首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Demands on the resources of the deep-sea have increased in recent years. Consequently, the need to create and implement a comprehensive network of Marine Protected Areas (MPAs) to help manage and protect these resources has become a global political priority. Efforts are currently underway to implement MPA networks in the deep North East Atlantic. To ensure these networks are effective, it is essential that baseline information be available to inform the conservation planning process. Using empirical data, we calculated conservation targets for sessile benthic invertebrates in the deep North East Atlantic for consideration during the planning process. We assessed Species-Area Relationships across two depth bands (200–1100 m and 1100–1800 m) and nine substrata. Conservation targets were predicted for each substratum within each depth band using z-values obtained from fitting a power model to the Species-Area Relationships of observed and estimated species richness (Chao1). Results suggest an MPA network incorporating 10% of the North East Atlantic’s deep-sea area would protect approximately 58% and 49% of sessile benthic species for the depth bands 200–1100 m and 1100–1800 m, respectively. Species richness was shown to vary with substratum type indicating that, along with depth, substratum information needs to be incorporated into the conservation planning process to ensure the most effective MPA network is implemented in the deep North East Atlantic.  相似文献   

2.
Heightened interest in the exploitation of deep seafloor minerals is raising questions on the consequences for the resident fauna. Assessing species ranges and determination of processes underlying current species distributions are prerequisites to conservation planning and predicting faunal responses to changing environmental conditions. The abyssal central Pacific nodule belt, located between the Clarion and Clipperton Fracture Zones (CCZ), is an area prospected for mining of polymetallic nodules. We examined variations in genetic diversity and broad-scale connectivity of isopods and polychaetes across the CCZ. Faunal assemblages were studied from two mining claims (the eastern German and French license areas) located 1300 km apart and influenced by different productivity regimes. Using a reverse taxonomy approach based on DNA barcoding, we tested to what extent distance and large-scale changes in environmental parameters lead to differentiation in two macrofaunal taxa exhibiting different functions and life-history patterns. A fragment of the mitochondrial gene Cytochrome Oxidase Subunit 1 (COI) was analyzed. At a 97% threshold the molecular operational taxonomic units (MOTUs) corresponded well to morphological species. Molecular analyses indicated high local and regional diversity mostly because of large numbers of singletons in the samples. Consequently, variation in composition of genotypic clusters between sites was exceedingly large partly due to paucity of deep-sea sampling and faunal patchiness. A higher proportion of wide-ranging species in polychaetes was contrasted with mostly restricted distributions in isopods. Remarkably, several cryptic lineages appeared to be sympatric and occurred in taxa with putatively good dispersal abilities, whereas some brooding lineages revealed broad distributions across the CCZ. Geographic distance could explain variation in faunal connectivity between regions and sites to some extent, while assumed dispersal capabilities were not as important.  相似文献   

3.
Locally-established marine protected areas (MPAs) have been proven to achieve local-scale fisheries and conservation objectives. However, since many of these MPAs were not designed to form ecologically-connected networks, their contributions to broader-scale goals such as complementarity and connectivity can be limited. In contrast, integrated networks of MPAs designed with systematic conservation planning are assumed to be more effective—ecologically, socially, and economically—than collections of locally-established MPAs. There is, however, little empirical evidence that clearly demonstrates the supposed advantages of systematic MPA networks. A key reason is the poor record of implementation of systematic plans attributable to lack of local buy-in. An intermediate scenario for the expansion of MPAs is scaling up of local decisions, whereby locally-driven MPA initiatives are coordinated through collaborative partnerships among local governments and their communities. Coordination has the potential to extend the benefits of individual MPAs and perhaps to approach the potential benefits offered by systematic MPA networks. We evaluated the benefits of scaling up local MPAs to form networks by simulating seven expansion scenarios for MPAs in the Verde Island Passage, central Philippines. The scenarios were: uncoordinated community-based establishment of MPAs; two scenarios reflecting different levels of coordinated MPA expansion through collaborative partnerships; and four scenarios guided by systematic conservation planning with different contexts for governance. For each scenario, we measured benefits through time in terms of achievement of objectives for representation of marine habitats. We found that: in any governance context, systematic networks were more efficient than non-systematic ones; systematic networks were more efficient in broader governance contexts; and, contrary to expectations but with caveats, the uncoordinated scenario was slightly more efficient than the coordinated scenarios. Overall, however, coordinated MPA networks have the potential to be more efficient than the uncoordinated ones, especially when coordinated planning uses systematic methods.  相似文献   

4.

Aim

The abyssal Clarion-Clipperton Zone (CCZ), Pacific Ocean, is an area of commercial importance owing to the growing interest in mining high-grade polymetallic nodules at the seafloor for battery metals. Research into the spatial patterns of faunal diversity, composition, and population connectivity is needed to better understand the ecological impacts of potential resource extraction. Here, a DNA taxonomy approach is used to investigate regional-scale patterns of taxonomic and phylogenetic alpha and beta diversity, and genetic connectivity, of the dominant macrofaunal group (annelids) across a 6 million km2 region of the abyssal seafloor.

Location

The abyssal seafloor (3932–5055 m depth) of the Clarion-Clipperton Zone, equatorial Pacific Ocean.

Methods

We used a combination of new and published barcode data to study 1866 polychaete specimens using molecular species delimitation. Both phylogenetic and taxonomic alpha and beta diversity metrics were used to analyse spatial patterns of biodiversity. Connectivity analyses were based on haplotype distributions for a subset of the studied taxa.

Results

DNA taxonomy identified 291–314 polychaete species from the COI and 16S datasets respectively. Taxonomic and phylogenetic beta diversity between sites were relatively high and mostly explained by lineage turnover. Over half of pairwise comparisons were more phylogenetically distinct than expected based on their taxonomic diversity. Connectivity analyses in abundant, broadly distributed taxa suggest an absence of genetic structuring driven by geographical location.

Main Conclusions

Species diversity in abyssal Pacific polychaetes is high relative to other deep-sea regions. Results suggest that environmental filtering, where the environment selects against certain species, may play a significant role in regulating spatial patterns of biodiversity in the CCZ. A core group of widespread species have diverse haplotypes but are well connected over broad distances. Our data suggest that the high environmental and faunal heterogeneity of the CCZ should be considered in future policy decisions.  相似文献   

5.
Anthropogenic disturbances such as fishing, mining, oil drilling, bioprospecting, warming, and acidification in the deep sea are increasing, yet generalities about deep-sea biogeography remain elusive. Owing to the lack of perceived environmental variability and geographical barriers, ranges of deep-sea species were traditionally assumed to be exceedingly large. In contrast, seamount and chemosynthetic habitats with reported high endemicity challenge the broad applicability of a single biogeographic paradigm for the deep sea. New research benefiting from higher resolution sampling, molecular methods and public databases can now more rigorously examine dispersal distances and species ranges on the vast ocean floor. Here, we explore the major outstanding questions in deep-sea biogeography. Based on current evidence, many taxa appear broadly distributed across the deep sea, a pattern replicated in both the abyssal plains and specialized environments such as hydrothermal vents. Cold waters may slow larval metabolism and development augmenting the great intrinsic ability for dispersal among many deep-sea species. Currents, environmental shifts, and topography can prove to be dispersal barriers but are often semipermeable. Evidence of historical events such as points of faunal origin and climatic fluctuations are also evident in contemporary biogeographic ranges. Continued synthetic analysis, database construction, theoretical advancement and field sampling will be required to further refine hypotheses regarding deep-sea biogeography.  相似文献   

6.
Continental boundary currents are projected to be altered under future scenarios of climate change. As these currents often influence dispersal and connectivity among populations of many marine organisms, changes to boundary currents may have dramatic implications for population persistence. Networks of marine protected areas (MPAs) often aim to maintain connectivity, but anticipation of the scale and extent of climatic impacts on connectivity are required to achieve this critical conservation goal in a future of climate change. For two key marine species (kelp and sea urchins), we use oceanographic modelling to predict how continental boundary currents are likely to change connectivity among a network of MPAs spanning over 1000 km of coastline off the coast of eastern Australia. Overall change in predicted connectivity among pairs of MPAs within the network did not change significantly over and above temporal variation within climatic scenarios, highlighting the need for future studies to incorporate temporal variation in dispersal to robustly anticipate likely change. However, the intricacies of connectivity between different pairs of MPAs were noteworthy. For kelp, poleward connectivity among pairs of MPAs tended to increase in the future, whereas equatorward connectivity tended to decrease. In contrast, for sea urchins, connectivity among pairs of MPAs generally decreased in both directions. Self‐seeding within higher‐latitude MPAs tended to increase, and the role of low‐latitude MPAs as a sink for urchins changed significantly in contrasting ways. These projected changes have the potential to alter important genetic parameters with implications for adaptation and ecosystem vulnerability to climate change. Considering such changes, in the context of managing and designing MPA networks, may ensure that conservation goals are achieved into the future.  相似文献   

7.
The barophilic deep-sea bacterium, isolate CNPT-3, was inactivated by exposures to temperatures between 10 and 32°C at atmospheric pressure. Inactivation in samples from warmed cell suspensions was measured as the loss of colonyforming ability (CFA) at 10°C and 587 bars. At atmospheric pressure, there was a slow loss of CFA even at 10°C. The loss of CFA was rapid above 20°C and only slightly affected by high pressures. The first-order rate constants for thermal inactivation fit the Arrhenius equation with an activation energy of 43 kcal (ca. 179.9 kJ)/mol. Light microscopy and scanning transmission electron microscopy revealed morphological changes due to warming of the cells. The changes ensued the loss of CFA. The results supported the hypothesis from an earlier work that indigenous (autochthonous) deep-sea bacteria from cold deep seas are both barophilic and psychrophilic. If ultimately sustained, these characteristics may be useful in designing experiments to assess the relative importance of the autochthonous and allochthonous bacteria in the deep sea. The data were used to evaluate how barophilic bacteria may have been missed in many investigations because of warming of the cells during sample retrieval from the sea or during cultivation in the laboratory. The evaluation revealed the need for temperature and pressure data during retrieval of samples and cultivation in the laboratory. Most deep-ocean microbiology may be possible with thermally insulated equipment for retrieval from the sea and with high-pressure vessels for laboratory incubations.  相似文献   

8.
Marine protected areas (MPAs) have gained attention as a conservation tool for enhancing ecosystem resilience to climate change. However, empirical evidence explicitly linking MPAs to enhanced ecological resilience is limited and mixed. To better understand whether MPAs can buffer climate impacts, we tested the resistance and recovery of marine communities to the 2014–2016 Northeast Pacific heatwave in the largest scientifically designed MPA network in the world off the coast of California, United States. The network consists of 124 MPAs (48 no-take state marine reserves, and 76 partial-take or special regulation conservation areas) implemented at different times, with full implementation completed in 2012. We compared fish, benthic invertebrate, and macroalgal community structure inside and outside of 13 no-take MPAs across rocky intertidal, kelp forest, shallow reef, and deep reef nearshore habitats in California's Central Coast region from 2007 to 2020. We also explored whether MPA features, including age, size, depth, proportion rock, historic fishing pressure, habitat diversity and richness, connectivity, and fish biomass response ratios (proxy for ecological performance), conferred climate resilience for kelp forest and rocky intertidal habitats spanning 28 MPAs across the full network. Ecological communities dramatically shifted due to the marine heatwave across all four nearshore habitats, and MPAs did not facilitate habitat-wide resistance or recovery. Only in protected rocky intertidal habitats did community structure significantly resist marine heatwave impacts. Community shifts were associated with a pronounced decline in the relative proportion of cold water species and an increase in warm water species. MPA features did not explain resistance or recovery to the marine heatwave. Collectively, our findings suggest that MPAs have limited ability to mitigate the impacts of marine heatwaves on community structure. Given that mechanisms of resilience to climate perturbations are complex, there is a clear need to expand assessments of ecosystem-wide consequences resulting from acute climate-driven perturbations, and the potential role of regulatory protection in mitigating community structure changes.  相似文献   

9.
Knowledge of the spatial scales of diversity is necessary to evaluate the mechanisms driving biodiversity and biogeography in the vast but poorly understood deep sea. The community structure of kinetoplastids, an important group of microbial eukaryotes belonging to the Euglenozoa, from all abyssal plains of the South Atlantic and two areas of the eastern Mediterranean was studied using partial small subunit ribosomal DNA gene clone libraries. A total of 1364 clones from 10 different regions were retrieved. The analysis revealed statistically not distinguishable communities from both the South-East Atlantic (Angola and Guinea Basin) and the South-West Atlantic (Angola and Brazil Basin) at spatial scales of 1000–3000 km, whereas all other communities were significantly differentiated from one another. It seems likely that multiple processes operate at the same time to shape communities of deep-sea kinetoplastids. Nevertheless, constant and homogenous environmental conditions over large spatial scales at abyssal depths, together with high dispersal capabilities of microbial eukaryotes, maintain best the results of statistically indistinguishable communities at larger spatial scales.  相似文献   

10.
Patterns of genetic connectivity are increasingly considered in the design of marine protected areas (MPAs) in both shallow and deep water. In the New Zealand Exclusive Economic Zone (EEZ), deep-sea communities at upper bathyal depths (<2000 m) are vulnerable to anthropogenic disturbance from fishing and potential mining operations. Currently, patterns of genetic connectivity among deep-sea populations throughout New Zealand’s EEZ are not well understood. Using the mitochondrial Cytochrome Oxidase I and 16S rRNA genes as genetic markers, this study aimed to elucidate patterns of genetic connectivity among populations of two common benthic invertebrates with contrasting life history strategies. Populations of the squat lobster Munida gracilis and the polychaete Hyalinoecia longibranchiata were sampled from continental slope, seamount, and offshore rise habitats on the Chatham Rise, Hikurangi Margin, and Challenger Plateau. For the polychaete, significant population structure was detected among distinct populations on the Chatham Rise, the Hikurangi Margin, and the Challenger Plateau. Significant genetic differences existed between slope and seamount populations on the Hikurangi Margin, as did evidence of population differentiation between the northeast and southwest parts of the Chatham Rise. In contrast, no significant population structure was detected across the study area for the squat lobster. Patterns of genetic connectivity in Hyalinoecia longibranchiata are likely influenced by a number of factors including current regimes that operate on varying spatial and temporal scales to produce potential barriers to dispersal. The striking difference in population structure between species can be attributed to differences in life history strategies. The results of this study are discussed in the context of existing conservation areas that are intended to manage anthropogenic threats to deep-sea benthic communities in the New Zealand region.  相似文献   

11.
To better understand the ecological significance of pressure effects on bacteria in the abyssobenthic boundary layer, experimental suspensions of sediments and sinking particulates were prepared from samples collected in boxcore and bottom-moored sediment traps at two stations (depth, 4,470 and 4,850m) in the Demerara abyssal plain off the coast of Brazil. Replicate samples were incubated shipboard at 3°C and at both atmospheric and deep-sea pressures (440 or 480 atm [4.46 × 104 or 4.86 × 104 kPa]) following the addition of [14C]glutamic acid (<10 μg liter−1) or yeast extract (0.025%) and the antibiotic nalidixic acid (0.002%). In seven of the eight samples supplemented with isotope, a barophilic microbial response was detected, i.e., substrate incorporation and respiration were greater under in situ pressure than at 1 atm (101.3 kPa). In the remaining sample, prepared from a sediment trap warmed to 24°C before recovery, pressure was observed to inhibit substrate utilization. Total bacterial counts by epifluorescence microscopy decreased with depth in each sediment core, as did utilization of glutamic acid. Significant percentages of the total bacterial populations in cold sediment trap samples (but not the prewarmed one or any boxcore sample) were abnormally enlarged and orange fluorescing after incubation with yeast extract and nalidixic acid under deep-sea conditions. Results indicated that in the deep sea, barophilic bacteria play a predominant role in the turnover of naturally low levels of glutamic acid, and the potential for intense microbial activity upon nutrient enrichment is more likely to occur in association with recently settled particulates, especially fecal pellets, than in buried sediments.  相似文献   

12.
Because of their slow growth rates, late maturity, low fecundity and long potential lifespans, deep-sea fishes are vulnerable to and theoretically slow to recover from overexploitation and bycatch. As industrial fishing moved into the deep sea, population declines were predicted and five species were shown to meet The World Conservation Union (IUCN) criteria for endangered species in Atlantic Canadian waters and two other deep-living species were listed as threatened by the Committee on the Status of Endangered Wildlife in Canada. We used data from scientific surveys to determine population trends in a 17-year time series for an additional 32 deep-sea fishes from the same geographic region. Eight species exhibited significant population declines, five increased, two were data deficient, and 17 showed no significant trends. Thus approximately 38% of the deep-sea bottom-living fishes in that well-investigated region could be at-risk, but definitive assignment to an IUCN category for most species is hampered by a lack of basic biological information, especially species specific generation times. Lack of biological information also limits efforts to determine possible recovery times, especially with respect to calculating intrinsic rates of population growth (r). For two Atlantic grenadiers (where r could be estimated using life-history parameters and standard life table techniques), the time to recovery with no fishing mortality could range from over a decade to over a century. This broad range results from the general uncertainty on life-history characteristics of these deep-sea species. Given the documented declines, the lack of basic data on life-history parameters, and the conservative assumption that recovery rates are likely to be prolonged, we argue that it is imperative to conduct additional studies pertaining to life history characteristics of deep-sea fishes and implement conservation measures in the deep sea immediately.  相似文献   

13.
Quasi-experimental impact evaluation approaches, which enable scholars to disentangle effects of conservation interventions from broader changes in the environment, are gaining momentum in the conservation sector. However, rigorous impact evaluation using statistical matching techniques to estimate the counterfactual have yet to be applied to marine protected areas (MPAs). While there are numerous studies investigating ‘impacts’ of MPAs that have generated considerable insights, results are variable. This variation has been linked to the biophysical and social context in which they are established, as well as attributes of management and governance. To inform decisions about MPA placement, design and implementation, we need to expand our understanding of conditions under which MPAs are likely to lead to positive outcomes by embracing advances in impact evaluation methodologies. Here, we describe the integration of impact evaluation within an MPA network monitoring programme in the Bird''s Head Seascape, Indonesia. Specifically we (i) highlight the challenges of implementation ‘on the ground’ and in marine ecosystems and (ii) describe the transformation of an existing monitoring programme into a design appropriate for impact evaluation. This study offers one potential model for mainstreaming impact evaluation in the conservation sector.  相似文献   

14.
Incorporating warming disturbances into the design of marine protected areas (MPAs) is fundamental to developing appropriate conservation actions that confer coral reef resilience. We propose an MPA design approach that includes spatially- and temporally-varying sea-surface temperature (SST) data, integrating both observed (1985–2009) and projected (2010–2099) time-series. We derived indices of acute (time under reduced ecosystem function following short-term events) and chronic thermal stress (rate of warming) and combined them to delineate thermal-stress regimes. Coral reefs located on the Brazilian coast were used as a case study because they are considered a conservation priority in the southwestern Atlantic Ocean. We show that all coral reef areas in Brazil have experienced and are projected to continue to experience chronic warming, while acute events are expected to increase in frequency and intensity. We formulated quantitative conservation objectives for regimes of thermal stress. Based on these objectives, we then evaluated if/how they are achieved in existing Brazilian MPAs and identified priority areas where additional protection would reinforce resilience. Our results show that, although the current system of MPAs incorporates locations within some of our thermal-stress regimes, historical and future thermal refugia along the central coast are completely unprotected. Our approach is applicable to other marine ecosystems and adds to previous marine planning for climate change in two ways: (i) by demonstrating how to spatially configure MPAs that meet conservation objectives for warming disturbance using spatially- and temporally-explicit data; and (ii) by strategically allocating different forms of spatial management (MPA types) intended to mitigate warming impacts and also enhance future resistance to climate warming.  相似文献   

15.
Dispersal plays an important role in the establishment and maintenance of biodiversity and, for most deep-sea benthic marine invertebrates, it occurs mainly during the larval stages. Therefore, the mode of reproduction (and thus dispersal ability) will affect greatly the biogeographic and bathymetric distributions of deep-sea organisms. We tested the hypothesis that, for bathyal and abyssal echinoderms and ascidians of the Atlantic Ocean, species with planktotrophic larval development have broader biogeographic and bathymetric ranges than species with lecithotrophic development. In comparing two groups with lecithotrophic development, we found that ascidians, which probably have a shorter larval period and therefore less dispersal potential, were present in fewer geographic regions than elasipod holothurians, which are likely to have longer larval periods. For asteroids and echinoids, both the geographic and bathymetric ranges were greater for lecithotrophic than for planktotrophic species. For these two classes, the relationships of egg diameter with geographic and bathymetric range were either linearly increasing or non-monotonic. We conclude that lecithotrophic development does not necessarily constrain dispersal in the deep sea, probably because species with planktotrophic development may be confined to regions of high detrital input from the sea surface. Our data suggest that more information is necessary on lengths of larval period for different species to accurately assess dispersal in the deep sea.  相似文献   

16.
深海钻探计划(DSDP)31航次296站晚新生代介形类   总被引:1,自引:0,他引:1  
本文研究了深海钻探(DSDP)31航次296站晚新生代介形类动物群的性质及其古海洋学意义.此站钻孔上部上新统至全新统以超微浮游生物软泥和粘土为主的16块岩芯中,共分析获得介形类化石8属11种,计有:Poseidonamicus major Benson, P. anteropunctatus Whatley et al., P. punctatus Whatley et al., Pennyella dorsoserrata (Brady), Henryhowella sp., Pterygocythere mucronalatum (Brady), Abyssocythere sp., Abyssocythereis sulcatoperforata (Brady), Pelecocythere sp., Krithe sp. 1和Krithe sp.2.这些介形类属种均为冷海域深海区介形类分子.由此表明,西北太平洋边缘地区在晚新生代曾为一深海区.在第四纪,其深度可能和现今296站的深度大致相当;在上新世,其深度可能更深一些.研究结果证实,深海底栖介形类属种的分布具全球性;在相当长的地质时期内,介形类属种的形态和壳饰都非常稳定,无明显变化.同时,进一步证实,介形类个体大小变化与深度相关,同一种介形类壳体随水域深度加深而增大.  相似文献   

17.
Few time series of deep-sea systems exist from which the factors affecting abyssal fish populations can be evaluated. Previous analysis showed an increase in grenadier abundance, in the eastern North Pacific, which lagged epibenthic megafaunal abundance, mostly echinoderms, by 9–20 months. Subsequent diet studies suggested that carrion is the grenadier''s most important food. Our goal was to evaluate if changes in carrion supply might drive the temporal changes in grenadier abundance. We analyzed a unique 17 year time series of abyssal grenadier abundance and size, collected at Station M (4100 m, 220 km offshore of Pt. Conception, California), and reaffirmed the increase in abundance and also showed an increase in mean size resulting in a ∼6 fold change in grenadier biomass. We compared this data with abundance estimates for surface living nekton (pacific hake and jack mackerel) eaten by the grenadiers as carrion. A significant positive correlation between Pacific hake (but not jack mackerel) and grenadiers was found. Hake seasonally migrate to the waters offshore of California to spawn. They are the most abundant nekton species in the region and the target of the largest commercial fishery off the west coast. The correlation to grenadier abundance was strongest when using hake abundance metrics from the area within 100 nmi of Station M. No significant correlation between grenadier abundance and hake biomass for the entire California current region was found. Given the results and grenadier longevity, migration is likely responsible for the results and the location of hake spawning probably is more important than the size of the spawning stock in understanding the dynamics of abyssal grenadier populations. Our results suggest that some abyssal fishes'' population dynamics are controlled by the flux of large particles of carrion. Climate and fishing pressures affecting epipelagic fish stocks could readily modulate deep-sea fish dynamics.  相似文献   

18.
The deep sea is one of the largest ecosystems on Earth and is home to a highly diverse fauna, with polychaetes, molluscs and peracarid crustaceans as dominant groups. A number of studies have proposed that this fauna did not survive the anoxic events that occurred during the Mesozoic Era. Accordingly, the modern fauna is thought to be relatively young, perhaps having colonized the deep sea after the Eocene/Oligocene boundary. To test this hypothesis, we performed phylogenetic analyses of nuclear ribosomal 18S and 28S and mitochondrial cytochrome oxidase I and 16S sequences from isopod crustaceans. Using a molecular clock calibrated with multiple isopod fossils, we estimated the timing of deep-sea colonization events by isopods. Our results show that some groups have an ancient origin in the deep sea, with the earliest estimated dates spanning 232–314 Myr ago. Therefore, anoxic events at the Permian–Triassic boundary and during the Mesozoic did not cause the extinction of all the deep-sea fauna; some species may have gone extinct while others survived and proliferated. The monophyly of the ‘munnopsid radiation’ within the isopods suggests that the ancestors of this group evolved in the deep sea and did not move to shallow-water refugia during anoxic events.  相似文献   

19.
Submarine canyons are dramatic and widespread topographic features crossing continental and island margins in all oceans. Canyons can be sites of enhanced organic-matter flux and deposition through entrainment of coastal detrital export, dense shelf-water cascade, channelling of resuspended particulate material and focusing of sediment deposition. Despite their unusual ecological characteristics and global distribution along oceanic continental margins, only scattered information is available about the influence of submarine canyons on deep-sea ecosystem structure and productivity. Here, we show that deep-sea canyons such as the Kaikoura Canyon on the eastern New Zealand margin (42°01′ S, 173°03′ E) can sustain enormous biomasses of infaunal megabenthic invertebrates over large areas. Our reported biomass values are 100-fold higher than those previously reported for deep-sea (non-chemosynthetic) habitats below 500 m in the ocean. We also present evidence from deep-sea-towed camera images that areas in the canyon that have the extraordinary benthic biomass also harbour high abundances of macrourid (rattail) fishes likely to be feeding on the macro- and megabenthos. Bottom-trawl catch data also indicate that the Kaikoura Canyon has dramatically higher abundances of benthic-feeding fishes than adjacent slopes. Our results demonstrate that the Kaikoura Canyon is one of the most productive habitats described so far in the deep sea. A new global inventory suggests there are at least 660 submarine canyons worldwide, approximately 100 of which could be biomass hotspots similar to the Kaikoura Canyon. The importance of such deep-sea canyons as potential hotspots of production and commercial fisheries yields merits substantial further study.  相似文献   

20.
As the number of marine protected areas (MPAs) increases globally, so does the need to assess if MPAs are meeting their management goals. Integral to this assessment is usually a long-term biological monitoring program, which can be difficult to develop for large and remote areas that have little available fine-scale habitat and biological data. This is the situation for many MPAs within the newly declared Australian Commonwealth Marine Reserve (CMR) network which covers approximately 3.1 million km2 of continental shelf, slope, and abyssal habitat, much of which is remote and difficult to access. A detailed inventory of the species, types of assemblages present and their spatial distribution within individual MPAs is required prior to developing monitoring programs to measure the impact of management strategies. Here we use a spatially-balanced survey design and non-extractive baited video observations to quantitatively document the fish assemblages within the continental shelf area (a multiple use zone, IUCN VI) of the Flinders Marine Reserve, within the Southeast marine region. We identified distinct demersal fish assemblages, quantified assemblage relationships with environmental gradients (primarily depth and habitat type), and described their spatial distribution across a variety of reef and sediment habitats. Baited videos recorded a range of species from multiple trophic levels, including species of commercial and recreational interest. The majority of species, whilst found commonly along the southern or south-eastern coasts of Australia, are endemic to Australia, highlighting the global significance of this region. Species richness was greater on habitats containing some reef and declined with increasing depth. The trophic breath of species in assemblages was also greater in shallow waters. We discuss the utility of our approach for establishing inventories when little prior knowledge is available and how such an approach may inform future monitoring efforts within the CMR network.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号