首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Transmembrane (TM) helix and juxtamembrane (JM) domains (TM-JM) bridge the extracellular and intracellular domains of single-pass membrane proteins, including epidermal growth factor receptor (EGFR). TM-JM dimerization plays a crucial role in regulation of EGFR kinase activity at the cytoplasmic side. Although the interaction of JM with membrane lipids is thought to be important to turn on EGF signaling, and phosphorylation of Thr654 on JM leads to desensitization, the underlying kinetic mechanisms remain unclear. In particular, how Thr654 phosphorylation regulates EGFR activity is largely unknown. Here, combining single-pair FRET imaging and nanodisc techniques, we showed that phosphatidylinositol 4,5-bis phosphate (PIP2) facilitated JM dimerization effectively. We also found that Thr654 phosphorylation dissociated JM dimers in the membranes containing acidic lipids, suggesting that Thr654 phosphorylation electrostatically prevented the interaction with basic residues in JM and acidic lipids. Based on the single-molecule experiment, we clarified the kinetic pathways of the monomer (inactive state)-to-dimer (active state) transition of JM domains and alteration in the pathways depending on the membrane lipid species and Thr654 phosphorylation.  相似文献   

2.
Mi LZ  Grey MJ  Nishida N  Walz T  Lu C  Springer TA 《Biochemistry》2008,47(39):10314-10323
Cellular signaling mediated by the epidermal growth factor receptor (EGFR or ErbB) family of receptor tyrosine kinases plays an important role in regulating normal and oncogenic cellular physiology. While structures of isolated EGFR extracellular domains and intracellular protein tyrosine kinase domains have suggested mechanisms for growth factor-mediated receptor dimerization and allosteric kinase domain activation, understanding how the transmembrane and juxtamembrane domains contribute to transmembrane signaling requires structural studies on intact receptor molecules. In this report, recombinant EGFR constructs containing the extracellular, transmembrane, juxtamembrane, and kinase domains are overexpressed and purified from human embryonic kidney 293 cell cultures. The oligomerization state, overall structure, and functional stability of the purified EGF-bound receptor are characterized in detergent micelles and phospholipid bilayers. In the presence of EGF, catalytically active EGFR dimers can be isolated by gel filtration in dodecyl maltoside. Visualization of the dimeric species by negative stain electron microscopy and single particle averaging reveals an overall structure of the extracellular domain that is similar to previously published crystal structures and is consistent with the C-termini of domain IV being juxtaposed against one another as they enter the transmembrane domain. Although detergent-soluble preparations of EGFR are stable as dimers in the presence of EGF, they exhibit differential functional stability in Triton X-100 versus dodecyl maltoside. Furthermore, the kinase activity can be significantly stabilized by reconstituting purified EGF-bound EGFR dimers in phospholipid nanodiscs or vesicles, suggesting that the environment around the hydrophobic transmembrane and amphipathic juxtamembrane domains is important for stabilizing the tyrosine kinase activity in vitro.  相似文献   

3.
The epidermal growth factor receptor (EGFR) belongs to the receptor tyrosine kinase (RTK) superfamily and is involved in regulating cell proliferation, differentiation and motility. Growth factor binding induces receptor oligomerization at the plasma membrane, which leads to activation of the intrinsic RTK activity and trans-phosphorylation of tyrosine residues in the intracellular part of the receptor. These residues are docking sites for proteins containing Src homology domain 2 and phosphotyrosine-binding domains that relay the signal inside the cell. In response to EGF attached to beads, lateral propagation of EGFR phosphorylation occurs at the plasma membrane, representing an early amplification step in EGFR signalling. Here we have investigated an underlying reaction network that couples RTK activity to protein tyrosine phosphatase (PTP) inhibition by reactive oxygen species. Mathematical analysis of the chemical kinetic equations of the minimal reaction network detects general properties of this system that can be observed experimentally by imaging EGFR phosphorylation in cells. The existence of a bistable state in this reaction network explains a threshold response and how a high proportion of phosphorylated receptors can be maintained in plasma membrane regions that are not exposed to ligand.  相似文献   

4.
The EGFR/HER receptor family of an epidermal growth factor represents an important class of the receptor tyrosine kinases playing the key role in the control of cell growth and differentiation in mammalian cells, as well as in the development of a number of pathological processes, including oncogenesis. Binding of a ligand to the extracellular domains initiates switching of the EGFR/HER receptor between the alternative dimeric states that causes the allosteric activation of kinase domains in cell cytoplasm. The transmembrane (TM) domain and adjacent flexible regions alternatively interacting with either membrane surface or kinase domains are directly involved in the complex conformational transition in EGFR/HERs. Here we report on a highly efficient system of the cell free production of the EGFR/HER TM domains with functionally important juxtamembrane (JM) regions for the investigation of the molecular basis of biochemical signal transduction across the cell membrane. To increase the efficiency of synthesis of the EGFR/HER TM-JM fragments of the receptors, we used two N-terminal expression tags, which significantly increased the protein yield. In the case of the TM-JM fragments of EGFR (residues 638–692) and HER2 (residues 644–700), the method allowed us to obtain milligram quantities of the 13C,15N-labeled protein for structural and biophysical investigations in the membrane-mimicking environments using high-resolution heteronuclear NMR spectroscopy.  相似文献   

5.
Brassinosteroids (BRs) regulate multiple aspects of plant growth and development and require an active BRASSINOSTEROID-INSENSITIVE1 (BRI1) and BRI1-ASSOCIATED RECEPTOR KINASE1 (BAK1) for hormone perception and signal transduction. Many animal receptor kinases exhibit ligand-dependent oligomerization followed by autophosphorylation and activation of the intracellular kinase domain. To determine if early events in BR signaling share this mechanism, we used coimmunoprecipitation of epitope-tagged proteins to show that in vivo association of BRI1 and BAK1 was affected by endogenous and exogenous BR levels and that phosphorylation of both BRI1 and BAK1 on Thr residues was BR dependent. Immunoprecipitation of epitope-tagged BRI1 from Arabidopsis thaliana followed by liquid chromatography-tandem mass spectrometry (LC/MS/MS) identified S-838, S-858, T-872, and T-880 in the juxtamembrane region, T-982 in the kinase domain, and S-1168 in C-terminal region as in vivo phosphorylation sites of BRI1. MS analysis also strongly suggested that an additional two residues in the juxtamembrane region and three sites in the activation loop of kinase subdomain VII/VIII were phosphorylated in vivo. We also identified four specific BAK1 autophosphorylation sites in vitro using LC/MS/MS. Site-directed mutagenesis of identified and predicted BRI1 phosphorylation sites revealed that the highly conserved activation loop residue T-1049 and either S-1044 or T-1045 were essential for kinase function in vitro and normal BRI1 signaling in planta. Mutations in the juxtamembrane or C-terminal regions had only small observable effects on autophosphorylation and in planta signaling but dramatically affected phosphorylation of a peptide substrate in vitro. These findings are consistent with many aspects of the animal receptor kinase model in which ligand-dependent autophosphorylation of the activation loop generates a functional kinase, whereas phosphorylation of noncatalytic intracellular domains is required for recognition and/or phosphorylation of downstream substrates.  相似文献   

6.
In the moss Ceratodon purpureus a phytochrome gene encodes a phytochrome type (PhyCer) which has a C-terminal domain homologous to the catalytic domain of eukaryotic protein kinases (PKs). PhyCer exhibits sequence conservation to serine/ threonine as well to tyrosine kinases. Since PhyCer is expressed very weakly in moss cells, to investigate the proposed PK activity of PhyCer, we overexpressed PhyCer transiently in fibroblast cells. For this purpose we made a chimeric receptor, EC-R, which consists of the extracellular, the membrane-spanning and the juxtamembrane domains of the human epidermal growth-factor receptor (EGF-R) linked to the PK catalytic domain of PhyCer (CerKin). The expression of EC-R in transiently transfected cells was confirmed with antibodies directed against the extracellular domain of EGF-R or against CerKin. Both EGF-R and EC-R were immunoprecipitated from lysates of overexpressing cells with antibodies against the extracellular domain of EGF-R. Phosphorylation experiments were performed with the immunoprecipitates and the phosphorylation products were subjected to phosphoamino acid analysis. Phosphorylation products specifically obtained with EC-R-transfected cells exhibit phosphorylation on serine and threonine residues. In EC-R transfected cells the endogenous EGF-R showed enhanced phosphorylation of serine and threonine residues compared to EGF-R immuno-precipitated from control cells. Although CerKin is closest to the catalytic domain of a protein tyrosine kinase from Dictyostelium discoideum, EC-R does not appear to phosphorylate tyrosine residues in vitro. From our data we conclude that PhyCer carries an active PK domain capable of phosphorylating serine and threonine residues.Abbreviations CerKin protein kinase catalytic domain of PhyCer - EC-R chimeric receptor consisting of the extracellular, the membrane spanning and the juxtamembrane domains of the human epidermal growth factor receptor (EGF-R) linked to the protein kinase catalytic domain of PhyCer - EGF-R epidermal growth factor receptor - mAb monoclonal antibody - PhyCer phytochrome gene in Ceratodon encoding a phytochrome type which has a C-terminal domain homologous to the catalytic domain of eucaryotic protein kinases - PK protein kinase - PVDF polyvinyl difluoride - Ser serine - Thr threonine - Tyr tyrosine Dr. Patricia Algarra was supported by the Alexander von Humboldt Foundation, Germany. This work was supported by the Deutsche Forschungsgemeinschaft (DFG), Bonn, Germany.  相似文献   

7.
We propose a new mechanism to explain autoinhibition of the epidermal growth factor receptor (EGFR/ErbB) family of receptor tyrosine kinases based on a structural model that postulates both their juxtamembrane and protein tyrosine kinase domains bind electrostatically to acidic lipids in the plasma membrane, restricting access of the kinase domain to substrate tyrosines. Ligand-induced dimerization promotes partial trans autophosphorylation of ErbB1, leading to a rapid rise in intracellular [Ca(2+)] that can activate calmodulin. We postulate the Ca(2+)/calmodulin complex binds rapidly to residues 645--660 of the juxtamembrane domain, reversing its net charge from +8 to -8 and repelling it from the negatively charged inner leaflet of the membrane. The repulsion has two consequences: it releases electrostatically sequestered phosphatidylinositol 4,5-bisphosphate (PIP(2)), and it disengages the kinase domain from the membrane, allowing it to become fully active and phosphorylate an adjacent ErbB molecule or other substrate. We tested various aspects of the model by measuring ErbB juxtamembrane peptide binding to phospholipid vesicles using both a centrifugation assay and fluorescence correlation spectroscopy; analyzing the kinetics of interactions between ErbB peptides, membranes, and Ca(2+)/calmodulin using fluorescence stop flow; assessing ErbB1 activation in Cos1 cells; measuring fluorescence resonance energy transfer between ErbB peptides and PIP(2); and making theoretical electrostatic calculations on atomic models of membranes and ErbB juxtamembrane and kinase domains.  相似文献   

8.
It is widely accepted that receptor protein-tyrosine kinases (RTKs) are activated upon dimerization by binding to their extracellular ligands. However, EGF receptor (EGFR) dimerization per se does not require ligand binding. Instead, its cytoplasmic kinase domains have to form characteristic head-to-tail asymmetric dimers to become active, where one 'activator' domain activates the other 'receiver' domain. The non-catalytic, cytoplasmic regions of RTKs, namely the juxtamembrane and carboxy terminal portions, also regulate kinase activity. For instance, the juxtamembrane region of the RTK MuSK inhibits the kinase domain probably together with a cellular factor(s). These findings suggest that RTKs could be activated by cytoplasmic proteins. Indeed, Dok-7 and cytohesin have recently been identified as such activators of MuSK and EGFR, respectively. Given that failure of Dok-7 signaling causes myasthenia, and inhibition of cytohesin signaling reduces the proliferation of EGFR-dependent cancer cells, cytoplasmic activators of RTKs may provide new therapeutic targets.  相似文献   

9.
The transmembrane (TM) and juxtamembrane (JM) regions of the epidermal growth factor receptor (EGFR) couple ligand binding in the extracellular domain to activation of the kinase domain. Solid-state NMR and polarized FTIR measurements of peptides corresponding to the TM plus JM regions of EGFR (residues 622-660) reconstituted in model phospholipid membranes are presented to address the role of the short cytoplasmic JM sequence (residues 645-660) in regulating EGFR activity. We show that the TM domain is helical with a transition to non-helical structure at the TM-JM boundary. Fluorescence measurements indicate that the JM region of EGFR(622-660) binds to the membrane surface and that binding can be reversed by the addition of the complex of Ca2+ and calmodulin. Together these data support models suggesting the cytoplasmic JM region of EGFR plays an active role in regulating receptor activity.  相似文献   

10.
Members of the Eph family of receptor tyrosine kinases exhibit a striking degree of amino acid homology, particularly notable in the kinase and membrane-proximal regions. A mutagenesis approach was taken to address the functions of specific conserved tyrosine residues within these catalytic and juxtamembrane domains. Ligand stimulation of wild-type EphB2 in neuronal NG108-15 cells resulted in an upregulation of catalytic activity and an increase in cellular tyrosine phosphorylation, accompanied by a retraction of neuritic processes. Tyrosine-to-phenylalanine substitutions within the conserved juxtamembrane motif abolished these responses. The mechanistic basis for these observations was examined using the highly related EphA4 receptor in a continuous coupled kinase assay. Tandem mass spectrometry experiments confirmed autophosphorylation of the two juxtamembrane tyrosine residues and also identified a tyrosine within the kinase domain activation segment as a phosphorylation site. Kinetic analysis revealed a decreased affinity for peptide substrate upon substitution of activation segment or juxtamembrane tyrosines. Together, our data suggest that the catalytic and therefore biological activities of Eph receptors are controlled by a two-component inhibitory mechanism, which is released by phosphorylation of the juxtamembrane and activation segment tyrosine residues.  相似文献   

11.
The platelet-derived growth factor β-receptor (PDGFβR) represents an important subclass of receptor tyrosine kinase (RTK) thought to be activated by ligand-induced dimerization. Interestingly, the receptor is also activated by the bovine papillomavirus E5 oncoprotein, an interaction involving the transmembrane domains of both proteins and resulting in constitutive downstream signalling. This unique mode of activation along with emerging data for other RTKs raises important questions about the role of the PDGFβR transmembrane domain in signalling. To address this, we have investigated the murine PDGFβR transmembrane and juxtamembrane domains. We show for the first time the strong oligomerization behavior of PDGFβR transmembrane domain, forming dimers and trimers in natural membranes and detergents; and that these self-interactions are mediated by a leucine-zipper-like motif. The juxtamembrane regions are found to regulate these helix-helix interactions and select specifically for dimer formation. These data provide evidence that PDGFβR is able to form ligand-independent dimers, supporting similar observations in a number of other RTK's. A point mutant in the PDGFβR juxtamembrane domain previously shown to cause receptor activation was studied and yielded no change in oligomerization or folding, suggesting (in-line with observations of the c-Kit receptor) that it may moderate interactions with other regions of PDGFβR.  相似文献   

12.
Post-translational modifications (PTMs) of proteins induce structural and functional changes that are most often transitory and difficult to follow and investigate in vivo. In silico prediction procedures for PTMs are very valuable to foresee and define such transitory changes responsible for the multifunctionality of proteins. Epidermal growth factor receptor (EGFR) is such a multifunctional transmembrane protein with intrinsic tyrosine kinase activity that is regulated primarily by ligand-stimulated transphosphorylation of dimerized receptors. In human EGFR, potential phosphorylation sites on Ser, Thr and Tyr residues including five autophosphorylation sites on Tyr were investigated using in silico procedures. In addition to phosphorylation, O-GlcNAc modifications and interplay between these two modifications was also predicted. The interplay of phosphorylation and O-GlcNAc modification on same or neighboring Ser/Thr residues is termed as Yin Yang hypothesis and the interplay sites are named as Yin Yang sites. Amongst these modification sites, one residue is localized in the juxtamembrane (Thr 654) and two are found in the catalytic domain (Ser 1046/1047) of the EGFR. We propose that, when EGFR is O-GlcNAc modified on Thr 654, EGFR may be transferred from early to late endosomes, whereas when EGFR is O-GlcNAc modified on Ser 1046/1047 desensitization of the receptor may be prevented. These findings suggest a complex interplay between phosphorylation and O-GlcNAc modification resulting in modulation of EGFR's functionality.  相似文献   

13.
The crystal structure of the kinase domain from the epidermal growth factor receptor (EGFRK) including forty amino acids from the carboxyl-terminal tail has been determined to 2.6-A resolution, both with and without an EGFRK-specific inhibitor currently in Phase III clinical trials as an anti-cancer agent, erlotinib (OSI-774, CP-358,774, Tarceva(TM)). The EGFR family members are distinguished from all other known receptor tyrosine kinases in possessing constitutive kinase activity without a phosphorylation event within their kinase domains. Despite its lack of phosphorylation, we find that the EGFRK activation loop adopts a conformation similar to that of the phosphorylated active form of the kinase domain from the insulin receptor. Surprisingly, key residues of a putative dimerization motif lying between the EGFRK domain and carboxyl-terminal substrate docking sites are found in close contact with the kinase domain. Significant intermolecular contacts involving the carboxyl-terminal tail are discussed with respect to receptor oligomerization.  相似文献   

14.
Intracellular signaling is mediated by reversible posttranslational modifications (PTMs) that include phosphorylation, ubiquitination, and acetylation, among others. In response to extracellular stimuli such as growth factors, receptor tyrosine kinases (RTKs) typically dimerize and initiate signaling through phosphorylation of their cytoplasmic tails and downstream scaffolds. Signaling effectors are recruited to these phosphotyrosine (pTyr) sites primarily through Src homology 2 (SH2) domains and pTyr-binding (PTB) domains. This review describes how these conserved domains specifically recognize pTyr residues and play a major role in mediating precise downstream signaling events.Receptor tyrosine kinase (RTK) signaling is initiated on binding of soluble growth factors to growth factor receptors such as the insulin receptor (IR) or epidermal growth factor receptor (EGFR), or on binding of membrane-bound ephrins, as is the case for Eph receptors. Intracellular signaling is then propagated through PTMs, which commonly serve to regulate protein function by acting as docking sites for recruitment of modular protein interaction domains. Phosphorylation is the best studied PTM, and is a principle mechanism regulating intracellular signaling.A common element in RTK signaling involves autophosphorylation of the intracellular portion of the receptor (Fig. 1). RTKs become activated as a result of ligand-stabilized dimerization or oligomerization. For instance, in the EGFR subfamily (which includes ErbB and EGF receptors), the formation of homo- or heterodimers is initiated by ligand binding and subsequent exposure of a dimerization domain (Hynes and Lane 2005). Dimerization of the RTKs allows autophosphorylation of the RTKs; EGFR is exceptional in that an allosteric interaction between the kinase domains of adjacent monomers is responsible for the receptor activation (Zhang et al. 2006). However, in the majority of cases dimerization enhances RTK catalytic activity through phosphorylation of the kinase activation loop, and in some instances the juxtamembrane region, and recruits signaling effectors through the creation of pTyr docking sites. The specific interaction of signaling proteins with these pTyr-binding motifs activates signaling pathways, such as canonical signaling through the Ras-mitogen activated protein kinase (MAPK), phosphoinositide-3-kinase (PI3K)-Akt, and phospholipase C-gamma (PLC-γ) pathways. These RTK pathways can result in a variety of cellular processes, including differentiation, proliferation, survival, and migration (Fig. 1). The cellular context of signaling can dictate the biological outcome, and how each RTK initiates a given cellular process remains an area of active research.Open in a separate windowFigure 1.Receptor tyrosine kinases activate downstream pathways through recruitment of proteins containing pTyr-binding domains. Receptor tyrosine kinases are activated on growth factor binding to the extracellular domain of the receptor, leading to receptor dimerization and tyrosine phosphorylation (yellow circles labeled with a P) of their cytoplasmic tails, which act as docking sites for recruitment of PTB and SH2 domains. Various RTKs can mediate a diverse set of cellular processes (colored boxes) determined by the recruitment of specific SH2- and PTB-domain-containing proteins. The gray box displays how the adaptor Grb2 is recruited to an RTK through recognition of the pY-x-N (pY = pTyr, x = any natural amino acid) and activates cell growth and survival pathways such as MAPK and AKT, respectively, through complex formation via its SH3 domains.Tyrosine phosphorylation mediates RTK signaling through the recruitment and activation of proteins involved in downstream signaling pathways, mediated through pTyr binding of the SH2 and PTB domains of signaling effectors. SH2 and PTB domains are found in an otherwise diverse set of proteins containing a range of distinct catalytic and interaction domains, and provide a degree of specificity through their recognition of both a pTyr residue and surrounding amino acids. Here we will discuss the properties of proteins that contain SH2 and PTB domains and their roles in signaling downstream of RTKs, as well as the mechanisms by which they regulate the activity of these signaling effectors.  相似文献   

15.
The current activation model of the EGF receptor (EGFR) predicts that binding of EGF results in dimerization and oligomerization of the EGFR, leading to the allosteric activation of the intracellular tyrosine kinase. Little is known about the regulatory mechanism of receptor oligomerization. In this study, we have employed FRET between identical fluorophores (homo-FRET) to monitor the dimerization and oligomerization state of the EGFR before and after receptor activation. Our data show that, in the absence of ligand, ~40% of the EGFR molecules were present as inactive dimers or predimers. The monomer/predimer ratio was not affected by deletion of the intracellular domain. Ligand binding induced the formation of receptor oligomers, which were found in both the plasma membrane and intracellular structures. Ligand-induced oligomerization required tyrosine kinase activity and nine different tyrosine kinase substrate residues. This indicates that the binding of signaling molecules to activated EGFRs results in EGFR oligomerization. Induction of EGFR predimers or pre-oligomers using the EGFR fused to the FK506-binding protein did not affect signaling but was found to enhance EGF-induced receptor internalization. Our data show that EGFR oligomerization is the result of EGFR signaling and enhances EGFR internalization.  相似文献   

16.
Dimerization of the epidermal growth factor receptor (EGFR) is crucial for initiating signal transduction. We employed raster image correlation spectroscopy to continuously monitor the EGFR monomer-dimer equilibrium in living cells. EGFR dimer formation upon addition of EGF showed oscillatory behavior with a periodicity of about 2.5 min, suggesting the presence of a negative feedback loop to monomerize the receptor. We demonstrated that monomerization of EGFR relies on phospholipase Cγ, protein kinase C, and protein kinase D (PKD), while being independent of Ca2+ signaling and endocytosis. Phosphorylation of the juxtamembrane threonine residues of EGFR (T654/T669) by PKD was identified as the factor that shifts the monomer-dimer equilibrium of ligand bound EGFR towards the monomeric state. The dimerization state of the receptor correlated with the activity of an extracellular signal-regulated kinase, downstream of the EGFR. Based on these observations, we propose a novel, negative feedback mechanism that regulates EGFR signaling via receptor monomerization.  相似文献   

17.
MuSK is a receptor tyrosine kinase expressed selectively in skeletal muscle and localized to neuromuscular synapses. Agrin activates MuSK and stimulates phosphorylation and clustering of acetylcholine receptors (AChRs) at synaptic sites. We expressed wild-type or mutant MuSK in MuSK(-/-) myotubes and identified tyrosine residues in the MuSK cytoplasmic domain that are necessary for agrin-stimulated phosphorylation and clustering of AChRs. The activation loop tyrosines and the single juxtamembrane tyrosine were found to be essential for agrin-stimulated phosphorylation and clustering of AChRs. Further, we show that the juxtamembrane tyrosine, contained within an NPXY motif, is phosphorylated in vivo by agrin stimulation. We constructed chimeras containing extracellular and transmembrane domains from MuSK and cytoplasmic sequences from TrkA and found that inclusion of 13 amino acids from the MuSK juxtamembrane region, including the NPXY motif, is sufficient to convert a phosphorylated but inactive MuSK-TrkA chimera into a phosphorylated active chimera. These data suggest that phosphorylation of the MuSK NPXY site leads to recruitment of a phosphotyrosine-binding domain-containing protein that functions to stimulate phosphorylation and clustering of AChRs.  相似文献   

18.
Calcium/calmodulin (Ca/CaM) binds to the intracellular juxtamembrane domain (JMD) of the epidermal growth factor receptor (EGFR). The basic JMD also binds to acidic lipids in the inner leaflet of the plasma membrane, and this interaction may contribute an extra level of autoinhibition to the receptor. Binding of a ligand to the EGFR produces a rapid increase in intracellular calcium, [Ca2+]i, and thus Ca/CaM. How does Ca/CaM compete with the plasma membrane for the JMD? Does Ca/CaM directly pull the JMD off the membrane or does Ca/CaM only bind to the JMD after it has dissociated spontaneously from the bilayer? To answer this question, we studied the effect of Ca/CaM on the rate of dissociation of fluorescent JMD peptides from phospholipid vesicles by making kinetic stop-flow measurements. Ca/CaM increases the rate of dissociation: an analysis of the differential equations that describe the dissociation shows that Ca/CaM must directly pull the basic JMD peptide off the membrane surface. These measurements lead to a detailed atomic-level mechanism for EGFR activation that reconciles the existence of preformed EGFR dimers/oligomers with the Kuriyan allosteric model for activation of the EGFR kinase domains.  相似文献   

19.
Caveolae are abundant plasma membrane invaginations in airway smooth muscle that may function as preorganized signalosomes by sequestering and regulating proteins that control cell proliferation, including receptor tyrosine kinases (RTKs) and their signaling effectors. We previously demonstrated, however, that p42/p44 MAP kinase, a critical effector for cell proliferation, does not colocalize with RTKs in caveolae of quiescent airway myocytes. Therefore, we investigated the subcellular sites of growth factor-induced MAP kinase activation. In quiescent myocytes, though epidermal growth factor receptor (EGFR) was almost exclusively found in caveolae, p42/p44 MAP kinase, Grb2, and Raf-1 were absent from these membrane domains. EGF induced concomitant phosphorylation of caveolin-1 and p42/p44 MAP kinase; however, EGF did not promote the localization of p42/p44 MAP kinase, Grb2, or Raf-1 to caveolae. Interestingly, stimulation of muscarinic M(2) and M(3) receptors that were enriched in caveolae-deficient membranes also induced p42/p44 MAP kinase phosphorylation, but this occurred in the absence of caveolin-1 phosphorylation. This suggests that the localization of receptors to caveolae and interaction with caveolin-1 is not directly required for p42/p44 MAP kinase phosphorylation. Furthermore, we found that EGF exposure induced rapid translocation of EGFR from caveolae to caveolae-free membranes. EGFR trafficking coincided temporally with EGFR and p42/p44 MAP kinase phosphorylation. Collectively, this indicates that although caveolae sequester some receptors associated with p42/p44 MAP kinase activation, the site of its activation is associated with caveolae-free membrane domains. This reveals that directed trafficking of plasma membrane EGFR is an essential element of signal transduction leading to p42/p44 MAP kinase activation.  相似文献   

20.
The receptors for insulin (IR) and epidermal growth factor (EGFR) are members of the tyrosine kinase receptor (TKR) family. Despite homology of their cytosolic TK domains, both receptors induce different cellular responses. Tyrosine phosphorylation of insulin receptor substrate (IRS) molecules is a specific IR post-receptor response. The EGFR specifically activates phospholipase C-gamma1 (PLC-gamma1). Recruitment of substrate molecules with Src homology 2 (SH2) domains or phosphotyrosine binding (PTB) domains to phosphotyrosines in the receptor is one of the factors creating substrate specificity. In addition, it has been shown that the TK domains of the IR and EGFR show preferences to phosphorylate distinct peptides in vitro, suggesting additional mechanisms of substrate recognition. We have examined to what extent the substrate preference of the TK domain contributes to the specificity of the receptor in vivo. For this purpose we determined whether the IR TK domain, in situ, is able to tyrosine-phosphorylate substrates normally used by the EGFR. A chimaeric receptor, consisting of an EGFR in which the juxtamembrane and tyrosine kinase domains were exchanged by their IR counterparts, was expressed in CHO-09 cells lacking endogenous EGFR. This receptor was found to activate PLC-gamma1, indicating that the IR TK domain, in situ, is able to tyrosine phosphorylate substrates normally used by the EGFR. These findings suggest that the IR TK domain, in situ, has a low specificity for selection and phosphorylation of non-cognate substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号