首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C Fuhrer  J E Sugiyama  R G Taylor    Z W Hall 《The EMBO journal》1997,16(16):4951-4960
During synaptogenesis at the neuromuscular junction, a neurally released factor, agrin, causes the clustering of acetylcholine receptors (AChRs) in the muscle membrane beneath the nerve terminal. Agrin acts through a specific receptor which is thought to have a receptor tyrosine kinase, MuSK, as one of its components. In agrin-treated muscle cells, both MuSK and the AChR become tyrosine phosphorylated. To determine how the activation of MuSK leads to AChR clustering, we have investigated their interaction in cultured C2 myotubes. Immunoprecipitation experiments showed that MuSK is associated with the AChR and that this association is increased by agrin treatment. Agrin also caused a transient activation of the AChR-associated MuSK, as demonstrated by MuSK phosphorylation. In agrin-treated myotubes, MuSK phosphorylation increased with the same time course as phosphorylation of the beta subunit of the AChR, but declined more quickly. Although both herbimycin and staurosporine blocked agrin-induced AChR phosphorylation, only herbimycin inhibited the phosphorylation of MuSK. These results suggest that although agrin increases the amount of activated MuSK that is associated with the AChR, MuSK is not directly responsible for AChR phosphorylation but acts through other kinases.  相似文献   

2.
We have investigated the role of acetylcholine receptors (AChRs) in an early step of postsynaptic assembly at the neuromuscular synapse, the clustering of postsynaptic proteins induced by nerve-released agrin. To achieve this, we used two variants of C2 myotubes virtually lacking AChRs and C2 cells in which surface AChRs were down-regulated by AChR antibodies. In all cases, agrin caused normal clustering of the agrin receptor component MuSK, alpha-dystrobrevin and utrophin, but failed to aggregate AChRs, alpha- and beta-dystroglycan, syntrophin isoforms and rapsyn, an AChR-anchoring protein necessary for postsynaptic assembly and AChR clustering. In C2 variants, the stability of rapsyn was decreased, whereas in antibody-treated cells, rapsyn efficiently co-localized with remaining AChRs in microaggregates. Upon ectopic injection into myofibers in vivo, rapsyn did not form clusters in the absence of AChRs. These results show that AChRs and rapsyn are interdependent components of a pre-assembled protein complex that is required for agrin-induced clustering of a full set of postsynaptic proteins, thus providing evidence for an active role of AChRs in postsynaptic assembly.  相似文献   

3.
During neuromuscular synaptogenesis, neurally released agrin induces aggregation and tyrosine phosphorylation of acetylcholine receptors (AChRs) by acting through both the receptor tyrosine kinase MuSK (muscle-specific kinase) and the AChR-associated protein, rapsyn. To elucidate this signaling mechanism, we examined tyrosine phosphorylation of AChR-associated proteins, particularly addressing whether agrin activates Src family kinases bound to the AChR. In C2 myotubes, agrin induced tyrosine phosphorylation of these kinases, of AChR-bound MuSK, and of the AChR beta and delta subunits, as observed in phosphotyrosine immunoblotting experiments. Kinase assays revealed that the activity of AChR-associated Src kinases was increased by agrin, whereas phosphorylation of the total cellular kinase pool was unaffected. In both rapsyn-deficient myotubes and staurosporine-treated C2 myotubes, where AChRs are not clustered, agrin activated MuSK but did not cause either Src family or AChR phosphorylation. In S27 mutant myotubes, which fail to aggregate AChRs, no agrin-induced phosphorylation of AChR-bound Src kinases, MuSK, or AChRs was observed. These results demonstrate first that agrin leads to phosphorylation and activation of AChR-associated Src-related kinases, which requires rapsyn, occurs downstream of MuSK, and causes AChR phosphorylation. Second, this activation intimately correlates with AChR clustering, suggesting that these kinases may play a role in agrin-induced AChR aggregation by forming an AChR-bound signaling cascade.  相似文献   

4.
Myasthenia gravis (MG) is an antibody-mediated autoimmune disease of the neuromuscular junction. In approximately 80% of patients, auto-antibodies to the muscle nicotinic acetylcholine receptor (AChR) are present. These antibodies cause loss of AChR numbers and function, and lead to failure of neuromuscular transmission with muscle weakness. The pathogenic mechanisms acting in the 20% of patients with generalized MG who are seronegative for AChR-antibodies (AChR-Ab) have not been elucidated, but there is evidence that they also have an antibody-mediated disorder, with the antibodies directed towards another, previously unidentified muscle-surface-membrane target. Here we show that 70% of AChR-Ab-seronegative MG patients, but not AChR-Ab-seropositive MG patients, have serum auto-antibodies against the muscle-specific receptor tyrosine kinase, MuSK. MuSK mediates the agrin-induced clustering of AChRs during synapse formation, and is also expressed at the mature neuromuscular junction. The MuSK antibodies were specific for the extracellular domains of MuSK expressed in transfected COS7 cells and strongly inhibited MuSK function in cultured myotubes. Our results indicate the involvement of MuSK antibodies in the pathogenesis of AChR-Ab-seronegative MG, thus defining two immunologically distinct forms of the disease. Measurement of MuSK antibodies will substantially aid diagnosis and clinical management.  相似文献   

5.
Zhang B  Luo S  Wang Q  Suzuki T  Xiong WC  Mei L 《Neuron》2008,60(2):285-297
Neuromuscular junction (NMJ) formation requires agrin, a factor released from motoneurons, and MuSK, a transmembrane tyrosine kinase that is activated by agrin. However, how signal is transduced from agrin to MuSK remains unclear. We report that LRP4, a low-density lipoprotein receptor (LDLR)-related protein, is expressed specifically in myotubes and binds to neuronal agrin. Its expression enables agrin binding and MuSK signaling in cells that otherwise do not respond to agrin. Suppression of LRP4 expression in muscle cells attenuates agrin binding, agrin-induced MuSK tyrosine phosphorylation, and AChR clustering. LRP4 also forms a complex with MuSK in a manner that is stimulated by agrin. Finally, we showed that LRP4 becomes tyrosine-phosphorylated in agrin-stimulated muscle cells. These observations indicate that LRP4 is a coreceptor of agrin that is necessary for MuSK signaling and AChR clustering and identify a potential target protein whose mutation and/or autoimmunization may cause muscular dystrophies.  相似文献   

6.
Agrin triggers signaling mechanisms of high temporal and spatial specificity to achieve phosphorylation, clustering, and stabilization of postsynaptic acetylcholine receptors (AChRs). Agrin transiently activates the kinase MuSK; MuSK activation has largely vanished when AChR clusters appear. Thus, a tyrosine kinase cascade acts downstream from MuSK, as illustrated by the agrin-evoked long-lasting activation of Src family kinases (SFKs) and their requirement for AChR cluster stabilization. We have investigated this cascade and report that pharmacological inhibition of SFKs reduces early but not later agrin-induced phosphorylation of MuSK and AChRs, while inhibition of Abl kinases reduces late phosphorylation. Interestingly, SFK inhibition applied selectively during agrin-induced AChR cluster formation caused rapid cluster dispersal later upon agrin withdrawal. We also report that a single 5-min agrin pulse, followed by extensive washing, triggered long-lasting MuSK and AChR phosphorylation and efficient AChR clustering. Following the pulse, MuSK phosphorylation increased and, beyond a certain level, caused maximal clustering. These data reveal novel temporal aspects of tyrosine kinase action in agrin signaling. First, during AChR cluster formation, SFKs initiate early phosphorylation and an AChR stabilization program that acts much later. Second, a kinase mechanism rapidly activated by agrin acts thereafter autonomously in agrin's absence to further increase MuSK phosphorylation and cluster AChRs.  相似文献   

7.
The formation of the neuromuscular junction (NMJ) is regulated by the nerve-derived heparan sulfate proteoglycan agrin and the muscle-specific kinase MuSK. Agrin induces a signal transduction pathway via MuSK, which promotes the reorganization of the postsynaptic muscle membrane. Activation of MuSK leads to the phosphorylation and redistribution of acetylcholine receptors (AChRs) and other postsynaptic proteins to synaptic sites. The accumulation of high densities of AChRs at postsynaptic regions represents a hallmark of NMJ formation and is required for proper NMJ function. Here we show that phosphoinositide 3-kinase (PI3-K) represents a component of the agrin/MuSK signaling pathway. Muscle cells treated with specific PI3-K inhibitors are unable to form full-size AChR clusters in response to agrin and AChR phosphorylation is reduced. Moreover, agrin-induced activation of Rac and Cdc42 is impaired in the presence of PI3-K inhibitors. PI3-K is localized to the postsynaptic muscle membrane consistent with a role during agrin/MuSK signaling. These results put PI3-K downstream of MuSK as regulator of AChR phosphorylation and clustering. Its role during agrin-stimulated Rac and Cdc42 activation suggests a critical function during cytoskeletal reorganizations, which lead to the redistribution of actin-anchored AChRs.  相似文献   

8.
The high local concentration of acetylcholine receptors (AChRs) at the vertebrate neuromuscular junction results from their aggregation by the agrin/MuSK signaling pathway and their synthetic up-regulation by the neuregulin/ErbB pathway. Here, we show a novel role for the neuregulin/ErbB pathway, the inhibition of AChR aggregation on the muscle surface. Treatment of C2C12 myotubes with the neuregulin epidermal growth factor domain decreased the number of both spontaneous and agrin-induced AChR clusters, in part by increasing the rate of cluster disassembly. Upon cluster disassembly, AChRs were internalized into caveolae (as identified by caveolin-3). Time-lapse microscopy revealed that individual AChR clusters fragmented into puncta, and application of neuregulin accelerated the rate at which AChR clusters decreased in area without affecting the density of AChRs remaining in individual clusters (as measured by the fluorescence intensity/unit area). We propose that this novel action of neuregulin regulates synaptic competition at the developing neuromuscular junction.  相似文献   

9.
During the development of the neuromuscular junction, motor axons induce the clustering of acetylcholine receptors (AChRs) and increase their metabolic stability in the muscle membrane. Here, we asked whether the synaptic organizer agrin might regulate the metabolic stability and density of AChRs by promoting the recycling of internalized AChRs, which would otherwise be destined for degradation, into synaptic sites. We show that at nerve-free AChR clusters induced by agrin in extrasynaptic membrane, internalized AChRs are driven back into the ectopic synaptic clusters where they intermingle with pre-existing and new receptors. The extent of AChR recycling depended on the strength of the agrin stimulus, but not on the development of junctional folds, another hallmark of mature postsynaptic membranes. In chronically denervated muscles, in which both AChR stability and recycling are significantly decreased by muscle inactivity, agrin maintained the amount of recycled AChRs at agrin-induced clusters at a level similar to that at denervated original endplates. In contrast, AChRs did not recycle at agrin-induced clusters in C2C12 or primary myotubes. Thus, in muscles in vivo, but not in cultured myotubes, neural agrin promotes the recycling of AChRs and thereby increases their metabolic stability.  相似文献   

10.
Emerging concepts of membrane organization point to the compartmentalization of the plasma membrane into distinct lipid microdomains. This lateral segregation within cellular membranes is based on cholesterol-sphingolipid-enriched microdomains or lipid rafts which can move laterally and assemble into large-scale domains to create plasma membrane specialized cellular structures at specific cell locations. Such domains are likely involved in the genesis of the postsynaptic specialization at the neuromuscular junction, which requires the accumulation of acetylcholine receptors (AChRs), through activation of the muscle specific kinase MuSK by the neurotropic factor agrin and the reorganization of the actin cytoskeleton. We used C2C12 myotubes as a model system to investigate whether agrin-elicited AChR clustering correlated with lipid rafts. In a previous study, using two-photon Laurdan confocal imaging, we showed that agrin-induced AChR clusters corresponded to condensed membrane domains: the biophysical hallmark of lipid rafts [F. Stetzkowski-Marden, K. Gaus, M. Recouvreur, A. Cartaud, J. Cartaud, Agrin elicits membrane condensation at sites of acetylcholine receptor clusters in C2C12 myotubes, J. Lipid Res. 47 (2006) 2121-2133]. We further demonstrated that formation and stability of AChR clusters depend on cholesterol. We also reported that three different extraction procedures (Triton X-100, pH 11 or isotonic Ca++, Mg++ buffer) generated detergent resistant membranes (DRMs) with similar cholesterol/GM1 ganglioside content, which are enriched in several signalling postsynaptic components, notably AChR, the agrin receptor MuSK, rapsyn and syntrophin. Upon agrin engagement, actin and actin-nucleation factors such as Arp2/3 and N-WASP were transiently recovered within raft fractions suggesting that the activation by agrin can trigger actin polymerization. Taken together, the present data suggest that AChR clustering at the neuromuscular junction relies upon a mechanism of raft coalescence driven by agrin-elicited actin polymerization.  相似文献   

11.
The clustering of acetylcholine receptors (AChRs) in skeletal muscle fibers is a critical event in neuromuscular synaptogenesis. AChRs in concert with other molecules form postsynaptic scaffolds in response to agrin released from motor neurons as motor neurons near skeletal muscle fibers in development. Agrin drives an intracellular signaling pathway that precedes AChR clustering and includes the tyrosine phosphorylation of AChRs. In C2C12 myotube culture, agrin application stimulates the agrin signaling pathway and AChR clustering. Previous studies have determined that the frequency of spontaneous AChR clustering is decreased and AChRs are partially inactivated when bound by the acetylcholine agonist nicotine. We hypothesized that nicotine interferes with AChR clustering and consequent postsynaptic scaffold formation. In the present study, C2C12 myoblasts were cultured with growth medium to stimulate proliferation and then differentiation medium to stimulate fusion into myotubes. They were bathed in a physiologically relevant concentration of nicotine and then subject to agrin treatment after myotube formation. Our results demonstrate that nicotine decreases agrin-induced tyrosine phosphorylation of AChRs and decreases the frequency of spontaneous as well as agrin-induced AChR clustering. We conclude that nicotine interferes with postsynaptic scaffold formation by preventing the tyrosine phosphorylation of AChRs, an agrin signaling event that precedes AChR clustering.  相似文献   

12.
The formation of the neuromuscular junction is characterized by the progressive accumulation of nicotinic acetylcholine receptors (AChRs) in the postsynaptic membrane facing the nerve terminal, induced predominantly through the agrin/muscle-specific kinase (MuSK) signaling cascade. However, the cellular mechanisms linking MuSK activation to AChR clustering are still poorly understood. Here, we investigate whether lipid rafts are involved in agrin-elicited AChR clustering in a mouse C2C12 cell line. We observed that in C2C12 myotubes, both AChR clustering and cluster stability were dependent on cholesterol, because depletion by methyl-beta-cyclodextrin inhibited cluster formation or dispersed established clusters. Importantly, AChR clusters resided in ordered membrane domains, a biophysical property of rafts, as probed by Laurdan two-photon fluorescence microscopy. We isolated detergent-resistant membranes (DRMs) by three different biochemical procedures, all of which generate membranes with similar cholesterol/GM1 ganglioside contents, and these were enriched in several postsynaptic components, notably AChR, syntrophin, and raft markers flotillin-2 and caveolin-3. Agrin did not recruit AChRs into DRMs, suggesting that they are present in rafts independently of agrin activation. Consequently, in C2C12 myotubes, agrin likely triggers AChR clustering or maintains clusters through the coalescence of lipid rafts. These data led us to propose a model in which lipid rafts play a pivotal role in the assembly of the postsynaptic membrane at the neuromuscular junction upon agrin signaling.  相似文献   

13.
Wang Q  Zhang B  Wang YE  Xiong WC  Mei L 《Neuro-Signals》2008,16(2-3):246-253
The neuromuscular junction, the synapse between motor neurons and muscle cells, serves as an excellent model for studying synapse formation. Agrin is believed to be released by motor neurons to induce postsynaptic differentiation at the neuromuscular junction. MuSK, a receptor tyrosine kinase, appears to be a key component of the agrin receptor complex. However, how agrin activates MuSK remains unclear. To address this question, we characterized the binding of the MuSK extracellular region to the muscle cell surface. The MuSK ectodomain was found to bind to muscle cells in a manner dependent on stimulation with neural agrin. Moreover, the binding was myotube specific and appeared to be mediated by two regions in the MuSK: one region containing the first and second immunoglobin domains and the other containing the cysteine-rich domain. Importantly, recombinant proteins containing the binding activity can block full-length MuSK binding to muscle cells and agrin-induced AChR clustering. These results suggest that the Ig1/2 domain of MuSK is involved in AChR clustering by binding to the muscle surface.  相似文献   

14.
15.
At the vertebrate neuromuscular junction (NMJ), postsynaptic aggregation of muscle acetylcholine receptors (AChRs) depends on the activation of MuSK, a muscle-specific tyrosine kinase that is stimulated by neural agrin and regulated by muscle-intrinsic tyrosine kinases and phosphatases. We recently reported that Shp2, a tyrosine phosphatase containing src homology two domains, suppressed MuSK-dependent AChR clustering in cultured myotubes, but how this effect of Shp2 is controlled has remained unclear. In this study, biochemical assays showed that agrin-treatment of C2 mouse myotubes enhanced the tyrosine phosphorylation of signal regulatory protein alpha1 (SIRPalpha1), a known activator of Shp2, and promoted SIRPalpha1's interaction with Shp2. Moreover, in situ experiments revealed that treatment of myotubes with the Shp2-selective inhibitor NSC-87877 increased spontaneous and agrin-induced AChR clustering, and that AChR clustering was also enhanced in myotubes ectopically expressing inactive (dominant-negative) Shp2; in contrast, AChR clustering was reduced in myotubes expressing constitutively active Shp2. Significantly, expression of truncated (nonShp2-binding) and full-length (Shp2-binding) forms of SIRPalpha1 in myotubes also increased and decreased AChR clustering, respectively, and coexpression of truncated SIRPalpha1 with active Shp2 and full-length SIRPalpha1 with inactive Shp2 reversed the actions of the exogenous Shp2 proteins on AChR clustering. These results suggest that SIRPalpha1 is a novel downstream target of MuSK that activates Shp2, which, in turn, suppresses AChR clustering. We propose that an inhibitory loop involving both tyrosine kinases and phosphatases sets the level of agrin/MuSK signaling and constrains it spatially to help generate high-density AChR clusters selectively at NMJs.  相似文献   

16.
Agrin activation of muscle specific kinase (MuSK) initiates postsynaptic development on skeletal muscle that includes the aggregation of acetylcholine receptors (AChRs; Glass et al. [1996]: Cell 85: 513-523; Gautam et al. [1996]: Cell 85: 525-535). Although the agrin/MuSK signaling pathway remains largely unknown, changes in intracellular calcium levels are required for agrin-induced AChR aggregation (Megeath and Fallon [1998]: J Neurosci 18: 672-678). Here, we show that L-type calcium channels (L-CaChs) are required for full agrin-induced aggregation of AChRs and sufficient to induce agrin-independent AChR aggregation. Blockade of L-CaChs in muscle cultures inhibited agrin-induced AChR aggregation but not tyrosine phosphorylation of MuSK or AChR beta subunits. Activation of L-CaChs in the absence of agrin induced AChR aggregation but not tyrosine phosphorylation of MuSK or AChR beta subunits. Agrin responsiveness was significantly reduced in primary muscle cultures from the muscular dysgenesis mouse, a natural mutant, which does not express the L-CaCh. Our results establish a novel role for L-CaChs as important sources of the intracellular calcium necessary for the aggregation of AChRs.  相似文献   

17.
Clustering of acetylcholine receptors (AChRs) is a critical step in neuromuscular synaptogenesis, and is induced by agrin and laminin which are thought to act through different signaling mechanisms. We addressed whether laminin redistributes postsynaptic proteins and requires key elements of the agrin signaling pathway to cause AChR aggregation. In myotubes, laminin-1 rearranged dystroglycans and syntrophins into a laminin-like network, whereas inducing AChR-containing clusters of dystrobrevin, utrophin, and, to a marginal degree, MuSK. Laminin-1 also caused extensive coclustering of rapsyn and phosphotyrosine with AChRs, but none of these clusters were observed in rapsyn -/- myotubes. In parallel with clustering, laminin-1 induced tyrosine phosphorylation of AChR beta and delta subunits. Staurosporine and herbimycin, inhibitors of tyrosine kinases, prevented laminin-induced AChR phosphorylation and AChR and phosphotyrosine clustering, and caused rapid dispersal of clusters previously induced by laminin-1. Finally, laminin-1 caused normal aggregation of AChRs and phosphotyrosine in myotubes lacking both Src and Fyn kinases, but these clusters dispersed rapidly after laminin withdrawal. Thus, laminin-1 redistributes postsynaptic proteins and, like agrin, requires tyrosine kinases for AChR phosphorylation and clustering, and rapsyn for AChR cluster formation, whereas cluster stabilization depends on Src and Fyn. Therefore, the laminin and agrin signaling pathways overlap intracellularly, which may be important for neuromuscular synapse formation.  相似文献   

18.
Acetylcholine receptor (AChR) clustering is an early event in neuromuscular synapse formation that is commonly studied using muscle cell culture. Motor neuron-derived agrin induces the postsynaptic tyrosine phosphorylation of both a muscle-specific kinase (MuSK) and the AChR beta-subunit. These phosphorylation events are required for AChR clustering, suggesting an agrin-driven signaling pathway. Both the phosphorylation events and AChR clustering can also be induced by neuraminidase, an enzyme that cleaves sialic acid from glycoconjugates, suggesting that neuraminidase is able to activate the agrin signaling pathway. A postulated signal for postsynaptic differentiation at sites of nerve-muscle contact during vertebrate development is the enzymatic removal of basal lamina components. We show here that bath-applied sialic acid has an effect directly opposite that of agrin or neuraminidase. Sialic acid not only decreases AChR clustering but also diminishes the tyrosine phosphorylation of MuSK and the AChR beta-subunit signal-transduction events normally driven by agrin. However, sialic acid does not prevent agrin-binding molecules from colocalizing with the decreased number of AChR clusters that do form, suggesting that sialic acid is acting to inhibit the agrin signaling pathway downstream of agrin binding to the muscle cell membrane. We propose a regulatory role for sialic acid in the signal transduction events of neuromuscular synapse formation, in which agrin or neuraminidase can overcome this sialic acid repression, resulting in the clustering of AChRs and other postsynaptic molecules.  相似文献   

19.
Madhavan R  Peng HB 《IUBMB life》2005,57(11):719-730
The neuromuscular junction (NMJ) is a synapse that develops between a motor neuron and a muscle fiber. A defining feature of NMJ development in vertebrates is the re-distribution of muscle acetylcholine (ACh) receptors (AChRs) following innervation, which generates high-density AChR clusters at the postsynaptic membrane and disperses aneural AChR clusters formed in muscle before innervation. This process in vivo requires MuSK, a muscle-specific receptor tyrosine kinase that triggers AChR re-distribution when activated; rapsyn, a muscle protein that binds and clusters AChRs; agrin, a nerve-secreted heparan-sulfate proteoglycan that activates MuSK; and ACh, a neurotransmitter that stimulates muscle and also disperses aneural AChR clusters. Moreover, in cultured muscle cells, several additional muscle- and nerve-derived molecules induce, mediate or participate in AChR clustering and dispersal. In this review we discuss how regulation of AChR re-distribution by multiple factors ensures aggregation of AChRs exclusively at NMJs.  相似文献   

20.
Agrin activates an intracellular signaling pathway to induce the formation of postsynaptic specializations on muscle fibers. In myotubes in culture, this pathway has been shown to include autophosphorylation of the muscle-specific kinase MuSK, activation of Src-family kinases, tyrosine phosphorylation of the acetylcholine receptor (AChR) beta subunit, a decrease in receptor detergent extractability, and the accumulation of AChRs into high-density aggregates. Here we report that treating chick myotubes with lithium prevented any detectable agrin-induced change in AChR distribution without affecting the number of AChRs or the agrin-induced change in AChR tyrosine phosphorylation and detergent extractability. Lithium treatment also increased the rate at which AChR aggregates disappeared when agrin was removed. The effects of lithium developed slowly over the course of approximately 12 h. Thus, sensitivity to lithium identifies a late step in the agrin signaling pathway, after agrin-induced MuSK and AChR phosphorylation, that is necessary for the recruitment of AChRs into visible aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号