首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
5.
6.
Transposable elements (TEs) are DNA segments that can mediate or cause movement within genomes. We performed a comprehensive, whole-genome analysis of annotated TEs in rice (Oryza sativa L.) and Arabidopsis thaliana, focusing on their expression (mRNA data) and silencing (small RNA data), and we compared these data with annotated genes that are not annotated as transposons. TEs demonstrated higher levels of antisense mRNA expression in comparison to non-TE genes. The majority of the TEs were silenced, as demonstrated by higher levels of small RNAs and a lack of mRNA MPSS data. When TEs were expressed, their activity was usually limited to just one or a few of the mRNA libraries. When we examined TE expression at the whole-genome level and across the complete mRNA dataset, we observed that most activity was contributed by a few highly expressed transposable elements. These TEs were characterized by their low copy number and few matching small RNAs. Our results help define the relationship between gene expression and gene silencing for TEs, and indicate that TE silencing can impact neighboring genes, perhaps via a mechanism of heterochromatin formation and spreading. These data may be used to define active TEs and families of transposable elements that continue to shape plant genomes.  相似文献   

7.
Climate change is posing a major challenge to coffee production worldwide leading to a need for the development of coffee cultivars with increased drought tolerance. In several plant species, the use of DREB genes in crop improvement has achieved promising results to desiccation tolerance engineering. Recent studies reported CcDREB1D specific patterns of expression in Coffea canephora and functional evidence of this gene involvement in drought stress responses. However, knowledge on natural diversity of this gene is largely unknown. In this context, this study aimed at evaluating the sequence variability of the DREB1D gene in several Coffea genotypes. Nucleotide variation in promoters and coding regions of this gene were evaluated in a population consisting of 38 genotypes of C. canephora, C. arabica and C. eugenioides, most of them characterized by different phenotypes (tolerance vs. susceptibility) in relation to drought. The genetic diversity of the loci revealed different haplotypes for the promoter and coding regions. In particular, our findings suggest association between drought tolerance and the genetic variations on DREB1D promoter regions, but not with those from its corresponding coding regions. Gene expression studies revealed up-regulated expression of DREB1D gene upon drought mainly in leaves of drought-tolerant clones of C. canephora, and in response to drought, high, and low temperatures in leaves of C. arabica, suggesting a key role of this gene in coffee responses to abiotic stress.  相似文献   

8.
Transposable element (TE) mobilization is a constant threat to genome integrity. Eukaryotic organisms have evolved robust defensive mechanisms to suppress their activity, yet TEs can escape suppression and proliferate, creating strong selective pressure for host defense to adapt. This genomic conflict fuels a never-ending arms race that drives the rapid evolution of TEs and recurrent positive selection of genes involved in host defense; the latter has been shown to contribute to postzygotic hybrid incompatibility. However, how TE proliferation impacts genome and regulatory divergence remains poorly understood. Here, we report the highly complete and contiguous (N50 = 33.8–38.0 Mb) genome assemblies of seven closely related Drosophila species that belong to the nasuta species group—a poorly studied group of flies that radiated in the last 2 My. We constructed a high-quality de novo TE library and gathered germline RNA-seq data, which allowed us to comprehensively annotate and compare TE insertion patterns between the species, and infer the evolutionary forces controlling their spread. We find a strong negative association between TE insertion frequency and expression of genes nearby; this likely reflects survivor bias from reduced fitness impact of TEs inserting near lowly expressed, nonessential genes, with limited TE-induced epigenetic silencing. Phylogenetic analyses of insertions of 147 TE families reveal that 53% of them show recent amplification in at least one species. The most highly amplified TE is a nonautonomous DNA element (Drosophila INterspersed Element; DINE) which has gone through multiple bouts of expansions with thousands of full-length copies littered throughout each genome. Across all TEs, we find that TEs expansions are significantly associated with high expression in the expanded species consistent with suppression escape. Thus, whereas horizontal transfer followed by the invasion of a naïve genome has been highlighted to explain the long-term survival of TEs, our analysis suggests that evasion of host suppression of resident TEs is a major strategy to persist over evolutionary times. Altogether, our results shed light on the heterogenous and context-dependent nature in which TEs affect gene regulation and the dynamics of rampant TE proliferation amidst a recently radiated species group.  相似文献   

9.
10.
11.
Environmental constraints disturb plant metabolism and are often associated with photosynthetic impairments and yield reductions. Among them, low positive temperatures are of up most importance in tropical plant species, namely in Coffea spp. in which some acclimation ability has been reported. To further explain cold tolerance, the impacts on photosynthetic functioning and the expression of photosynthetic-related genes were analyzed. The experiments were carried out along a period of slow cold imposition (to allow acclimation), after chilling (4 °C) exposure and in the following rewarming period, using 1.5-year-old coffee seedlings of 5 genotypes with different cold sensitivity: Coffea canephora cv. Apoatã, Coffea arabica cv. Catuaí, Coffea dewevrei and 2 hybrids, Icatu (C. arabica × C. canephora) and Piatã (C. dewevrei × C. arabica). All genotypes suffered a significant leaf area loss only after chilling exposure, with Icatu showing the lowest impact, a first indication of a higher cold tolerance, contrasting with Apoatã and C. dewevrei. During cold exposure, net photosynthesis and Chl a fluorescence parameters were strongly affected in all genotypes, but stomatal limitations were not detected. However, the extent of mesophyll limitation, reflecting regulatory mechanisms and/or damage, was genotype dependent. Overnight retention of zeaxanthin was common to Coffea genotypes, but the accumulation of photoprotective pigments was highest in Icatu. That down-regulated photochemical events but efficiently protected the photosynthetic structures, as shown, e.g., by the lowest impacts on Amax and PSI activity and the strongest reinforcement of PSII activity, the latter possibly reflecting the presence of a photoprotective cycle around PSII in Icatu (and Catuaí). Concomitant to these protection mechanisms, Icatu was the sole genotype to present simultaneous upregulation of caCP22, caPI and caCytf, related to, respectively, PSII, PSI and to the complex Cytb6/f, which could promote better repair ability, contributing to the maintenance of efficient thylakoid functioning. We conclude that Icatu showed the best acclimation ability among the studied genotypes, mostly due to a better upregulation of photoprotection and repair mechanisms. We confirmed the presence of important variability in Coffea spp. that could be exploited in breeding programs, which should be assisted by useful markers of cold tolerance, namely the upregulation of antioxidative molecules, the expression of selected genes and PSI sensitivity.  相似文献   

12.
Throughout evolution, eukaryotic genomes have been invaded by transposable elements (TEs). Little is known about the factors leading to genomic proliferation of TEs, their preferred integration sites and the molecular mechanisms underlying their insertion. We analyzed hundreds of thousands nested TEs in the human genome, i.e. insertions of TEs into existing ones. We first discovered that most TEs insert within specific ‘hotspots’ along the targeted TE. In particular, retrotransposed Alu elements contain a non-canonical single nucleotide hotspot for insertion of other Alu sequences. We next devised a method for identification of integration sequence motifs of inserted TEs that are conserved within the targeted TEs. This method revealed novel sequences motifs characterizing insertions of various important TE families: Alu, hAT, ERV1 and MaLR. Finally, we performed a global assessment to determine the extent to which young TEs tend to nest within older transposed elements and identified a 4-fold higher tendency of TEs to insert into existing TEs than to insert within non-TE intergenic regions. Our analysis demonstrates that TEs are highly biased to insert within certain TEs, in specific orientations and within specific targeted TE positions. TE nesting events also reveal new characteristics of the molecular mechanisms underlying transposition.  相似文献   

13.
Most angiosperm nuclear DNA is repetitive and derived from silenced transposable elements (TEs). TE silencing requires substantial resources from the plant host, including the production of small interfering RNAs (siRNAs). Thus, the interaction between TEs and siRNAs is a critical aspect of both the function and the evolution of plant genomes. Yet the co-evolutionary dynamics between these two entities remain poorly characterized. Here we studied the organization of TEs within the maize (Zea mays ssp mays) genome, documenting that TEs fall within three groups based on the class and copy numbers. These groups included DNA elements, low copy RNA elements and higher copy RNA elements. The three groups varied statistically in characteristics that included length, location, age, siRNA expression and 24∶22 nucleotide (nt) siRNA targeting ratios. In addition, the low copy retroelements encompassed a set of TEs that had previously been shown to decrease expression within a 24 nt siRNA biogenesis mutant (mop1). To investigate the evolutionary dynamics of the three groups, we estimated their abundance in two landraces, one with a genome similar in size to that of the maize reference and the other with a 30% larger genome. For all three accessions, we assessed TE abundance as well as 22 nt and 24 nt siRNA content within leaves. The high copy number retroelements are under targeted similarly by siRNAs among accessions, appear to be born of a rapid bust of activity, and may be currently transpositionally dead or limited. In contrast, the lower copy number group of retrolements are targeted more dynamically and have had a long and ongoing history of transposition in the maize genome.  相似文献   

14.
15.
16.
转座元件是指在基因组中能够移动、复制并重新整合到基因组新位点的DNA片段.转座元件一度被视为基因组内的“垃圾”或“自私DNA”,长期以来,转座元件的研究主要集中于阐释转座元件在宿主中的复制或表观沉默机制,而转座元件的调控功能并未得到全面探讨.已有研究表明,转座元件的比例与物种基因组大小存在正相关性,从而为C值悖论的解释提供了依据.近年来,越来越多的证据表明转座元件可以作为宿主基因组的“控制元件”发挥重要的调控作用.在作物中研究发现,转座元件既可以通过顺式或反式作用方式调控基因表达,也可以诱导表观等位基因的产生,从而促使固着生长的植物更好地适应外界环境的变化.本文拟就高等植物转座元件的作用及其对未来作物育种的意义进行总结.  相似文献   

17.
Sexual reproduction allows transposable elements (TEs) to proliferate, leading to rapid divergence between populations and species. A significant outcome of divergence in the TE landscape is evident in hybrid dysgenic syndromes, a strong form of genomic incompatibility that can arise when (TE) family abundance differs between two parents. When TEs inherited from the father are absent in the mother''s genome, TEs can become activated in the progeny, causing germline damage and sterility. Studies in Drosophila indicate that dysgenesis can occur when TEs inherited paternally are not matched with a pool of corresponding TE silencing PIWI-interacting RNAs (piRNAs) provisioned by the female germline. Using the D. virilis syndrome of hybrid dysgenesis as a model, we characterize the effects that divergence in TE profile between parents has on offspring. Overall, we show that divergence in the TE landscape is associated with persisting differences in germline TE expression when comparing genetically identical females of reciprocal crosses and these differences are transmitted to the next generation. Moreover, chronic and persisting TE expression coincides with increased levels of genic piRNAs associated with reduced gene expression. Combined with these effects, we further demonstrate that gene expression is idiosyncratically influenced by differences in the genic piRNA profile of the parents that arise though polymorphic TE insertions. Overall, these results support a model in which early germline events in dysgenesis establish a chronic, stable state of both TE and gene expression in the germline that is maintained through adulthood and transmitted to the next generation. This work demonstrates that divergence in the TE profile is associated with diverse piRNA-mediated transgenerational effects on gene expression within populations.  相似文献   

18.
19.
20.
Transposable elements (TEs), whose propagation can result in severe damage to the host genome, are silenced in the animal gonad by Piwi‐interacting RNAs (piRNAs). piRNAs produced in the ovaries are deposited in the embryonic germline and initiate TE repression in the germline progeny. Whether the maternally transmitted piRNAs play a role in the silencing of somatic TEs is however unknown. Here we show that maternally transmitted piRNAs from the tirant retrotransposon in Drosophila are required for the somatic silencing of the TE and correlate with an increase in histone H3K9 trimethylation an active tirant copy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号