首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 829 毫秒
1.
L Thomas  J J Bell 《Heredity》2013,111(4):345-354
Connectivity is widely recognized as an important component in developing effective management and conservation strategies. Although managers are generally most interested in demographic, rather than genetic connectivity, new analytic approaches are able to provide estimates of both demographic and genetic connectivity measures from genetic data. Combining such genetic data with mathematical models represents a powerful approach for accurately determining patterns of population connectivity. Here, we use microsatellite markers to investigate the genetic population structure of the New Zealand Rock Lobster, Jasus edwardsii, which has one of the longest known larval durations of all marine species (>2 years), a very large geographic range (>5500 km), and has been the subject of extensive dispersal modeling. Despite earlier mitochondrial DNA studies finding homogeneous genetic structure, the mathematical model suggests that there are source-sink dynamics for this species. We found evidence of genetic structure in J. edwardsii populations with three distinct genetic groups across New Zealand and a further Australian group; these groups and patterns of gene flow were generally congruent with the earlier mathematical model. Of particular interest was the consistent identification of a self-recruiting population/region from both modeling and genetic approaches. Although there is the potential for selection and harvesting to influence the patterns we observed, we believe oceanographic processes are most likely responsible for the genetic structure observed in J. edwardsii. Our results, using a species at the extreme end of the dispersal spectrum, demonstrate that source-sink population dynamics may still exist for such species.  相似文献   

2.
In some bird species, both adult and juvenile individuals are often brightly coloured. It has been commonly assumed that identical plumage colouration present in both sexes results from strong intersexual genetic correlations in colour-related traits. Here, we aimed at testing this hypothesis in juvenile individuals and looked at genetic parameters describing carotenoid-based colouration of blue tit nestlings in a wild population. To separate genetic and environmental sources of phenotypic variation we performed a cross-fostering experiment. Our analyses confirmed the existence of sexual dichromatism in blue tit nestlings and revealed a significant, although low, genetic component of carotenoid-based colouration. However, genetic effects are expressed differently across sexes as indicated by low cross-sex genetic correlations (rmf). Thus our results do not support the prediction of generally high rmf and suggest that intersexual constraints on the evolution of colouration traits may be weaker than expected. We hypothesise that observed patterns of genetic correlations result from sex-specific selective pressures acting on nestling plumage colouration.  相似文献   

3.
Waters JM  Roy MS 《Molecular ecology》2004,13(9):2797-2806
New Zealand's (NZ) geographical isolation, extensive coastline and well-characterized oceanography offer a valuable system for marine biogeographical research. Here we use mtDNA control region sequences in the abundant endemic sea-star Patiriella regularis to test the following literature-based predictions: that coastal upwelling disrupts north-south gene flow and promotes population differentiation (hypothesis 1); and that an invasive Tasmanian population of the species was introduced anthropogenically from southern New Zealand (hypothesis 2). We sequenced 114 samples from 22 geographical locations, including nine sites from North Island, nine from South Island, one from Stewart Island and three from Tasmania. Our analysis of these sequences revealed an abundance of shallow phylogenetic lineages within P. regularis (68 haplotypes, mean divergence 0.9%). We detected significant genetic heterogeneity between pooled samples from northern vs. southern New Zealand (FST = 0.072; P = 0.0002), consistent with the hypothesis that upwelling disrupts gene flow between these regions (hypothesis 1). However, we are currently unable to rule out the alternative hypothesis that Cook Strait represents a barrier to dispersal (North Island vs. South Island; FST = 0.031; P = 0.0467). The detection of significant spatial structure in NZ samples is consistent with restricted gene flow, and the strong structure evident in northern NZ may be facilitated by distinct ocean current systems. Four shared haplotypes and nonsignificant differentiation (FST = 0.025; P = 0.2525) between southern New Zealand and Tasmanian samples is consistent with an anthropogenic origin for the latter population (hypothesis 2).  相似文献   

4.
Samples of Neocyttus rhomboidalis from eight areas off southern Australia and eastern New Zealand were examined to assess the stock structure of the species. No spatial heterogeneity was detected for mitochondrial DNA variation after restriction analysis by two enzymes detecting polymorphic cut sites. Twenty mtDNA haplotypes were recorded, with an overall haplotype diversity of 0·683. Twenty-eight allozyme loci were examined; the mean heterozygosity per locus was 13·0%. Significant sample heterogeneity was detected at three of twelve polymorphic loci: MPI*, PGM-1 * and, most strikingly (GST=0·43), sSOD *. Most of the sSOD * differentiation was associated with depth rather than geographical separation; sSOD * allele frequencies of shallow and deep samples being very different. It is suggested that the correlation between the sSOD * allele frequencies and depth is more likely to reflect natural selection than reproductive isolation. The spatial patterning of the MPI * and PGM-1 * data suggest there are at least three geographic stocks of N. rhomboidalis in Australasian waters: (1) New Zealand, (2) Western Australia and South Australia, (3) west Tasmania to New South Wales and Lord Howe Rise.  相似文献   

5.
Abstract The amphibian fauna of New Zealand consists of three native species (Leiopelma spp.), and three Litoria species introduced from Australia in the last 140 years. We conducted a molecular phylogeographical study that aimed to identify the Australian origins of two species, Litoria aurea and Litoria raniformis. We used partial sequences of the mitochondrial cytochrome oxidase I (cox1) gene from 59 specimens sampled from across the range of both species to identify the probable source populations for the New Zealand introductions, and to describe the current genetic diversity among New Zealand Litoria populations. Our genetic data suggest that L. aurea was introduced into the North Island of New Zealand from two regions in Australia, once from the northern part of coastal New South Wales and once from the southern part of coastal New South Wales. Our data indicate that L. raniformis introductions originated from the Melbourne region of southern Victoria and once established in the South Island of New Zealand, the species subsequently spread throughout both islands. In addition, we found a distinct haplotype in L. raniformis from Tasmania that strongly suggests, contrary to earlier reports, that this species was not introduced into New Zealand from Tasmania. Finally, we identified two very distinctive mitochondrial lineages of L. raniformis within the mainland Australia distribution, which may be previously unrecognized species.  相似文献   

6.
Many macroalgae exhibit considerable intraspecific morphological variation, but whether such variation reflects phenotypic plasticity or underlying genetic differences is often poorly understood. We quantified both morphological and genetic variation of 96 plants from seven field sites across eastern South Island, New Zealand, to assess genetic differences between morphotypes of the southern bull kelp Durvillaea antarctica (Cham.) Har. Consistent DNA sequence differentiation across mitochondrial, plastid, and nuclear loci was correlated with two broadly sympatric morphotypes: “cape” and “thonged.” These ecologically, morphologically, and genetically distinct bull‐kelp lineages were previously considered to be environmentally determined phenotypes with no underlying genetic basis. Interestingly, the sheltered “cape” lineage appears essentially genetically uniform across its South Island range, whereas the exposed “thonged” lineage exhibits marked phylogeographic structure across its range. Results suggest that D. antarctica in New Zealand comprises two reproductively isolated species.  相似文献   

7.
Galaxias maculatus is one of the world's most widely distributed freshwater fish. This species has a marine-tolerant juvenile phase, and a geographical range extending through much of the southern hemisphere. We conducted phylogeographic analyses of 163 control region haplotypes of G. maculatus, including samples from New Zealand (five locations), Tasmania (one location) and Chile (one location). A lack of genetic structure among New Zealand samples suggests that marine dispersal facilitates considerable gene flow on an intra-continental scale. The discovery of a Tasmanian-like haplotype in one of 144 New Zealand samples indicates that inter-continental marine dispersal occurs but is insufficient to prevent mitochondrial DNA differentiation among continents. The sister relationship of Tasmanian and New Zealand clades implies that marine dispersal is an important biogeographical mechanism for this species. However, a vicariant role in the divergence of eastern and western Pacific G. maculatus cannot be rejected.  相似文献   

8.
There is accumulating evidence that the degree of vagility explains little of the extent of population subdivision found within elasmobranch species. Instead, patterns of gene flow in elasmobranchs appear more closely linked to the presence of dispersal barriers, either physical or biological. Here, we investigate the potential role of some of these isolating mechanisms in shaping the population structure of a member of the stingray family Dasyatidae (Dasyatis brevicaudata) at various scales (southern hemisphere vs. coastal New Zealand). Analyses of the mitochondrial DNA control region from 176 individuals revealed significant genetic structure between South Africa, Australia, and New Zealand populations (analysis of molecular variance [AMOVA], overall Ф(ST) = 0.67, P < 0.001), although New Zealand and Australia shared some haplotypes. Surprisingly, significant population differentiation was found among several coastal New Zealand locations (AMOVA, overall Ф(ST) = 0.05, P < 0.05). However, data did not support the genetic differentiation between individuals from an offshore breeding area and mainland individuals. Comparisons suggest that these stingrays exhibit similar levels of population differentiation as other coastal elasmobranchs, with high divergence across oceanic basins and lower differentiation along continuous coastal habitats. Differences in coastal population structuring in elasmobranch species studied to date may be attributed to species-specific preferences for coastal habitats, which may be linked to life history functions (e.g., feeding and pupping).  相似文献   

9.
Although pollinators are thought to select on flower colour, few studies have experimentally decoupled effects of colour from correlated traits on pollinator visitation and pollen transfer. We combined selection analysis and phenotypic manipulations to measure the effect of petal colour on visitation and pollen export at two spatial scales in Wahlenbergia albomarginata. This species is representative of many New Zealand alpine herbs that have secondarily evolved white or pale flowers. The major pollinators, solitary bees, exerted phenotypic selection on flower size but not colour, quantified by bee vision. When presented with manipulated flowers, bees visited flowers painted blue to resemble a congener over white flowers in large, but not small, experimental arrays. Pollen export was higher for blue flowers in large arrays. Pollinator preference does not explain the pale colouration of W. albomarginata, as commonly hypothesized. Absence of bright blue could be driven instead by indirect selection of correlated characters.  相似文献   

10.
Using nine nuclear species-specific microsatellite loci and two mitochondrial gene fragments (cytochrome b and control region), we investigated the processes that have shaped the geographical distribution of genetic diversity exhibited by contemporary dusky dolphin (Lagenorhynchus obscurus) populations. A total of 221 individuals from four locations (Peru, Argentina, southern Africa, and New Zealand) were assayed, covering most of the species’ distribution range. Although our analyses identify a general demographic decline in the Peruvian dusky dolphin stock (recently affected by high natural and human-induced mortality levels), comparison between the different molecular markers hint at an ancient bottleneck that predates recent El Niño oscillations and human exploitation. Moreover, we find evidence of a difference in dispersal behaviour of dusky dolphins along the South American coast and across the Atlantic. While data in Peruvian and Argentine waters are best explained by male-specific gene flow between these two populations, our analyses suggest that dusky dolphins from Argentina and southern Africa recently separated from an ancestral Atlantic population and, since then, diverged without considerable gene flow. The inclusion of a few New Zealand samples further confirms the low levels of genetic differentiation among most dusky dolphin populations. Only the Peruvian dusky dolphin stock is highly differentiated, especially at mitochondrial loci, suggesting that major fluctuations in its population size have led to an increased rate of genetic drift.  相似文献   

11.

Background

Assisted migration or translocation of species to ameliorate effects of habitat loss or changing environment is currently under scrutiny as a conservation tool. A large scale experiment of assisted migration over hundreds of kilometres was tested on a morph from a commercial fishery of southern rock lobster Jasus edwardsii, to enhance depleted populations, improve the yield and sustainability of the fishery, and test resilience to a changing climate.

Methodology and Principal Findings

Approximately 10,000 lower-valued, pale-coloured lobsters were moved from deep water to inshore sites (2 in Tasmania [TAS] and 2 in South Australia [SA]) where the high-value, red morph occurs. In TAS this was a northwards movement of 1° latitude. Growth was measured only in TAS lobsters, and reproductive status was recorded in lobsters from all locations. Pale females (TAS) grew 4 times faster than resident pale lobsters from the original site and twice as fast as red lobsters at their new location. Approximately 30% of translocated pale lobsters deferred reproduction for one year after release (SA and TAS), and grew around 1 mm yr−1 less compared to translocated pale lobsters that did not defer reproduction. In spite of this stress response to translocation, females that deferred reproduction still grew 2–6 mm yr−1 more than lobsters at the source site. Lobsters have isometric growth whereby volume increases as a cube of length. Consequently despite the one-year hiatus in reproduction, increased growth increases fecundity of translocated lobsters, as the increase in size provided a larger volume for producing and incubating eggs in future years.

Conclusions and Significance

Assisted migration improved egg production and growth, despite a temporary stress response, and offers a tool to improve the production, sustainability and resilience of the fishery.  相似文献   

12.
In early 1992, the European bumblebee, Bombus terrestris, was first seen in Tasmania and currently has spread to most of the island. Here, we report on the genetic structure, using micro-satellites, of the invading population from samples collected in the years 1998-2000, a few years after the first sighting of the species in its new area. The data show that the Tasmanian population has a very low genetic diversity, with less than half of the allelic richness (Richness=2.89 alleles; H(exp)=0.591) and lower levels of heterozygosity as compared to populations in New Zealand (4.24 alleles; H(exp)=0.729) and Europe (5.08 alleles; H(exp)=0.826). In addition, the genetic data suggest that the invasion must have happened once, probably around late 1991, and was the result of very few, perhaps only two, individuals arriving in Tasmania. Furthermore, these founders came from the New Zealand population. Today, the population in the south of Tasmania seems to act as a source population from which individuals migrate into other parts of the state. A similar source-sink structure seems also the case for New Zealand. The data show that B. terrestris is a highly invasive species capable of establishing itself even after a dramatic genetic bottleneck. B. terrestris may be an invasive species due to the haplo-diploid sex determination system, which exposes recessive, deleterious mutations to selection. Offspring of such purged lines may then be able to tolerate high levels of inbreeding.  相似文献   

13.
The pied flycatcher is one of the most phenotypically variable bird species in Europe. The geographic variation in phenotypes has often been attributed to spatial variation in selection regimes that is associated with the presence or absence of the congeneric collared flycatcher. Spatial variation in phenotypes could however also be generated by spatially restricted gene flow and genetic drift. We examined the genetic population structure of pied flycatchers across the breeding range and applied the phenotypic Q ST ( P ST)– F ST approach to detect indirect signals of divergent selection on dorsal plumage colouration in pied flycatcher males. Allelic frequencies at neutral markers were found to significantly differ among populations breeding in central and southern Europe whereas northerly breeding pied flycatchers were found to be one apparently panmictic group of individuals. Pairwise differences between phenotypic ( P ST) and neutral genetic distances ( F ST) were positively correlated after removing the most differentiated Spanish and Swiss populations from the analysis, suggesting that genetic drift may have contributed to the observed phenotypic differentiation in some parts of the pied flycatcher breeding range. Differentiation in dorsal plumage colouration however greatly exceeded that observed at neutral genetic markers, which indicates that the observed pattern of phenotypic differentiation is unlikely to be solely maintained by restricted gene flow and genetic drift.  相似文献   

14.
The common collared lizard (Crotaphytus collaris) exhibits considerable geographical colour variation, particularly among males. Populations of this diurnal saxicolous iguanian inhabit patches of rocky habitat throughout the species’ broad distribution in North America and are anticipated to experience local differences in selective pressures that influence colouration. Specifically, while social interactions might favour conspicuous colouration, crypsis may be advantageous in interactions with visually orienting predator and prey species. To address the local relationship between lizard and substrate colouration we compared the reflectance spectra of two geographically distant and phenotypically divergent populations of collared lizards with the rocky substrates they inhabit. Our northern study population (C. c. auriceps in eastern Utah) occurs on red rocks, where males exhibit boldly coloured turquoise bodies and bright yellow heads. In contrast, our southern study population (C. c. fuscus in southern New Mexico) lives on grey and tan rocks, and males in this location exhibit subdued brown and tan dorsal colours. Spectral comparisons revealed that males in the northern population contrasted strongly with their local rocks, whereas males in the southern population matched their rock colours with reasonably good fidelity. This relationship held under a variety of lighting conditions. Females in both populations were less conspicuously coloured than males, although northern females contrasted more with their rocks than did southern females. In addition, sexual dichromatism was pronounced in the northern population but minimal in the southern population. Finally, sexual size and weight dimorphism was strong in the southern population while being virtually absent in the northern population. A comparison of the local predator and prey assemblages suggests that the conspicuous and sexually dichromatic colouration of the northern population may have evolved in response to reduced pressure from visually orienting predators as well as reduced dependence on saurian prey. © 2002 The Linnean Society of London, Biological Journal of the Linnean Society, 2002, 77 , 67–85  相似文献   

15.
Climate warming leads to a decrease in biodiversity. Organisms can deal with the new prevailing environmental conditions by one of two main routes, namely evolving new genetic adaptations or through phenotypic plasticity to modify behaviour and physiology. Melanin‐based colouration has important functions in animals including a role in camouflage and thermoregulation, protection against UV‐radiation and pathogens and, furthermore, genes involved in melanogenesis can pleiotropically regulate behaviour and physiology. In this article, I review the current evidence that differently coloured individuals are differentially sensitive to climate change. Predicting which of dark or pale colour variants (or morphs) will be more penalized by climate change will depend on the adaptive function of melanism in each species as well as how the degree of colouration covaries with behaviour and physiology. For instance, because climate change leads to a rise in temperature and UV‐radiation and dark colouration plays a role in UV‐protection, dark individuals may be less affected from global warming, if this phenomenon implies more solar radiation particularly in habitats of pale individuals. In contrast, as desertification increases, pale colouration may expand in those regions, whereas dark colourations may expand in regions where humidity is predicted to increase. Dark colouration may be also indirectly selected by climate warming because genes involved in the production of melanin pigments confer resistance to a number of stressful factors including those associated with climate warming. Furthermore, darker melanic individuals are commonly more aggressive than paler conspecifics, and hence they may better cope with competitive interactions due to invading species that expand their range in northern latitudes and at higher altitudes. To conclude, melanin may be a major component involved in adaptation to climate warming, and hence in animal populations melanin‐based colouration is likely to change as an evolutionary or plastic response to climate warming.  相似文献   

16.
The phylogenetic relationships among populations of seaperch, Helicolenus spp., in the south-west Pacific were examined with mtDNA markers. Parts of the cytochrome b gene [459 base pair (bp)] and the control region (448 bp) were sequenced in 58 specimens from the south-west Pacific and four specimens of Helicolenus lengerichi from Chile. Only one clade was recognized in New Zealand coastal waters, despite a wide range of colour morphs. This clade also occurred in the mid Tasman Sea on the Norfolk Ridge and around Tasmania and Victoria. A second sympatric clade was identified around Tasmania and Victoria and to the west of New Zealand. A third allopatric clade was identified to the north of New Zealand and in deep water on the Chatham Rise and a fourth clade on the Foundation Seamounts and the Louisville Ridge. Helicolenus lengerichi from Chile formed a fifth clade. Assuming a molecular clock, the clades were estimated to have diverged c. 0·7–2·6 million years ago. Only two clades, around Tasmania and Victoria, were separated using morphology, colour (in live) and dorsal-fin soft ray counts and were confirmed as Helicolenus percoides and Helicolenus barathri . Two characters, orbit diameter and colour variation, previously used to identify two species in New Zealand waters were unreliable characters for species discrimination. Principle component analyses of 11 morphological measures from 67 individuals did not delineate the clades. A canonical discriminant analysis was able to separate four of the five clades, but mean discriminate probabilities were low (77·6%), except for the five Chilean specimens of H. lengerichi (100%).  相似文献   

17.
The icefish Cryodraco antarcticus is common in deeper waters of the southern Scotia Arc and the high-Antarctic zone. A number of biological features of this species are presented, with new information collected from recent scientific surveys of the South Shetland Islands and South Orkney Islands. The species is closely related to Chaenocephalus aceratus, but can be distinguished by a number of meristic characters. The two species are similar in size, colouration and body shape, and have a number of aspects of their life-cycle in common, such as reproduction, length-weight relationship and diet. These two species appear to occupy a very similar niche in the southern Scotia Arc ecosystem. However, Cryodraco antarcticus is less abundant and uses different spatial components of shelf areas, replacing Chaenocephalus aceratus in deeper water and high-Antarctic regions.  相似文献   

18.
While shallow water red coral populations have been overharvested in the past, nowadays, commercial harvesting shifted its pressure on mesophotic organisms. An understanding of red coral population structure, particularly larval dispersal patterns and connectivity among harvested populations is paramount to the viability of the species. In order to determine patterns of genetic spatial structuring of deep water Corallium rubrum populations, for the first time, colonies found between 58–118 m depth within the Tyrrhenian Sea were collected and analyzed. Ten microsatellite loci and two regions of mitochondrial DNA (mtMSH and mtC) were used to quantify patterns of genetic diversity within populations and to define population structuring at spatial scales from tens of metres to hundreds of kilometres. Microsatellites showed heterozygote deficiencies in all populations. Significant levels of genetic differentiation were observed at all investigated spatial scales, suggesting that populations are likely to be isolated. This differentiation may by the results of biological interactions, occurring within a small spatial scale and/or abiotic factors acting at a larger scale. Mitochondrial markers revealed significant genetic structuring at spatial scales greater then 100 km showing the occurrence of a barrier to gene flow between northern and southern Tyrrhenian populations. These findings provide support for the establishment of marine protected areas in the deep sea and off-shore reefs, in order to effectively maintain genetic diversity of mesophotic red coral populations.  相似文献   

19.
In epidermal cells of Dysdercus species, two types of pigment granules were detected using both light and electron microscopic methods; the granules differed in colour, size, distribution and osmiophily. Red (D. intermedius) and yellow (D. nigrofasciatus) epidermal cells contained both types of granules, but in white cells only one type was present. Chromatographic analyses showed that the larger granules were more transparent to electrons, and contained uric acid, while the smaller ones contained erythropterin, became coloured later, and were osmiophilic. In accordance with these findings, in the testes of D. intermedius both granule types were present, but in the testes of D. nigrofasciatus only those containing erythropterin. The number of granules per cell varied with the species and developmental stage. Epidermal cells of D. intermedius contained more erythropterin granules than those of D. nigrofasciatus, the reverse occurring in the testes. This pattern corresponded to the visible colouration of the insects. As the development progressed, a decrease of the red and an increase of the white granules took place in the coloured epidermal cells. The main amount of pteridines, except isoxanthopterin, was accumulated in the integument of the insects studied. Chemical and histological data showed the influence of pterins on insect colouration. Orange, yellow and red colours were caused by different amounts of erythropterin containing special granules in the epidermal cells, and the white colour only by uric acid containing granules. A partial melanization of the cuticle resulted in dark spots below which pteridines were deposited additionally in the epidermal cells. Considering erythropterin, the quantitative chemical data are in accordance with the histological ones and also with the colouration externally visible. Intensively red coloured stages had a higher concentration of erythropterin and more corresponding granules than the light-red coloured ones; the lowest amount was found in yellow coloured insects. Therefore, the pigmentation effect of erythropterin, which reached from yellow to orange and red, depended on its concentration and played the most important role in the colouration of the Dysdercus species studied, uric acid was responsible for the colouration of the white parts of the integument.  相似文献   

20.
Molecular genetic analyses present powerful tools for elucidating demographic and biogeographic histories of taxa. Here we present genetic evidence showing a dynamic history for two cryptic lineages within Eudyptula, the world''s smallest penguin. Specifically, we use a suite of genetic markers to reveal that two congeneric taxa (''Australia'' and ''New Zealand'') co-occur in southern New Zealand, with only low levels of hybridization. Coalescent modelling suggests that the Australian little penguin only recently expanded into southern New Zealand. Analyses conducted under time-dependent molecular evolutionary rates lend support to the hypothesis of recent anthropogenic turnover, consistent with shifts detected in several other New Zealand coastal vertebrate taxa. This apparent turnover event highlights the dynamic nature of the region’s coastal ecosystem.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号