首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Chemical profiling of decomposition odour is conducted in the environmental sciences to detect malodourous target sources in air, water or soil. More recently decomposition odour profiling has been employed in the forensic sciences to generate a profile of the volatile organic compounds (VOCs) produced by decomposed remains. The chemical profile of decomposition odour is still being debated with variations in the VOC profile attributed to the sample collection technique, method of chemical analysis, and environment in which decomposition occurred. To date, little consideration has been given to the partitioning of odour between different matrices and the impact this has on developing an accurate VOC profile. The purpose of this research was to investigate the decomposition odour profile surrounding vertebrate carrion to determine how VOCs partition between soil and air. Four pig carcasses (Sus scrofa domesticus L.) were placed on a soil surface to decompose naturally and their odour profile monitored over a period of two months. Corresponding control sites were also monitored to determine the VOC profile of the surrounding environment. Samples were collected from the soil below and the air (headspace) above the decomposed remains using sorbent tubes and analysed using gas chromatography-mass spectrometry. A total of 249 compounds were identified but only 58 compounds were common to both air and soil samples. This study has demonstrated that soil and air samples produce distinct subsets of VOCs that contribute to the overall decomposition odour. Sample collection from only one matrix will reduce the likelihood of detecting the complete spectrum of VOCs, which further confounds the issue of determining a complete and accurate decomposition odour profile. Confirmation of this profile will enhance the performance of cadaver-detection dogs that are tasked with detecting decomposition odour in both soil and air to locate victim remains.  相似文献   

2.
3.

Background

Metagenomics is a relatively new but fast growing field within environmental biology and medical sciences. It enables researchers to understand the diversity of microbes, their functions, cooperation, and evolution in a particular ecosystem. Traditional methods in genomics and microbiology are not efficient in capturing the structure of the microbial community in an environment. Nowadays, high-throughput next-generation sequencing technologies are powerfully driving the metagenomic studies. However, there is an urgent need to develop efficient statistical methods and computational algorithms to rapidly analyze the massive metagenomic short sequencing data and to accurately detect the features/functions present in the microbial community. Although several issues about functions of metagenomes at pathways or subsystems level have been investigated, there is a lack of studies focusing on functional analysis at a low level of a hierarchical functional tree, such as SEED subsystem tree.

Results

A two-step statistical procedure (metaFunction) is proposed to detect all possible functional roles at the low level from a metagenomic sample/community. In the first step a statistical mixture model is proposed at the base of gene codons to estimate the abundances for the candidate functional roles, with sequencing error being considered. As a gene could be involved in multiple biological processes the functional assignment is therefore adjusted by utilizing an error distribution in the second step. The performance of the proposed procedure is evaluated through comprehensive simulation studies. Compared with other existing methods in metagenomic functional analysis the new approach is more accurate in assigning reads to functional roles, and therefore at more general levels. The method is also employed to analyze two real data sets.

Conclusions

metaFunction is a powerful tool in accurate profiling functions in a metagenomic sample.  相似文献   

4.
Carrion decomposition is an ecologically important natural phenomenon influenced by a complex set of factors, including temperature, moisture, and the activity of microorganisms, invertebrates, and scavengers. The role of soil microbes as decomposers in this process is essential but not well understood and represents a knowledge gap in carrion ecology. To better define the role and sources of microbes in carrion decomposition, lab-reared mice were decomposed on either (i) soil with an intact microbial community or (ii) soil that was sterilized. We characterized the microbial community (16S rRNA gene for bacteria and archaea, and the 18S rRNA gene for fungi and microbial eukaryotes) for three body sites along with the underlying soil (i.e., gravesoils) at time intervals coinciding with visible changes in carrion morphology. Our results indicate that mice placed on soil with intact microbial communities reach advanced stages of decomposition 2 to 3 times faster than those placed on sterile soil. Microbial communities associated with skin and gravesoils of carrion in stages of active and advanced decay were significantly different between soil types (sterile versus untreated), suggesting that substrates on which carrion decompose may partially determine the microbial decomposer community. However, the source of the decomposer community (soil- versus carcass-associated microbes) was not clear in our data set, suggesting that greater sequencing depth needs to be employed to identify the origin of the decomposer communities in carrion decomposition. Overall, our data show that soil microbial communities have a significant impact on the rate at which carrion decomposes and have important implications for understanding carrion ecology.  相似文献   

5.
Researchers agree that climate change factors such as rising atmospheric [CO2] and warming will likely interact to modify ecosystem properties and processes. However, the response of the microbial communities that regulate ecosystem processes is less predictable. We measured the direct and interactive effects of climatic change on soil fungal and bacterial communities (abundance and composition) in a multifactor climate change experiment that exposed a constructed old-field ecosystem to different atmospheric CO2 concentration (ambient, +300 ppm), temperature (ambient, +3°C), and precipitation (wet and dry) might interact to alter soil bacterial and fungal abundance and community structure in an old-field ecosystem. We found that (i) fungal abundance increased in warmed treatments; (ii) bacterial abundance increased in warmed plots with elevated atmospheric [CO2] but decreased in warmed plots under ambient atmospheric [CO2]; (iii) the phylogenetic distribution of bacterial and fungal clones and their relative abundance varied among treatments, as indicated by changes in 16S rRNA and 28S rRNA genes; (iv) changes in precipitation altered the relative abundance of Proteobacteria and Acidobacteria, where Acidobacteria decreased with a concomitant increase in the Proteobacteria in wet relative to dry treatments; and (v) changes in precipitation altered fungal community composition, primarily through lineage specific changes within a recently discovered group known as soil clone group I. Taken together, our results indicate that climate change drivers and their interactions may cause changes in bacterial and fungal overall abundance; however, changes in precipitation tended to have a much greater effect on the community composition. These results illustrate the potential for complex community changes in terrestrial ecosystems under climate change scenarios that alter multiple factors simultaneously.Soil microbial communities are responsible for the cycling of carbon (C) and nutrients in ecosystems, and their activities are regulated by biotic and abiotic factors such as the quantity and quality of litter inputs, temperature, and moisture. Atmospheric and climatic changes will impact both abiotic and biotic drivers in ecosystems and the response of ecosystems to these changes. Feedbacks from ecosystem to the atmosphere may also be regulated by soil microbial communities (3). Although microbial communities regulate important ecosystem processes, it is often unclear how the abundance and composition of microbial communities correlate with climatic perturbations and interact to effect ecosystem processes. As such, much of the ecosystem climate change research conducted to date has focused on macroscale responses to climatic change such as changes in plant growth (43, 44), plant community composition (2, 37), and coarse scale soil processes (14, 18, 21, 26), many of which may also indirectly interact to effect microbial processes. Studies that have addressed the role of microbial communities and processes have most often targeted gross parameters, such as microbial biomass, enzymatic activity, or basic microbial community profiles in response to single climate change factors (22, 28, 29, 33, 61, 63).Climate change factors such as atmospheric CO2 concentrations, warming, and altered precipitation regimes can potentially have both direct and indirect impacts on soil microbial communities. However, the direction and magnitude of these responses is uncertain. For example, the response of soil microbial communities to changes in atmospheric CO2 concentrations can be positive or negative, and consistent overall trends between sites and studies have not been observed (1, 28, 34-36). Further, depending on what limits ecosystem productivity, precipitation and soil moisture changes may increase or decrease the ratio of bacteria and fungi, as well as shift their community composition (8, 50, 58). Increasing temperatures can increase in microbial activity, processing, and turnover, causing the microbial community to shift in favor of representatives adapted to higher temperatures and faster growth rates (7, 46, 60, 64, 65). Atmospheric and climatic changes are happening in concert with one another so that ecosystems are experiencing higher levels of atmospheric CO2, warming, and changes in precipitation regimes simultaneously. Although the many single factor climate change studies described above have enabled a better understanding of how microbial communities may respond to any one factor, understanding how multiple climate change factors interact with each other to influence microbial community responses is poorly understood. For example, elevated atmospheric [CO2] and precipitation changes might increase soil moisture in an ecosystem, but this increase may be counteracted by warming (10). Similarly, warming may increase microbial activity in an ecosystem, but this increase may be eliminated if changes in precipitation lead to a drier soil condition or reduced litter quantity, quality, and turnover. Such interactive effects of climate factors in a multifactorial context have been less commonly studied even in plant communities (45), and detailed studies are rarer still in soil microbial communities (25). Clearly, understanding how microbial communities will respond to these atmospheric and climate change drivers is important to make accurate predications of how ecosystems may respond to future climate scenarios.To address how multiple climate change drivers will interact to shape soil microbial communities, we took advantage of a multifactor climatic change experiment that manipulated atmospheric CO2 (+300 ppm, ambient), warming (+3°C, ambient) and precipitation (wet and dry) in a constructed old-field ecosystem that had been ongoing for 3.5 years at the time of sampling. Previous work on this project has demonstrated direct and interactive effects of the treatments on plant community composition and biomass (15, 30), soil respiration (56), microbial activity (30), nitrogen fixation (21), and soil carbon stocks (20). These results led us to investigations of how the soil bacterial and fungal communities, important regulators of some of these processes, were responding using culture-independent molecular approaches. Our research addresses two overarching questions. (i) Do climatic change factors and their interactions alter bacterial and fungal abundance and diversity? (ii) Do climatic change factors and their interactions alter bacterial or fungal community composition?  相似文献   

6.
Predicted changes in climate associated with increased greenhouse gas emissions can cause increases in global mean temperature and changes in precipitation regimes. These changes may affect key soil processes, e.g., microbial CO(2) evolution and biomass, mineralization rates, primary productivity, biodiversity, and litter decomposition, which play an important role in carbon and nutrient cycling in terrestrial ecosystems. Our study examined the changes in litter microbial communities and decomposition along a climatic gradient, ranging from arid desert to humid Mediterranean regions in Israel. Wheat straw litter bags were placed in arid, semi-arid, Mediterranean, and humid Mediterranean sites. Samples were collected seasonally over a 2-year period in order to evaluate mass loss, litter moisture, C/N ratio, bacterial colony-forming units (CFUs), microbial CO(2) evolution and biomass, microbial functional diversity, and catabolic profile. Decomposition rate was the highest during the first year of the study at the Mediterranean and arid sites. Community-level physiological profile and microbial biomass were the highest in summer, while bacterial CFUs were the highest in winter. Microbial functional diversity was found to be highest at the humid Mediterranean site, whereas substrate utilization increased at the arid site. Our results support the assumption that climatic factors control litter degradation and regulate microbial activity.  相似文献   

7.
SYNOPSIS Pigment cells and their synthesized products play animportant functional role in the skin of most all vertebrates,from cyclostomes to man Both dermal and epidermal pigment cellsfunction in physiological and morphological color changes andprovide the cellular basis for vertebrate pigment patterns anddifferences in racial coloration Epidermal melanization is ofparticular importance in homeotherms in the regulation of seasonalpelage and feather color changes In addition, melanin pigmentation may have a photoprotective function, influence vitaminD synthesis in the skin protect or influence neivous systemfunction, affect heat absorption and consenition, play an intracellularhomeostatic role in the skin and (by leucocytic transport) elsewherein the bodv and provide a structural element to the integumentA consideration of the comparative evolution of the vertebratelntegumental pigmental) system may be necessary for a pioperinterpretation of the supposed roles ot melanin and other lntegumentalpigments  相似文献   

8.
The microbial population of geothermally heated sediments in a shallow bay of Vulcano Island (Italy) was characterized with respect to metabolic activities and the putatively catalyzing hyperthermophiles. Site-specific anoxic culturing media, most of which were amended with combinations of electron donors (glucose or carboxylic acids) and acceptors (sulfate), were used for selective enrichment of metabolically defined subpopulations. The mostly archaeal chemoautotrophs produced formate at rates of 3.25 and 0.46 fmol cell−1 day−1 with and without sulfate, respectively. The glucose fermenting heterotrophs produced acetate (18 fmol cell−1 day−1) and lactate (2.6 fmol cell−1 day−1) and were identified as predominantly Thermus sp. and coccoid archaea. These archaeal cells also metabolized lactate (5.6 fmol cell−1 day−1), but neither formate nor acetate. The heterotrophic culture enriched on formate/acetate/propionate/sulfate utilized mainly formate (27 fmol cell−1 day−1) and lactate (89–195 fmol cell−1 day−1), and consumed sulfate (38–68 fmol cell−1 day−1). These formate or lactate consuming sulfate reducers were dominated by Archaeoglobales (7% in situ) and unidentified Archaea. The in situ benthic community comprised 15% Crenarchaeota, a significant group only in the autotrophic cultures, and 3% Thermus sp., the putatively predominant group involved in fermentative metabolism. The role of Thermoccales (4% in situ) remained undisclosed in our experiments. This first comprehensive data set established plausible links between several groups of hyperthermophiles in shallow marine hydrothermal systems, their metabolic function within the benthic microbial community, and biogeochemical turnover rates.  相似文献   

9.
Soil microbial communities mediate critical ecosystem carbon and nutrient cycles. How microbial communities will respond to changes in vegetation and climate, however, are not well understood. We reciprocally transplanted soil cores from under oak canopies and adjacent open grasslands in a California oak–grassland ecosystem to determine how microbial communities respond to changes in the soil environment and the potential consequences for the cycling of carbon. Every 3 months for up to 2 years, we monitored microbial community composition using phospholipid fatty acid analysis (PLFA), microbial biomass, respiration rates, microbial enzyme activities, and the activity of microbial groups by quantifying 13C uptake from a universal substrate (pyruvate) into PLFA biomarkers. Soil in the open grassland experienced higher maximum temperatures and lower soil water content than soil under the oak canopies. Soil microbial communities in soil under oak canopies were more sensitive to environmental change than those in adjacent soil from the open grassland. Oak canopy soil communities changed rapidly when cores were transplanted into the open grassland soil environment, but grassland soil communities did not change when transplanted into the oak canopy environment. Similarly, microbial biomass, enzyme activities, and microbial respiration decreased when microbial communities were transplanted from the oak canopy soils to the grassland environment, but not when the grassland communities were transplanted to the oak canopy environment. These data support the hypothesis that microbial community composition and function is altered when microbes are exposed to new extremes in environmental conditions; that is, environmental conditions outside of their “life history” envelopes.  相似文献   

10.
Microbial Decomposition of alpha-Picoline   总被引:3,自引:0,他引:3  
An organism, which degrades alpha-picoline but also utilizes 2-ethylpyridine or piperidine as alternative growth substrates, has been isolated from soil and characterized as arthrobacter sp. alpha-picoline-grown cells oxidize 2-ethylpyridine and vice versa. Other pyridine derivatives tested are neither utilized as growth substrates nor oxidized by the organism. alpha-Picolinate and 2-hydroxy-6-methylpyridine are not metabolized, indicating that degradation is neither initiated by methyl oxidation nor by hydroxylation in the 6-position of pyridine ring. Succinate semi-aldehyde and pyruvate accumulate when alpha-picoline oxidation by resting cell suspensions is blocked by semicarbazide. The Arthrobacter grown on alpha-picoline rapidly oxidizes succinate semi aldehyde...  相似文献   

11.
Iron fertilization experiments in high-nutrient, low-chlorophyll areas are known to induce phytoplankton blooms. However, little is known about the response of the microbial community upon iron fertilization. As part of the LOHAFEX experiment in the southern Atlantic Ocean, Bacteria and Archaea were monitored within and outside an induced bloom, dominated by Phaeocystis-like nanoplankton, during the 38 days of the experiment. The microbial production increased 1.6-fold (thymidine uptake) and 2.1-fold (leucine uptake), while total cell numbers increased only slightly over the course of the experiment. 454 tag pyrosequencing of partial 16S rRNA genes and catalyzed reporter deposition fluorescence in situ hybridization (CARD FISH) showed that the composition and abundance of the bacterial and archaeal community in the iron-fertilized water body were remarkably constant without development of typical bloom-related succession patterns. Members of groups usually found in phytoplankton blooms, such as Roseobacter and Gammaproteobacteria, showed no response or only a minor response to the bloom. However, sequence numbers and total cell numbers of the SAR11 and SAR86 clades increased slightly but significantly toward the end of the experiment. It seems that although microbial productivity was enhanced within the fertilized area, a succession-like response of the microbial community upon the algal bloom was averted by highly effective grazing. Only small-celled members like the SAR11 and SAR86 clades could possibly escape the grazing pressure, explaining a net increase of those clades in numbers.  相似文献   

12.
13.
The importance of plant-microbe associations for the invasion of plant species have not been often tested under field conditions. The research sought to determine patterns of change in microbial communities associated with the establishment of invasive plants with different taxonomic and phenetic traits. Three independent locations in Virginia, USA were selected. One site was invaded by a grass (Microstegium vimineum), another by a shrub (Rhamnus davurica), and the third by a tree (Ailanthus altissima). The native vegetation from these sites was used as reference. 16S rRNA and ITS regions were sequenced to study root-zone bacterial and fungal communities, respectively, in invaded and non-invaded samples and analyzed using Quantitative Insights Into Microbial Ecology (QIIME). Though root-zone microbial community structure initially differed across locations, plant invasion shifted communities in similar ways. Indicator species analysis revealed that Operational Taxonomic Units (OTUs) closely related to Proteobacteria, Acidobacteria, Actinobacteria, and Ascomycota increased in abundance due to plant invasions. The Hyphomonadaceae family in the Rhodobacterales order and ammonia-oxidizing Nitrospirae phylum showed greater relative abundance in the invaded root-zone soils. Hyphomicrobiaceae, another bacterial family within the phyla Proteobacteria increased as a result of plant invasion, but the effect associated most strongly with root-zones of M. vimineum and R. davurica. Functional analysis using Phylogenetic Investigation of Communities by Reconstruction of Unobserved States (PICRUSt) showed bacteria responsible for nitrogen cycling in soil increased in relative abundance in association with plant invasion. In agreement with phylogenetic and functional analyses, greater turnover of ammonium and nitrate was associated with plant invasion. Overall, bacterial and fungal communities changed congruently across plant invaders, and support the hypothesis that nitrogen cycling bacteria and functions are important factors in plant invasions. Whether the changes in microbial communities are driven by direct plant microbial interactions or a result of plant-driven changes in soil properties remains to be determined.  相似文献   

14.
To what extent microbial community composition can explain variability in ecosystem processes remains an open question in ecology. Microbial decomposer communities can change during litter decomposition due to biotic interactions and shifting substrate availability. Though relative abundance of decomposers may change due to mixing leaf litter, linking these shifts to the non-additive patterns often recorded in mixed species litter decomposition rates has been elusive, and links community composition to ecosystem function. We extracted phospholipid fatty acids (PLFAs) from single species and mixed species leaf litterbags after 10 and 27 months of decomposition in a mixed conifer forest. Total PLFA concentrations were 70% higher on litter mixtures than single litter types after 10 months, but were only 20% higher after 27 months. Similarly, fungal-to-bacterial ratios differed between mixed and single litter types after 10 months of decomposition, but equalized over time. Microbial community composition, as indicated by principal components analyses, differed due to both litter mixing and stage of litter decomposition. PLFA biomarkers a15∶0 and cy17∶0, which indicate gram-positive and gram-negative bacteria respectively, in particular drove these shifts. Total PLFA correlated significantly with single litter mass loss early in decomposition but not at later stages. We conclude that litter mixing alters microbial community development, which can contribute to synergisms in litter decomposition. These findings advance our understanding of how changing forest biodiversity can alter microbial communities and the ecosystem processes they mediate.  相似文献   

15.
微生物功能基因组学研究   总被引:5,自引:0,他引:5  
自从1995年流感嗜血杆菌的基因组序列测定完成之后[1],目前已有75种(株)微生物的基因组完成测序,160多种(株)微生物的基因组测序正在进行中[2]。随着各种微生物基因组测序工作的不断完成和序列信息的积累,微生物基因组学研究的重点已由结构基因组学向功能基因组学转移。微生物功能基因组学研究不仅要阐明微生物基因组内每个基因的作用或功能,还要研究基因的调节及表达谱,进而从整个基因组及其全套蛋白质产物的结构、功能、机理的高度去了解微生物生命活动的全貌,揭示微生物世界的各种前所未知的规律,并使之为人类和社会服务。与真核生物相比,虽然微生物的基因组相对简单,但微生物基因组学研究仍具有重大的科学和经济意义。在细菌基因组中,既有编码在极端环境下起催化作用的酶的基因,也有编码分解化学污染物的酶的基因,这些基因在真核细胞是不存在的。通过微生物功能基因组学研究,还能发现药物靶位和疫苗抗原。微生物基因的功能及表达研究结果也能为研究复杂生物的基因功能提供参考。近些年微生物功能基因组学研究受到了普遍重视。日本组织了十几所大学和研究机构,计划用5年时间完成大肠杆菌的功能基因组研究[3]。日本还与欧洲联合正在开展枯草杆菌功能基因组学研究[4]。其它微生物的功能基因组学研究也在进行中。由于微生物的种类繁多,功能基因组研究的内容又较丰富,要全面介绍微生物功能基因组学研究是困难的。本文仅从未知功能基因的鉴定、药物靶位及疫苗抗原研究、致病机制研究、生物功能图谱研究4个方面进行简要的评述。  相似文献   

16.
Vertebrate ectotherms often encounter rapid, large scale changesin body temperature. In this paper, I discuss the direct effectsof changing body temperature on physiological parameters, aswell as corrective responses initiated by the animal. For manybiological functions, mean body temperature provides a usefulmeasure of the thermal effects produced by an altered environmentaltemperature. Under most conditions, the fins and body surfaceof fish are more important avenues of heat exchange than thegills. The local thermal sensitivity of peripheral blood vesselsresults in vasomotor adjustments which can alter thermal conductivity.Acid-base balance is challenged by changes in body temperature.Shifts in body temperature also alter metabolic demands, enzymeconformation, ionic and osmotic relationships, spontaneous activitylevels and nervous system function. Compensatory mechanismsinclude behavioral thermoregulation, by which animals seek toavoid stressful thermal environments, and autonomic restorativeresponses such as high temperature panting in reptiles. Waterbreathers may initiate anticipatory responses to minimize arterialoxygen fluctuations during termperature change. The organizationof the central neuronal network underlying the above regulatoryresponses is unclear. Both air and water breathers are ableto initiate compensatory acid-base responses, but the strategiesutilized by the two groups are quite different. Altered bodytemperature initiates long-term acclimation responses, and ifrapid, can also trigger stress responses.  相似文献   

17.
Microbial Interactions within a Cheese Microbial Community   总被引:1,自引:1,他引:1       下载免费PDF全文
The interactions that occur during the ripening of smear cheeses are not well understood. Yeast-yeast interactions and yeast-bacterium interactions were investigated within a microbial community composed of three yeasts and six bacteria found in cheese. The growth dynamics of this community was precisely described during the ripening of a model cheese, and the Lotka-Volterra model was used to evaluate species interactions. Subsequently, the effects on ecosystem functioning of yeast omissions in the microbial community were evaluated. It was found both in the Lotka-Volterra model and in the omission study that negative interactions occurred between yeasts. Yarrowia lipolytica inhibited mycelial expansion of Geotrichum candidum, whereas Y. lipolytica and G. candidum inhibited Debaryomyces hansenii cell viability during the stationary phase. However, the mechanisms involved in these interactions remain unclear. It was also shown that yeast-bacterium interactions played a significant role in the establishment of this multispecies ecosystem on the cheese surface. Yeasts were key species in bacterial development, but their influences on the bacteria differed. It appeared that the growth of Arthrobacter arilaitensis or Hafnia alvei relied less on a specific yeast function because these species dominated the bacterial flora, regardless of which yeasts were present in the ecosystem. For other bacteria, such as Leucobacter sp. or Brevibacterium aurantiacum, growth relied on a specific yeast, i.e., G. candidum. Furthermore, B. aurantiacum, Corynebacterium casei, and Staphylococcus xylosus showed reduced colonization capacities in comparison with the other bacteria in this model cheese. Bacterium-bacterium interactions could not be clearly identified.  相似文献   

18.
The relationship between functional redundancy and microbial community structure–diversity was examined using laboratory incubations to ensure constant environmental conditions. Serial dilutions of a sewage microbial community were prepared, used to inoculate sterile sewage, and maintained in batch culture. Probability suggests that dilution of the initial community should remove rare organism types, creating mixtures of cells differing in diversity. Regrowth of the diluted mixtures generated communities similar in abundance but differing in community structure and relative diversity (as determined using two DNA fingerprinting techniques and dilution-to-extinction analysis of community-level physiological profiles). The in situ function of each regrown community was examined by monitoring the short-term uptake of five different 14C-labeled compounds (glucose, acetate, citrate, palmitic acid, and an amino acid mixture). No significant differences were detected between treatments in either the rate of uptake of a substrate or the efficiency with which each community assimilated each compound. The fact that the activity of the original community was the same as that of a community regrown from an inoculum containing fewer that 100 cells (10−6 dilution) indicates that functional redundancy was quite high in this system. For each organism type eliminated during the dilution process, at least one of the remaining types was able to provide the same function at the same level as the lost one. Further research is necessary to determine what impact this functional redundancy may have on overall ecosystem function and stability.  相似文献   

19.
Permafrost-affected soils are among the most obvious ecosystems in which current microbial controls on organic matter decomposition are changing as a result of global warming. Warmer conditions in polygonal tundra will lead to a deepening of the seasonal active layer, provoking changes in microbial processes and possibly resulting in exacerbated carbon degradation under increasing anoxic conditions. To identify current microbial assemblages in carbon rich, water saturated permafrost environments, four polygonal tundra sites were investigated on Herschel Island and the Yukon Coast, Western Canadian Arctic. Ion Torrent sequencing of bacterial and archaeal 16S rRNA amplicons revealed the presence of all major microbial soil groups and indicated a local, vertical heterogeneity of the polygonal tundra soil community with increasing depth. Microbial diversity was found to be highest in the surface layers, decreasing towards the permafrost table. Quantitative PCR analysis of functional genes involved in carbon and nitrogen-cycling revealed a high functional potential in the surface layers, decreasing with increasing active layer depth. We observed that soil properties driving microbial diversity and functional potential varied in each study site. These results highlight the small-scale heterogeneity of geomorphologically comparable sites, greatly restricting generalizations about the fate of permafrost-affected environments in a warming Arctic.  相似文献   

20.
The Lost Hammer (LH) Spring is the coldest and saltiest terrestrial spring discovered to date and is characterized by perennial discharges at subzero temperatures (−5°C), hypersalinity (salinity, 24%), and reducing (≈−165 mV), microoxic, and oligotrophic conditions. It is rich in sulfates (10.0%, wt/wt), dissolved H2S/sulfides (up to 25 ppm), ammonia (≈381 μM), and methane (11.1 g day−1). To determine its total functional and genetic potential and to identify its active microbial components, we performed metagenomic analyses of the LH Spring outlet microbial community and pyrosequencing analyses of the cDNA of its 16S rRNA genes. Reads related to Cyanobacteria (19.7%), Bacteroidetes (13.3%), and Proteobacteria (6.6%) represented the dominant phyla identified among the classified sequences. Reconstruction of the enzyme pathways responsible for bacterial nitrification/denitrification/ammonification and sulfate reduction appeared nearly complete in the metagenomic data set. In the cDNA profile of the LH Spring active community, ammonia oxidizers (Thaumarchaeota), denitrifiers (Pseudomonas spp.), sulfate reducers (Desulfobulbus spp.), and other sulfur oxidizers (Thermoprotei) were present, highlighting their involvement in nitrogen and sulfur cycling. Stress response genes for adapting to cold, osmotic stress, and oxidative stress were also abundant in the metagenome. Comparison of the composition of the functional community of the LH Spring to metagenomes from other saline/subzero environments revealed a close association between the LH Spring and another Canadian high-Arctic permafrost environment, particularly in genes related to sulfur metabolism and dormancy. Overall, this study provides insights into the metabolic potential and the active microbial populations that exist in this hypersaline cryoenvironment and contributes to our understanding of microbial ecology in extreme environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号