首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Background

Chronic obstructive pulmonary disease (COPD) is associated with local and systemic inflammation. The knowledge of interaction and co-variation of the inflammatory responses in different compartments is meagre.

Method

Healthy controls (n = 23), smokers with (n = 28) and without (n = 29) COPD performed spirometry and dental examinations. Saliva, induced sputum, bronchoalveolar lavage (BAL) fluid and serum were collected. Inflammatory markers were assessed in all compartments using ELISA, flow cytometry and RT-PCR.

Results

Negative correlations between lung function and saliva IL-8 and matrix metalloproteinase-9 (MMP-9) were found in smokers with COPD. IL-8 and MMP-9 in saliva correlated positively with periodontal disease as assessed by gingival bleeding in non-smokers.Tumor necrosis factor-α (TNF-α) in saliva, serum and TNF-α mRNA expression on macrophages in BAL-fluid were lower in smokers than in non-smokers. There were positive correlations between soluble TNF-α receptor 1 (sTNFR1) and soluble TNF-α receptor 2 (sTNFR2) in sputum, BAL-fluid and serum in all groups. Sputum interleukin-8 (IL-8) or interleukin-6 (IL-6) was positively correlated with sTNFR1 or sTNFR2 in non-smokers and with sTNFR2 in COPD.

Conclusion

Saliva which is convenient to collect and analyse, may be suitable for biomarker assessment of disease activity in COPD. An attenuated TNF-α expression was demonstrated by both protein and mRNA analyses in different compartments suggesting that TNF-α response is altered in moderate and severe COPD. Shedding of TNFR1 or TNFR2 is similarly regulated irrespective of airflow limitation.  相似文献   

2.

Background

Although smoking is the most important and modifiable cause of chronic obstructive pulmonary disease (COPD), other risk factors including asthma and tuberculosis (TB) are also associated. It is common for COPD patients to have more than one of these risk factors. The aims of this study were to determine the prevalence of airflow limitation (FEV1/FVC<0.7) according to the risk factors and to investigate their impact and interaction in airflow limitation.

Methods

From the Korean National Health and Nutrition Examination Survey between 2008 and 2012, we analyzed participants over 40 years of age by spirometry, chest radiograph and questionnaire about asthma and smoking history.

Results

Of 12,631 participants, 1,548 (12.3%) had airflow limitation. The prevalence of airflow limitation in smokers (≥10 pack-year), asthmatics, and those with inactive TB was 23.9%, 32.1%, and 33.6%. The prevalence increased with the number of risk factors: 86.1% had airflow limitation if they had all three risk factors. Impacts of inactive TB and asthma on airflow limitation were equivalent to 47 and 69 pack-years of smoking, respectively. Airflow limitation resulted from lower levels of smoking in those with inactive TB and asthma. A potential interaction between smoking and inactive tuberculosis in the development of airflow limitation was identified (p = 0.054).

Conclusions

Asthma and inactive TB lesions increase susceptibility to smoking in the development of airflow limitation. People with these risk factors should be seen as a major target population for anti-smoking campaigns to prevent COPD.  相似文献   

3.

Objectives

To explore the change and its significance of cytokines in patients with pulmonary tuberculosis complicated with COPD.

Methods

The immune function of 152 cases of pulmonary tuberculosis with COPD was detected to compare with 150 cases of patients with pulmonary tuberculosis, 157 cases of patients with COPD and 50 cases of healthy volunteers who were in the hospital during the same period. T lymphocyte cell population in peripheral blood was detected by flow cytometry. The serum levels of sIL-2R, IL-6, IFN-γ, TNF-α were measured using ELISA.

Results

The percentage of CD4+ T cells in TB patients with or without COPD and COPD patients without TB was significantly lower than that in control group. The percentage of CD4+ T cells in patients with TB and COPD was significantly lower than that in the non-COPD TB patients. The percentage of CD8+ T cells was higher in the TB patients group than that in control group. The CD4+/CD8+ ratio in the TB patients group was significantly lower than that in control group. The concentrations of sIL-2R, IL-6, TNF-α, IFN-γ in TB patients with or without COPD and COPD patients without TB were significantly higher than those in control group. In addition, sIL-2R, IL-6, TNF-α concentrations in the patients with TB and COPD were higher than those in the non-COPD TB patients. The concentrations of sIL-2R, IL-6, TNF-α, IFN-γ in COPD patients with TB were significantly higher than those in COPD patients without TB. There was a significant negative correlation between serum levels of TNF-α, IL-6 and FEV1 (%, predicted) in COPD without TB group.

Conclusions

The patients with pulmonary tuberculosis complicated with COPD were impaired in cellular immunity, and its extent of immune impairment is more serious than those of the patients with pulmonary tuberculosis and the patients with COPD.  相似文献   

4.

Background

Systemic inflammation may contribute to cachexia in patients with chronic obstructive pulmonary disease (COPD). In this longitudinal study we assessed the association between circulating C-reactive protein (CRP), tumor necrosis factor (TNF)-α, interleukin (IL)-1ß, and IL-6 levels and subsequent loss of fat free mass and fat mass in more than 400 COPD patients over three years.

Methods

The patients, aged 40–76, GOLD stage II-IV, were enrolled in 2006/07, and followed annually. Fat free mass and fat mass indexes (FFMI & FMI) were calculated using bioelectrical impedance, and CRP, TNF-α, IL-1ß, and IL-6 were measured using enzyme immunoassays. Associations with mean change in FFMI and FMI of the four inflammatory plasma markers, sex, age, smoking, FEV1, inhaled steroids, arterial hypoxemia, and Charlson comorbidity score were analyzed with linear mixed models.

Results

At baseline, only CRP was significantly (but weakly) associated with FFMI (r = 0.18, p < 0.01) and FMI (r = 0.27, p < 0.01). Univariately, higher age, lower FEV1, and use of beta2-agonists were the only significant predictors of decline in FFMI, whereas smoking, hypoxemia, Charlson score, and use of inhaled steroids predicted increased loss in FMI. Multivariately, high levels of TNF-α (but not CRP, IL-1ß or IL-6) significantly predicted loss of FFMI, however only in patients with established cachexia at entry.

Conclusion

This study does not support the hypothesis that systemic inflammation is the cause of accelerated loss of fat free mass in COPD patients, but suggests a role for TNF-α in already cachectic COPD patients.  相似文献   

5.

Background

Exacerbations of Chronic obstructive pulmonary disease (COPD) are an important cause of the morbidity and mortality associated with the disease. Strategies to reduce exacerbation frequency are thus urgently required and depend on an understanding of the inflammatory milieu associated with exacerbation episodes. Bacterial colonisation has been shown to be related to the degree of airflow obstruction and increased exacerbation frequency. The aim of this study was to asses the kinetics of cytokine release from COPD parenchymal explants using an ex vivo model of lipopolysaccharide (LPS) induced acute inflammation.

Methods

Lung tissue from 24 patients classified by the GOLD guidelines (7F/17M, age 67.9 ± 2.0 yrs, FEV1 76.3 ± 3.5% of predicted) and 13 subjects with normal lung function (8F,5M, age 55.6 ± 4.1 yrs, FEV1 98.8 ± 4.1% of predicted) was stimulated with 100 ng/ml LPS alone or in combination with either neutralising TNFα or IL-10 antibodies and supernatant collected at 1,2,4,6,24, and 48 hr time points and analysed for IL-1β, IL-5, IL-6, CXCL8, IL-10 and TNFα using ELISA. Following culture, explants were embedded in glycol methacrylate and immunohistochemical staining was conducted to determine the cellular source of TNFα, and numbers of macrophages, neutrophils and mast cells.

Results

In our study TNFα was the initial and predictive cytokine released followed by IL-6, CXCL8 and IL-10 in the cytokine cascade following LPS exposure. The cytokine cascade was inhibited by the neutralisation of the TNFα released in response to LPS and augmented by the neutralisation of the anti-inflammatory cytokine IL-10. Immunohistochemical analysis indicated that TNFα was predominantly expressed in macrophages and mast cells. When patients were stratified by GOLD status, GOLD I (n = 11) and II (n = 13) individuals had an exaggerated TNFα responses but lacked a robust IL-10 response compared to patients with normal lung function (n = 13).

Conclusion

We report on a reliable ex vitro model for the investigation of acute lung inflammation and its resolution using lung parenchymal explants from COPD patients. We propose that differences in the production of both TNFα and IL-10 in COPD lung tissue following exposure to bacterial LPS may have important biological implications for both episodes of exacerbation, disease progression and amelioration.  相似文献   

6.

Background

Chronic Obstructive Pulmonary Disease (COPD) is characterized by an enhanced inflammatory response to smoking that persists despite quitting. The resolution of inflammation (catabasis) is a complex and highly regulated process where tissue resident macrophages play a key role since they phagocytose apoptotic cells (efferocytosis), preventing their secondary necrosis and the spill-over of their pro-inflammatory cytoplasmic content, and release pro-resolution and tissue repair molecules, such as TGFβ, VEGF and HGF. Because inflammation does not resolve in COPD, we hypothesized that catabasis may be abnormal in these patients.

Methods

To explore this hypothesis, we studied lung tissue samples obtained at surgery from 21 COPD patients, 22 smokers with normal spirometry and 13 non-smokers controls. In these samples we used: (1) immunohistochemistry to assess the expression of CD44, CD36, VEGF and TGFβ in lung macrophages; (2) real time PCR to determine HGF, PPARγ, TGFβ, VEGF and MMP-9 gene expression; and, (3) ELISA to quantify lipoxin A4, a lipid mediator of catabasis.

Results

We found that current and former smokers with COPD showed: (1) more inflammation (higher MMP-9 expression); (2) reduced macrophage surface expression of CD44, a key efferocytosis receptor; and, (3) similar levels of TGFβ, VEGF, HGF, PPARγ, and lipoxin A4 than smokers with normal spirometry, despite the presence of inflammation and disease.

Conclusions

These results identify several potential abnormalities of catabasis in patients with COPD.  相似文献   

7.
Epidemiological studies have reported associations between circulating inflammation markers and risk of chronic diseases. It is of interest to examine whether risk factors for these diseases are associated with inflammation. We conducted a cross-sectional analysis to evaluate whether reproductive and lifestyle factors and circulating vitamin D were associated with inflammation markers, including C-reactive protein, cytokines (IL-1β, IL-2, IL-4, IL-5, IL-6, IL-10, IL-12p40, IL-12p70, IL-13, TNFα), and cytokine modulators (IL-1RA, sIL-1RII, sIL-2Ra, sIL-4R, sIL-6R, sTNF-R1/R2), among 616 healthy women. We confirmed associations of several inflammation markers with age and BMI. We also observed significantly higher levels of certain inflammation markers in postmenopausal vs. premenopausal women (TNFα, sIL-1RII, sIL-2Ra), with increasing parity (IL-12p40), and with higher circulating 25(OH) vitamin D (IL-13) and lower levels among current users of non-steroidal anti-inflammatory drugs (NSAIDs) (IL-1β, IL-2, IL-10, IL-12p70, and IL-12p40), current smokers (IL-4, IL-13, IL-12p40), and women with a family history of breast or ovarian cancer (IL-4, IL-10, IL-13). Our findings suggest that risk factors for chronic diseases (age, BMI, menopausal status, parity, NSAID use, family history of breast and ovarian cancer, and smoking) are associated with inflammation markers in healthy women.  相似文献   

8.
The role of Interleukin(IL)-6 in the pathogenesis of joint and systemic inflammation in rheumatoid arthritis (RA) and systemic juvenile idiopathic arthritis (s-JIA) has been clearly demonstrated. However, the mechanisms by which IL-6 contributes to the pathogenesis are not completely understood. This study investigates whether IL-6 affects, alone or upon toll like receptor (TLR) ligand stimulation, the production of inflammatory cytokines and chemokines in human peripheral blood mononuclear cells (PBMCs), synovial fluid mononuclear cells from JIA patients (SFMCs) and fibroblast-like synoviocytes from rheumatoid arthritis patients (RA synoviocytes) and signalling pathways involved. PBMCs were pre-treated with IL-6 and soluble IL-6 Receptor (sIL-6R). SFMCs and RA synoviocytes were pre-treated with IL-6/sIL-6R or sIL-6R, alone or in combination with Tocilizumab (TCZ). Cells were stimulated with LPS, S100A8-9, poly(I-C), CpG, Pam2CSK4, MDP, IL-1β. Treatment of PBMCs with IL-6 induced production of TNF-α, CXCL8, and CCL2, but not IL-1β. Addition of IL-6 to the same cells after stimulation with poly(I-C), CpG, Pam2CSK4, and MDP induced a significant increase in IL-1β and CXCL8, but not TNF-α production compared with TLR ligands alone. This enhanced production of IL-1β and CXCL8 paralleled increased p65 NF-κB activation. In contrast, addition of IL-6 to PBMCs stimulated with LPS or S100A8-9 (TLR-4 ligands) led to reduction of IL-1β, TNF-α and CXCL8 with reduced p65 NF-κB activation. IL-6/IL-1β co-stimulation increased CXCL8, CCL2 and IL-6 production. Addition of IL-6 to SFMCs stimulated with LPS or S100A8 increased CXCL8, CCL2 and IL-1β production. Treatment of RA synoviocytes with sIL-6R increased IL-6, CXCL8 and CCL2 production, with increased STAT3 and p65 NF-κB phosphorylation. Our results suggest that IL-6 amplifies TLR-induced inflammatory response. This effect may be relevant in the presence of high IL-6 and sIL-6R levels, such as in arthritic joints in the context of stimulation by endogenous TLR ligands.  相似文献   

9.

Background

Cigarette smoking is the main risk factor for the development of chronic obstructive pulmonary disease (COPD), a major cause of morbidity and mortality worldwide. Despite this, the cellular and molecular mechanisms that contribute to COPD pathogenesis are still poorly understood.

Methodology and Principal Findings

The objective of this study was to assess IL-1 α and β expression in COPD patients and to investigate their respective roles in perpetuating cigarette smoke-induced inflammation. Functional studies were pursued in smoke-exposed mice using gene-deficient animals, as well as blocking antibodies for IL-1α and β. Here, we demonstrate an underappreciated role for IL-1α expression in COPD. While a strong correlation existed between IL-1α and β levels in patients during stable disease and periods of exacerbation, neutrophilic inflammation was shown to be IL-1α-dependent, and IL-1β- and caspase-1-independent in a murine model of cigarette smoke exposure. As IL-1α was predominantly expressed by hematopoietic cells in COPD patients and in mice exposed to cigarette smoke, studies pursued in bone marrow chimeric mice demonstrated that the crosstalk between IL-1α+ hematopoietic cells and the IL-1R1+ epithelial cells regulates smoke-induced inflammation. IL-1α/IL-1R1-dependent activation of the airway epithelium also led to exacerbated inflammatory responses in H1N1 influenza virus infected smoke-exposed mice, a previously reported model of COPD exacerbation.

Conclusions and Significance

This study provides compelling evidence that IL-1α is central to the initiation of smoke-induced neutrophilic inflammation and suggests that IL-1α/IL-1R1 targeted therapies may be relevant for limiting inflammation and exacerbations in COPD.  相似文献   

10.
Chronic obstructive pulmonary disease (COPD) is characterized by chronic airway inflammation, mucus hypersecretion, and emphysema, which lead to reduced lung function and breathlessness. The pathologies of COPD are due to an abnormal immune response. Invariant natural killer T (iNKT) cells are an important population of innate lymphocytes and have been implicated in the regulation of immune responses associated with a broad range of diseases including COPD. We have here analyzed the role of iNKT cells in a model of COPD induced by repeated intranasal administration of iNKT cell agonist α-galactosylceramide (α-GalCer). Our results demonstrated that mice that received repeated intranasal administration of α-GalCer had molecular and inflammatory features of COPD including airway inflammation with significant increases in infiltration of macrophages and lymphocytes, CD8+ T cells, as well as proinflammatory cytokines IL-6 and TNF-α. In particular, these mice also showed the presence of pulmonary emphysema, mucus production, and pulmonary fibrosis. Furthermore, neutralization of IL-4 reduced α-GalCer induced emphysema. This study indicates the importance of iNKT cells in the pathogenesis of COPD by an IL-4 dependent mechanism.  相似文献   

11.

Background

Chronic obstructive pulmonary disease (COPD) is characterized by inflammation and remodeling of the lungs. This results in alterations in extracellular matrix (ECM) and structural changes leading to airflow obstruction. We studied the expression of tenascin-C (Tn-C) and alpha smooth muscle actin (α-SMA), which act as a marker of myofibroblasts, in large airways from COPD patients. Our aim was to elucidate whether this expression correlated with smoking or with disease development.

Methods

Bronchoscopy was performed on 20 COPD patients (mean age 56 years; range 39-61; FEV1/FVC < 70% and FEV1 median 53% (range 33-69) of predicted). Age and smoking matched smokers (S) without COPD (n = 13) and age matched non-smokers (NS) (n = 14) served as controls. Bronchial mucosal biopsies were analyzed by immunohistochemistry. The distribution of Tn-C expression was assessed and graded in three levels, and the number of spindle shaped cells staining positive for α-SMA were counted.

Results

Biopsies from COPD patients had more (P < 0.001) Tn-C expression than the two control groups. A significantly (P < 0.05) increased number of spindle shaped cells expressing α-SMA was observed in COPD patients compared with the controls. Smokers and nonsmokers did not differ in this respect. The expression of Tn-C correlated positively (P < 0.001) to the number of α-SMA positive cells.

Conclusions

We demonstrate increased expression of Tn-C and α-SMA positive cells in the large airways in COPD. This was not associated to smoking per se, but to the presence of airway obstruction. Our findings add new information regarding remodeling characteristics and highlight the large airways as a potential site for airways obstruction in COPD.  相似文献   

12.
Interleukin-15 (IL-15), a 114-amino acid cytokine related to IL-2, regulates immune homeostasis and the fate of many lymphocyte subsets. We reported that, in the blood of mice and humans, IL-15 is present as a heterodimer associated with soluble IL-15 receptor α (sIL-15Rα). Here, we show efficient production of this noncovalently linked but stable heterodimer in clonal human HEK293 cells and release of the processed IL-15·sIL-15Rα heterodimer in the medium. Purification of the IL-15 and sIL-15Rα polypeptides allowed identification of the proteolytic cleavage site of IL-15Rα and characterization of multiple glycosylation sites. Administration of the IL-15·sIL-15Rα heterodimer reconstituted from purified subunits resulted in sustained plasma IL-15 levels and in robust expansion of NK and T cells in mice, demonstrating pharmacokinetics and in vivo bioactivity superior to single chain IL-15. These identified properties of heterodimeric IL-15 provide a strong rationale for the evaluation of this molecule for clinical applications.  相似文献   

13.

Rationale

Low-grade inflammation and emphysema have been shown to be associated with an increased risk of lung cancer. However, the systemic inflammatory response in patients with emphysema is still unknown.

Objective

To compare the plasma cytokine profiles in two groups of current or former smokers without airway obstruction: a control group of individuals without computed tomography (CT) detected emphysema vs. a study group of individuals with CT detected emphysema.

Methods

Subjects underwent a chest CT, spirometry, and determination of EGF, IL-15, IL-1ra, IL-8, MCP-1, MIP-1β, TGFα, TNFα, and VEGF levels in plasma. Cytokine levels in each group were compared adjusting for confounding factors.

Results

160 current smokers and former smokers without airway obstruction participated in the study: 80 without emphysema and 80 subjects with emphysema. Adjusted group comparisons revealed significant reductions in EGF (−0.317, p = 0.01), IL-15 (−0.21, p = 0.01), IL-8 (−0.180, p = 0.02) and IL-1ra (−0.220, p = 0.03) in subjects with emphysema and normal spirometry.

Conclusions

Current or former smokers expressing a well-defined disease characteristic such as emphysema, has a specific plasma cytokine profile. This includes a decrease of cytokines mainly implicated in activation of apoptosis or decrease of immunosurveillance. This information should be taken into account when evaluated patients with tobacco respiratory diseases.  相似文献   

14.

Background

Chronic obstructive pulmonary disease (COPD) is associated with abnormal inflammatory responses and structural alterations of the airways, lung parenchyma and pulmonary vasculature. Since Pentraxin-3 (PTX3) is a tuner of inflammatory responses and is produced by endothelial and inflammatory cells upon stimuli such as interleukin-1β (IL-1β), we hypothesized that PTX3 is involved in COPD pathogenesis.

Methods and Results

We evaluated whether cigarette smoke (CS) triggers pulmonary and systemic PTX3 expression in vivo in a murine model of COPD. Using immunohistochemical (IHC) staining, we observed PTX3 expression in endothelial cells of lung venules and veins but not in lung arteries, airways and parenchyma. Moreover, ELISA on lung homogenates and semi-quantitative scoring of IHC-stained sections revealed a significant upregulation of PTX3 upon subacute and chronic CS exposure. Interestingly, PTX3 expression was not enhanced upon subacute CS exposure in IL-1RI KO mice, suggesting that the IL-1 pathway is implicated in CS-induced expression of vascular PTX3. Serum PTX3 levels increased rapidly but transiently after acute CS exposure.To elucidate the functional role of PTX3 in CS-induced responses, we examined pulmonary inflammation, protease/antiprotease balance, emphysema and body weight changes in WT and Ptx3 KO mice. CS-induced pulmonary inflammation, peribronchial lymphoid aggregates, increase in MMP-12/TIMP-1 mRNA ratio, emphysema and failure to gain weight were not significantly different in Ptx3 KO mice compared to WT mice. In addition, Ptx3 deficiency did not affect the CS-induced alterations in the pulmonary (mRNA and protein) expression of VEGF-A and FGF-2, which are crucial regulators of angiogenesis.

Conclusions

CS increases pulmonary PTX3 expression in an IL-1 dependent manner. However, our results suggest that either PTX3 is not critical in CS-induced pulmonary inflammation, emphysema and body weight changes, or that its role can be fulfilled by other mediators with overlapping activities.  相似文献   

15.

Background

Osteoporosis is one of the systemic features of COPD. A correlation between the emphysema phenotype of COPD and reduced bone mineral density (BMD) is suggested by some studies, however, the mechanisms underlying this relationship are unclear. Experimental studies indicate that IL-1β, IL-6 and TNF-α may play important roles in the etiology of both osteoporosis and emphysema. The OPG/RANK/RANKL system is an important regulator of bone metabolism, and participates in the development of post-menopausal osteoporosis. Whether the OPG/RANK/RANKL pathway is involved in the pathogenesis of osteoporosis in COPD has not been studied.

Methods

Eighty male patients (current or former smokers) completed a chest CT scan, pulmonary function test, dual x-ray absorptiometry measurements and questionnaires. Among these subjects, thirty patients with normal BMD and thirty patients with low BMD were selected randomly for measurement of IL-1β, IL-6, TNF-α (flow cytometry) and OPG/RANK/RANKL (ELISA). Twenty age-matched healthy volunteers were recruited as controls.

Results

Among these eighty patients, thirty-six had normal BMD and forty-four had low BMD. Age, BMI and CAT score showed significant differences between these two COPD groups (p < 0.05). The low-attenuation area (LAA%) in the lungs of COPD patients was negatively correlated with lumbar vertebral BMD (r = 0.741; p < 0.0001). Forward logistic regression analysis showed that only LAA% (p = 0.005) and BMI (p = 0.009) were selected as explanatory variables. The level of IL-1β was significantly higher in the COPD patients as compared to the normal controls (p < 0.05), but the difference between the two COPD groups did not reach significance. The levels of IL-6 and TNF-α among the three groups were significantly different (p < 0.05). The level of RANKL and the RANKL/OPG ratio were significantly higher in COPD patients with low BMD compared to those with normal BMD and the normal controls (p < 0.05), and correlated negatively with lumbar vertebral BMD, but positively with LAA%.

Conclusions

Radiographic emphysema is correlated with low BMD in current and former smokers with COPD. IL-1β, IL-6, TNF-α, and the osteoporosis-related protein system OPG/RANK/RANKL may have some synergetic effects on emphysema and bone loss in COPD.  相似文献   

16.
Interleukin (IL)-15 associates with IL-15Rα on the cell surface where it can be cleaved into soluble cytokine/receptor complexes that have the potential to stimulate CD8 T cells and NK cells. Unfortunately, little is known about the in vivo production of soluble IL-15Rα/IL-15 complexes (sIL-15 complexes), particularly regarding the circumstances that induce them and the mechanisms responsible. The main objective of this study was to elucidate the signals leading to the generation of sIL-15 complexes. In this study, we show that sIL-15 complexes are increased in the serum of mice in response to Interferon (IFN)-α. In bone marrow derived dendritic cells (BMDC), IFN-α increased the activity of ADAM17, a metalloproteinase implicated in cleaving IL-15 complexes from the cell surface. Moreover, knocking out ADAM17 in BMDCs prevented the ability of IFN-α to induce sIL-15 complexes demonstrating ADAM17 as a critical protease mediating cleavage of IL-15 complexes in response to type I IFNs. Type I IFN signaling was required for generating sIL-15 complexes as in vivo induction of sIL-15 complexes by Poly I:C stimulation or total body irradiation (TBI) was impaired in IFNAR-/- mice. Interestingly, serum sIL-15 complexes were also induced in mice infected with Vesicular stomatitis virus (VSV) or mice treated with agonistic CD40 antibodies; however, sIL-15 complexes were still induced in IFNAR-/- mice after VSV infection or CD40 stimulation indicating pathways other than type I IFNs induce sIL-15 complexes. Overall, this study has shown that type I IFNs, VSV infection, and CD40 stimulation induce sIL-15 complexes suggesting the generation of sIL-15 complexes is a common event associated with immune activation. These findings reveal an unrealized mechanism for enhanced immune responses occurring during infection, vaccination, inflammation, and autoimmunity.  相似文献   

17.
BackgroundPatients with bronchitis type of chronic obstructive pulmonary disease (COPD) have raised vascular endothelial growth factor (VEGF) levels in induced sputum. This has been associated with the pathogenesis of COPD through apoptotic and oxidative stress mechanisms. Since, chronic airway inflammation is an important pathological feature of COPD mainly initiated by cigarette smoking, aim of this study was to assess smoking as a potential cause of raised airway VEGF levels in bronchitis type COPD and to test the association between VEGF levels in induced sputum and airway inflammation in these patients.Methods14 current smokers with bronchitis type COPD, 17 asymptomatic current smokers with normal spirometry and 16 non-smokers were included in the study. VEGF, IL-8, and TNF-α levels in induced sputum were measured and the correlations between these markers, as well as between VEGF levels and pulmonary function were assessed.ResultsThe median concentrations of VEGF, IL-8, and TNF-α were significantly higher in induced sputum of COPD patients (1,070 pg/ml, 5.6 ng/ml and 50 pg/ml, respectively) compared to nonsmokers (260 pg/ml, 0.73 ng/ml, and 15.4 pg/ml, respectively, p < 0.05) and asymptomatic smokers (421 pg/ml, 1.27 ng/ml, p < 0.05, and 18.6 pg/ml, p > 0.05, respectively). Significant correlations were found between VEGF levels and pack years (r = 0.56, p = 0.046), IL-8 (r = 0.64, p = 0.026) and TNF-α (r = 0.62, p = 0.031) levels both in asymptomatic and COPD smokers (r = 0.66, p = 0.027, r = 0.67, p = 0.023, and r = 0.82, p = 0.002, respectively). No correlation was found between VEGF levels in sputum and pulmonary function parameters.ConclusionVEGF levels are raised in the airways of both asymptomatic and COPD smokers. The close correlation observed between VEGF levels in the airways and markers of airway inflammation in healthy smokers and in smokers with bronchitis type of COPD is suggestive of VEGF as a marker reflecting the inflammatory process that occurs in smoking subjects without alveolar destruction.  相似文献   

18.

Background

Chronic obstructive pulmonary disease (COPD) is characterized by expiratory flow limitation, causing air trapping and lung hyperinflation. Hyperinflation leads to reduced exercise tolerance and poor quality of life in COPD patients. Total lung capacity (TLC) is an indicator of hyperinflation particularly in subjects with moderate-to-severe airflow obstruction. The aim of our study was to identify genetic variants associated with TLC in COPD.

Methods

We performed genome-wide association studies (GWASs) in white subjects from three cohorts: the COPDGene Study; the Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints (ECLIPSE); and GenKOLS (Bergen, Norway). All subjects were current or ex-smokers with at least moderate airflow obstruction, defined by a ratio of forced expiratory volume in 1 second to forced vital capacity (FEV1/FVC) <0.7 and FEV1 < 80% predicted on post-bronchodilator spirometry. TLC was calculated by using volumetric computed tomography scans at full inspiration (TLCCT). Genotyping in each cohort was completed, with statistical imputation of additional markers. To find genetic variants associated with TLCCT, linear regression models were used, with adjustment for age, sex, pack-years of smoking, height, and principal components for genetic ancestry. Results were summarized using fixed-effect meta-analysis.

Results

Analysis of a total of 4,543 COPD subjects identified one genome-wide significant locus on chromosome 5p15.2 (rs114929486, β = 0.42L, P = 4.66 × 10−8).

Conclusions

In COPD, TLCCT was associated with a SNP in dynein, axonemal, heavy chain 5 (DNAH5), a gene in which genetic variants can cause primary ciliary dyskinesia. DNAH5 could have an effect on hyperinflation in COPD.

Electronic supplementary material

The online version of this article (doi:10.1186/s12931-014-0097-y) contains supplementary material, which is available to authorized users.  相似文献   

19.

Background

Chronic obstructive pulmonary disease is caused mainly by habitual smoking and is common among elderly individuals. It involves not only airflow limitation but also metabolic disorders, leading to increased cardiovascular morbidity and mortality.

Objective

We evaluated relationships among smoking habits, airflow limitation, and metabolic abnormalities.

Methods

Between 2001 and 2008, 15,324 school workers (9700 males, 5624 females; age: ≥30 years) underwent medical checkups, including blood tests and spirometry. They also responded to a questionnaire on smoking habits and medical history.

Results

Airflow limitation was more prevalent in current smokers than in ex-smokers and never-smokers in men and women. The frequency of hypertriglyceridemia was higher in current smokers in all age groups, and those of low high-density-lipoprotein cholesterolemia and diabetes mellitus were higher in current smokers in age groups ≥ 40 s in men, but not in women. There were significant differences in the frequencies of metabolic abnormalities between subjects with airflow limitations and those without in women, but not in men. Smoking index was an independent factor associated with increased frequencies of hypertriglyceridemia (OR 1.015; 95% CI: 1.012–1.018; p<0.0001) and low high-density-lipoprotein cholesterolemia (1.013; 1.010–1.016; p<0.0001) in men. Length of smoking cessation was an independent factor associated with a decreased frequency of hypertriglyceridemia (0.984; 0.975–0.994; p = 0.007).

Conclusions

Habitual smoking causes high incidences of airflow limitation and metabolic abnormalities. Women, but not men, with airflow limitation had higher frequencies of metabolic abnormalities.  相似文献   

20.

Background

During 2007–2010, the National Health and Nutrition Examination Survey (NHANES) conducted a spirometry component which obtained pre-bronchodilator pulmonary lung function data on a nationally representative sample of US adults aged 6–79 years and post-bronchodilator pulmonary lung function data for the subset of adults with airflow limitation. The goals of this study were to 1) compute prevalence estimates of chronic obstructive pulmonary disease (COPD) using pre-bronchodilator and post-bronchodilator spirometry measurements and fixed ratio and lower limit of normal (LLN) diagnostic criteria and 2) examine the potential impact of nonresponse on the estimates.

Methods

This analysis was limited to those aged 40–79 years who were eligible for NHANES pre-bronchodilator spirometry (n=7,104). Examinees with likely airflow limitation were further eligible for post-bronchodilator testing (n=1,110). Persons were classified as having COPD based on FEV1/FVC < 70% (fixed ratio) or FEV1/FVC < lower limit of normal (LLN) based on person’s age, sex, height, and race/ethnicity. Those without spirometry but self-reporting both daytime supplemental oxygen therapy plus emphysema and/or current chronic bronchitis were also classified as having COPD. The final analytic samples for pre-bronchodilator and post-bronchodilator analyses were 77.1% (n=5,477) and 50.8% (n=564) of those eligible, respectively. To account for non-response, NHANES examination weights were adjusted to the eligible pre-bronchodilator and post-bronchodilator subpopulations.

Results

In 2007–2010, using the fixed ratio criterion and pre-bronchodilator test results, COPD prevalence was 20.9% (SE 1.1) among US adults aged 40–79 years. Applying the same criterion to post-bronchodilator test results, prevalence was 14.0% (SE 1.0). Using the LLN criterion and pre-bronchodilator test results, the COPD prevalence was 15.4% (SE 0.8), while applying the same criterion to post-bronchodilator test results, prevalence was 10.2% (SE 0.8).

Conclusions

The overall COPD prevalence among US adults aged 40–79 years varied from 10.2% to 20.9% based on whether pre- or post-bronchodilator values were used and which diagnostic criterion (fixed ratio or LLN) was applied. The overall prevalence decreased by approximately 33% when airflow limitation was based on post-bronchodilator as compared to pre-bronchodilator spirometry, regardless of which diagnostic criterion was used.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号