HCE) cell lipidome, two different conditions used as in vitro models of DED. For this purpose, we performed a lipidomic analysis using UPLC-HRMS-ESI+/−. Our results demonstrated that BAK or hyperosmolarity induced important modifications in HCE lipidome including major changes in sphingolipids, glycerolipids and glycerophospholipids. For both exposures, an increase in ceramide was especially exhibited. Hyperosmolarity specifically induced triglyceride accumulation resulting in lipid droplet formation. Conversely, BAK induced an increase in lysophospholipids and a decrease in phospholipids. This lipidomic study highlights the lipid changes involved in inflammatory responses following BAK or hyperosmolarity exposures. Thereby, lipid research appears of great interest, as it could lead to the discovery of new biomarkers and therapeutic targets for the diagnosis and treatment of dry eye disease.  相似文献   

8.
Tear film thinning, hyperosmolarity, and breakup can cause irritation and damage to the human eye, and these form an area of active investigation for dry eye syndrome research. Recent research demonstrates that deficiencies in the lipid layer may cause locally increased evaporation, inducing conditions for breakup. In this paper, we explore the conditions for tear film breakup by considering a model for tear film dynamics with two mobile fluid layers, the aqueous and lipid layers. In addition, we include the effects of osmosis, evaporation as modified by the lipid, and the polar portion of the lipid layer. We solve the system numerically for reasonable parameter values and initial conditions and analyze how shifts in these cause changes to the system’s dynamics.  相似文献   

9.
BackgroundWith dry eye, the ratio of cholesteryl ester (CE) to wax ester (WE) decreases substantially in meibum, but the functional and structural consequences of this change are speculative. The aim of this study is to confirm this finding and to bridge this gap in knowledge by investigating the effect of varying CE/WE ratios on lipid structure and thermodynamics.MethodsInfrared spectroscopy was use to quantify CE and WE in human meibum and to measure hydrocarbon chain conformation and thermodynamics in a cholesteryl behenate, stearyl stearate model system.ResultsThe CE/WE molar ratio was 36% lower for meibum from donors with dry eye due to meibomian gland dysfunction compared with meibum from donors without dry eye. CE (5 mol %) dramatically increased the phase transition temperature of pure WE from -0.12 °C to 63 °C in the mixture. Above 5 mol % CB, the phase transition temperature increased linearly, from 68.5 °C to 85 °C. In the ordered state, CE caused an increase in lipid order from about 72% trans rotamers to about 86% trans rotamers. Above 10% CE, the hydrocarbon chains were arranged in a monoclinic geometry.ConclusionsThe CE/WE is lower in meibum from donors with dry eye due to meibomian-gland dysfunction. Major conformational changes in the hydrocarbon chains of wax and cholesteryl ester mixtures begin to occur with just 5% CB and above.General significanceCE-WE interactions may be important for in understanding lipid layer structure and functional relationships on the surface of tears, skin and plants.  相似文献   

10.
Cultured rabbit aortic smooth muscle cells were converted to foam cells by exposure to sonicated lipid droplets of defined composition using an inverted culture technique. Uptake of the lipid droplets by the cells was shown to be dependent on the time of exposure to the droplets and on the mass of droplets presented to the cells. A comparison of the hydrolysis of triolein and cholesteryl oleate by cells that had been exposed to isotropic lipid droplets containing equimolar amounts of the two lipids revealed that the rate of hydrolysis of triglyceride was 3 to 4 times faster than that for cholesteryl ester. The hydrolysis of cholesteryl oleate from cells loaded with the isotropic droplets was approximately 1.5 times as fast as that from cells loaded with anisotropic droplets containing only cholesteryl oleate. A comparison of the hydrolysis of cholesteryl ester in the presence and absence of Sandoz compound 58-035, an inhibitor of acyl CoA:cholesterol acyl transferase, by cells loaded with isotropic droplets showed that about 30% of the free cholesterol liberated by hydrolysis was reesterified regardless of the mass of free cholesterol. We conclude that cultured smooth muscle cells have a greater capacity to hydrolyze triglyceride than cholesteryl ester, and that the rate of hydrolysis of cholesteryl ester appears to be related to the physical state of the droplet in which the cholesteryl ester is stored. In addition, it appears that the smooth muscle cells have a cholesteryl ester cycle that is inefficient in the reesterification of excess free cholesterol.  相似文献   

11.
The tear fluid lipid layer is the outermost part of the tear film on the ocular surface which protects the eye from inflammations and injuries. We investigated the influence of ectoine on the structural organization of natural meibomian lipid films using surface activity analysis and topographical studies. These films exhibit a continuous pressure–area isotherm without any phase transition. With the addition of ectoine, the isotherm is expanded towards higher area per molecule values suggesting an increased area occupied by the interfacial lipid molecules. The AFM topology scans of natural meibomian lipid films reveal a presence of fiber-like structures. The addition of ectoine causes an appearance of droplet-like structures which are hypothesized to be tri-acyl-glycerols and other hydrophobic components excluded from the lipid film. Further the material properties of the droplet-like structure with respect to the surrounding were determined by using the quantitative imaging mode of the AFM technique. The droplet-like structures were found to be comparatively softer than the surrounding. Based on the observations a preliminary hypothesis is proposed explaining the mechanism of action of ectoine leading to the fluidization of meibomian lipid films. This suggests the possibility of ectoine as a treatment for the dry eye syndrome.  相似文献   

12.
PurposeMeibum from donors who have had hematological stem cell transplantations (MHSCT) are susceptible to severe dry eye symptoms and exhibit very high lipid order (stiffness) compared with meibum from donors without dry eye (Mn). Since lipid order could have functional consequences, we compared the rheology and composition of Mn and MHSCT to measure meibum compositional, structural and functional relationships.MethodsThe rheology and composition was measured using Langmuir trough and 1H NMR spectroscopy, respectively.ResultsMHSCT and Mn was studied from 16 to 43 donors, respectively, using NMR spectroscopy. MHSCT contained significantly 16% more straight chain and 24% less iso-chain hydrocarbons compared with Mn. The cholesteryl ester to wax ester molar ratio, and hydrocarbon chain unsaturation were not significantly different, for MHSCT compared with Mn.Surface pressure-area isotherms of meibum from 30 donors without dry-eye were grouped into 4 pools (PC) and meibum from 32 donors with dry eye who had hematopoietic stem cell transplantation (PT) were grouped into 3 pools. Above 15 years of age the Пmax and (Cs?1)max increased with age for both the PC and the PT cohorts. (Cs?1)max values were higher for PT samples compared with age matched PC samples, indicating they had higher elasticity and stiffness. A more ordered lipid could contribute to the formation of a discontinuous patchy tear film lipid layer, which in turn results in deteriorated spreading, and decreased surface elasticity.ConclusionsThe composition and rheology of meibum from donors with dry eye and who have had HSCT support the idea from other studies that more ordered meibum may contribute to or be a marker of dry eye.  相似文献   

13.
The capacity of the plasma-derived lipid transfer protein to facilitate the transfer of various cholesteryl ester species has been investigated. Four different molecular species of cholesteryl ester were incorporated into either reconstituted high density lipoproteins or phosphatidylcholine liposomes, and the resulting particles were used as donors in standardized lipid transfer assays. With reconstituted high density lipoproteins as substrate, the rate of transfer of cholesteryl esters was cholesteryl oleate greater than cholesteryl linoleate greater than cholesteryl arachidonate greater than cholesteryl palmitate. The transfer rate for cholesteryl oleate was 154% of that for cholesteryl palmitate. Liposome substrates gave similar results. It is concluded that lipid transfer protein transfers all major species of cholesteryl ester found in plasma; however, the relative rates of transfer were significantly affected by acyl chain composition. The transfer rates appeared to reflect substrate specificity rather than substrate availability within the donor particle.  相似文献   

14.
The tear film covers the anterior eye and the precise balance of its various constituting components is critical for maintaining ocular health. The composition of the tear film amphiphilic lipid sublayer, in particular, has largely remained a matter of contention due to the limiting concentrations of these lipid amphiphiles in tears that render their detection and accurate quantitation tedious. Using systematic and sensitive lipidomic approaches, we validated different tear collection techniques and report the most comprehensive human tear lipidome to date; comprising more than 600 lipid species from 17 major lipid classes. Our study confers novel insights to the compositional details of the existent tear film model, in particular the disputable amphiphilic lipid sublayer constituents, by demonstrating the presence of cholesteryl sulfate, O-acyl-ω-hydroxyfatty acids, and various sphingolipids and phospholipids in tears. The discovery and quantitation of the relative abundance of various tear lipid amphiphiles reported herein are expected to have a profound impact on the current understanding of the existent human tear film model.  相似文献   

15.
This study investigates the ability of human plasma-derived lipid transfer protein to facilitate lipid transfer to and from intact viable cells in culture. Mouse peritoneal macrophages or J774 macrophages were preincubated with acetylated low density lipoprotein and [3H]oleate/albumin to promote the intracellular synthesis and accumulation of cholesteryl [3H]oleate and 3H-labeled triglyceride. The addition of partially purified lipid transfer protein to cultures of lipid-loaded macrophages resulted in a time and concentration-dependent transfer of radiolabeled cholesteryl ester and triglyceride from macrophages to the medium. At 48 hr, lipid transfer protein facilitated the net transfer of 16 and 11% of cellular cholesteryl ester and triglyceride radioactivity, respectively, to the medium; transfer in the absence of the lipid transfer protein was less than 2%. The transfer of cholesteryl ester radioactivity was accompanied by a similar decrease in cellular cholesteryl ester mass indicating a net transfer event. Lipid transfer from cells was not dependent on the presence of a lipoprotein acceptor in the medium; however, low and high density lipoproteins present at 200 micrograms cholesterol/ml did significantly stimulate the transfer protein-facilitated efflux of these lipids. Lipid transfer protein did not appear capable of transferring radiolabeled lipid from low density or high density lipoprotein to macrophages. Radiolabeled cholesteryl ester and triglyceride transferred from cells to the medium by lipid transfer protein were associated with large molecular weight (greater than 2 x 10(6)) components in the medium with an average density greater than 1.21 g/ml; these lipids were not associated with lipid transfer protein itself. However, these radiolabeled lipids were readily incorporated into low or high density lipoproteins when these lipoproteins were added to the medium either during or after its incubation with cells. It is concluded that lipid transfer protein can facilitate the net efflux of cholesteryl esters from intact, living macrophages. These studies suggest a novel and potentially antiatherogenic role for lipid transfer protein.  相似文献   

16.
J774 macrophages exposed to medium containing cholesterol-rich phospholipid dispersions accumulate cholesteryl ester. Supplementing this medium with 100 micrograms oleate/ml increased cellular cholesteryl ester contents 3-fold. Cell retinyl ester contents increased 8-fold when medium containing retinol dispersed in dimethyl sulfoxide was supplemented with oleate. These increases were not the result of increases in total lipid uptake by the cells but rather of redistribution of cholesterol and retinol into their respective ester pools. Effective oleate concentration of 15-30 micrograms/ml increased cellular retinyl and cholesteryl ester contents. The effective oleate concentration was reduced to 5 micrograms/ml when the fatty acid/albumin molar ratio was increased. The oleate-stimulated increase in cholesterol esterification was blocked by incubating cells with Sandoz 58-035, a specific inhibitor of acyl-CoA:cholesterol acyltransferase (ACAT), indicating that the effect of fatty acid exposure is mediated through changes in ACAT activity. When cholesterol or retinol was added to cells which had been exposed to oleate for 24 h to provide a triacylglycerol store, the cellular contents of cholesteryl or retinyl ester were also significantly increased compared to cells not previously exposed to oleate. The oleate-stimulated increase in the esterification of cholesterol and/or retinol was also observed in P388D1 macrophages, human (HepG2) and rat (Fu5AH) hepatomas, human fibroblasts, rabbit aortic smooth muscle cells and MCF-7 breast carcinoma cells. In addition to oleate, a number of other fatty acids increased retinol esterification in J774 macrophages; however, cellular cholesterol esterification in these cells was increased only by unsaturated fatty acids and was inhibited in the presence of saturated fatty acids. Although the cellular uptake of radiolabeled oleate and palmitate was similar, a significant difference in the distribution of these fatty acids among the lipid classes was observed. These data demonstrate that exogenous fatty acids are one factor that regulate cellular cholesteryl and retinyl ester contents in cultured cells.  相似文献   

17.
The hypothesis that clearance of cellular cholesteryl ester deposits may be a function of the physical state of the stored lipid has been investigated. Cultured rat hepatoma cells were induced to store cholesteryl ester in either anisotropic inclusions by exposure to free cholesterol-rich phospholipid dispersions or isotropic inclusions by exposure to identical dispersions supplemented with oleic acid. Differential scanning calorimetry demonstrated an order/disorder transition at 43 degrees C for cholesteryl esters stored in anisotropic inclusions; the enthalpy of this transition was consistent with a smectic liquid crystalline to liquid transition. Lipids in cells with isotropic inclusions displayed no order/disorder transitions over the range 20-80 degrees C, indicating that the lipids are in a liquid state. The presence of oleic acid did not influence the mass of cholesteryl ester stored but increased the amount of stored triglyceride. Fatty acyl compositions of the cholesteryl esters were different under the two loading conditions; in particular, there was 38% cholesteryl oleate in anisotropic inclusions and 65% cholesteryl oleate in isotropic inclusions. Kinetics of cholesteryl ester clearance from cells with either anisotropic or isotropic inclusions were studied during a 12-h exposure to acceptors of free cholesterol. In both cases, cholesteryl ester clearance is essentially linear over 12 h and is directly proportional to the initial content of cholesteryl ester. However, the fraction of initial content of cholesteryl ester cleared in 12 h is 0.17 +/- 0.05 for cells with anisotropic inclusions and 0.34 +/- 0.09 for cells with isotropic inclusions. Our data demonstrate that the more rapid clearance of cholesteryl ester by cells with isotropic inclusions can be correlated with the physical state of the cholesteryl ester.  相似文献   

18.
This study aimed to compare the effects of treatment with punctal plugs versus artificial tears on visual function and tear film stability for dry eye. A total of 56 consecutive eyes of 28 dry eye patients observed at our clinic from May to October in 2009 were divided into two groups. One group (32 eyes of 16 patients) was treated with artificial tears, and punctal plugs were used in the other group (24 eyes of 12 patients). A questionnaire was used in these patients before treatment and was repeated 2 weeks after treatment. Fluorescent staining for tear film break-up time (BUT), the Schirmer test I (STI), and contrast sensitivity was performed at the same time. The questionnaire indicated that all patients complained about the uncomfortable symptoms associated with dry eye. These symptoms were relieved after the application of artificial tears or punctal plugs, and there was no significant difference between these two groups. We found that the corneal fluorescent staining disappeared after treatment. The BUT was improved significantly after treatment in both groups, but the improvement was greater in patients who received punctal plugs than those that received artificial tears. There was no remarkable change in the STI in the artificial tears group, but a significant change was observed in the punctal plugs group. The contrast sensitivities were greatly improved in simulated daylight, night, and glare disability conditions after treatment with artificial tears and punctal plugs. However, the changes in contrast sensitivity did not significantly differ between groups. Both artificial tears and punctal plugs relieved dry eye symptoms, repaired corneal lesions, enhanced tear film stability, and improved contrast sensitivity. Punctal plugs could improve tear film stability and elongate the BUT better than artificial tears.  相似文献   

19.
The effect of 4,4'-(isopropylidenedithio)bis(2,6-di-t-butylphenol) (probucol) on cholesteryl ester physical state was examined in dry mixtures, phospholipid-containing dispersions, and cells. Probucol has little effect on the solid to isotropic transition of cholesteryl oleate, but broadens and decreases the enthalpy of the liquid-crystalline transitions at concentrations as low as 1-2 mol %. A probucol transition is only observed at concentrations greater than 20 mol %. The mesomorphic phases of the cholesteryl oleate/probucol mixtures were identified by visual inspection and polarized light microscopy. Mixtures are liquid at probucol concentrations in excess of 5 mol % at 37 degrees C. Probucol also dramatically reduces the enthalpy of the liquid-crystalline transitions of the cholesteryl oleate core of dispersions of the ester with phospholipids at a concentration of 10 mol %, reducing the enthalpy by greater than 80% and the transition temperatures by approximately 2 degrees C. The phase state of cholesteryl esters in Fu5AH rat hepatoma cells was examined after incubation with cholesterol/phospholipid dispersions that caused the accumulation of anisotropic cholesteryl ester droplets. Differential scanning calorimetry scans of cells incubated with cholesterol-rich phospholipid dispersions indicated a phase transition near 48 degrees C, which was abolished when the cells were co-incubated with 50-100 micrograms/ml of probucol in the loading medium. Subsequent to the formation of isotropic cholesteryl ester droplets in the presence of probucol, the rate of efflux of cholesterol from the cells to phosphatidylcholine-containing acceptors in the medium was increased. These data show that probucol is relatively soluble in cholesteryl esters and that probucol changes the phase state of cholesteryl ester droplets in cells to a more fluid phase in which the cholesteryl esters are more readily mobilized.  相似文献   

20.
Lipid microemulsions with various core and surface lipid compositions were prepared by co-sonication of cholesteryl esters, triolein (TO), egg phosphatidylcholine (egg PC), and cholesterol. The heterogeneous emulsion particle mixture was purified by gel filtration and particles with the size and general organization of low density lipoproteins were obtained. These lipid microemulsion particles were used for studies of the cellular metabolism of lipoprotein-derived cholesterol and cholesteryl esters as catalyzed by the enzyme acid sterol ester hydrolase (EC 3.1.1.13). The hydrolysis of cholesteryl oleate (CO) was more than twice and that of cholesteryl linoleate (CL) more than three times faster than the hydrolysis of cholesteryl stearate (CS) over the temperature range 25-39.6 degrees C. Both the synthesis and hydrolysis of cholesteryl esters were insensitive to the physical state of the microemulsion cores. The synthesis of cholesteryl esters by this enzyme was also insensitive to the ratios of cholesterol and egg PC in the microemulsion surface layers. Incorporation of triolein into the microemulsion cholesteryl ester core slightly increased the rate of cholesteryl ester synthesis. A decreasing fatty acyl chain length (C18:0 to C14:0) and an increasing degree of unsaturation (C18:0 to C18:2) enhanced the synthesis rate. It is suggested that the hydrolysis and synthesis of cholesteryl esters in microemulsions (and lipoproteins) take place only in the particle surface layer and that the rate of catalysis is directly dependent on the amount of substrate in this surface layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号