首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
BamA interacts with the BamBCDE lipoproteins, and together they constitute the essential β-barrel assembly machine (BAM) of Escherichia coli. The simultaneous absence of BamB and BamE confers a conditional lethal phenotype and a severe β-barrel outer membrane protein (OMP) biogenesis defect. Without BamB and BamE, wild-type BamA levels are significantly reduced, and the folding of the BamA β-barrel, as assessed by the heat-modifiability assay, is drastically compromised. Single-amino-acid substitutions in the β-barrel domain of BamA improve both bacterial growth and OMP biogenesis in a bamB bamE mutant and restore BamA levels close to the BamB(+) BamE(+) level. The substitutions alter BamA β-barrel folding, and folding in the mutants becomes independent of BamB and BamE. Remarkably, BamA β-barrel alterations also improve OMP biogenesis in cells lacking the major periplasmic chaperone, SurA, which, together with BamB, is thought to facilitate the transfer of partially folded OMPs to the soluble POTRA (polypeptide-transport-associated) domain of BamA. Unlike the bamB bamE mutant background, the absence of BamB or SurA does not affect BamA β-barrel folding. Thus, substitutions in the outer membrane-embedded BamA β-barrel domain overcome OMP biogenesis defects that occur at the POTRA domain of BamA in the periplasm. Based on the structure of FhaC, the altered BamA residues are predicted to lie on a highly conserved loop that folds inside the β-barrel and in regions pointing outside the β-barrel, suggesting that they influence BamA function by both direct and indirect mechanisms.  相似文献   

2.
BackgroundIn Gram-negative bacteria, type Va and Vc autotransporters are proteins that contain both a secreted virulence factor (the “passenger” domain) and a β-barrel that aids its export. While it is known that the folding and insertion of the β-barrel domain utilize the β-barrel assembly machinery (BAM) complex, how the passenger domain is secreted and folded across the membrane remains to be determined. The hairpin model states that passenger domain secretion occurs independently through the fully-formed and membrane-inserted β-barrel domain via a hairpin folding intermediate. In contrast, the BamA-assisted model states that the passenger domain is secreted through a hybrid of BamA, the essential subunit of the BAM complex, and the β-barrel domain of the autotransporter.MethodsTo ascertain the models' plausibility, we have used molecular dynamics to simulate passenger domain secretion for two autotransporters, EspP and YadA.ResultsWe observed that each protein's β-barrel is unable to accommodate the secreting passenger domain in a hairpin configuration without major structural distortions. Additionally, the force required for secretion through EspP's β-barrel is more than that through the BamA β-barrel.ConclusionsSecretion of autotransporters most likely occurs through an incompletely formed β-barrel domain of the autotransporter in conjunction with BamA.General significanceSecretion of virulence factors is a process used by practically all pathogenic Gram-negative bacteria. Understanding this process is a necessary step towards limiting their infectious capacity.  相似文献   

3.
Many members of the Omp85 family of proteins form essential β-barrel outer membrane protein (OMP) biogenesis machinery in Gram-negative bacteria, chloroplasts, and mitochondria. In Escherichia coli, BamA, a member of the Omp85 family, folds into an outer membrane-embedded β-barrel domain and a soluble periplasmic polypeptide-transport-associated (POTRA) domain. Although the high-resolution structures of only the BamA POTRA domain of E. coli are available, the crystal structure of FhaC, an Omp85 family member and a component of the two-partner secretion system in Bordetella pertussis, suggests that the BamA β-barrel likely folds into a 16-stranded β-barrel. The FhaC β-barrel is occluded by an N-terminal α-helix and a large β-barrel loop, L6, which carries residues that are highly conserved among the Omp85 family members. Deletion of L6 in FhaC did not affect its biogenesis but abolished its secretion function. In this study, we tested the hypothesis that the conserved residues of the putative L6 loop, which presumably folds back into the lumen of the BamA β-barrel like the FhaC counterpart, play an important role in OMP and/or BamA biogenesis. The conserved (641)RGF(643) residues of L6 were either deleted or replaced with alanine in various permutations. Phenotypic and biochemical characterization of various BamA L6 mutants revealed that the conserved RGF residues are critical for OMP biogenesis. Moreover, three BamA L6 alterations, ΔRGF, AAA, and AGA, produced a conditional lethal phenotype, concomitant with severely reduced BamA levels and folding defects. Thus, the conserved (641)RGF(643) residues of the BamA L6 loop are important for BamA folding and biogenesis.  相似文献   

4.
The BamA protein of Escherichia coli plays a central role in the assembly of β-barrel outer membrane proteins (OMPs). The C-terminal domain of BamA folds into an integral outer membrane β-barrel, and the N terminus forms a periplasmic polypeptide transport-associated (POTRA) domain for OMP reception and assembly. We show here that BamA misfolding, caused by the deletion of the R44 residue from the α2 helix of the POTRA 1 domain (ΔR44), can be overcome by the insertion of alanine 2 residues upstream or downstream from the ΔR44 site. This highlights the importance of the side chain orientation of the α2 helix residues for normal POTRA 1 activity. The ΔR44-mediated POTRA folding defect and its correction by the insertion of alanine were further demonstrated by using a construct expressing just the soluble POTRA domain. Besides misfolding, the expression of BamA(ΔR44) from a low-copy-number plasmid confers a severe drug hypersensitivity phenotype. A spontaneous drug-resistant revertant of BamA(ΔR44) was found to carry an A18S substitution in the α1 helix of POTRA 1. In the BamA(ΔR44, A18S) background, OMP biogenesis improved dramatically, and this correlated with improved BamA folding, BamA-SurA interactions, and LptD (lipopolysaccharide transporter) biogenesis. The presence of the A18S substitution in the wild-type BamA protein did not affect the activity of BamA. The discovery of the A18S substitution in the α1 helix of the POTRA 1 domain as a suppressor of the folding defect caused by ΔR44 underscores the importance of the helix 1 and 2 regions in BamA folding.  相似文献   

5.
Folding and insertion of integral β-barrel proteins in the outer membrane (OM) is an essential process for Gram-negative bacteria that requires the β-barrel assembly machinery (BAM). Efficient OM protein (OMP) folding and insertion appears to require a consensus C-terminal signal in OMPs characterized by terminal F or W residues. The BAM complex is embedded in the OM and, in Escherichia coli, consists of the β-barrel BamA and four lipoproteins BamBCDE. BamA and BamD are broadly distributed across all species of Gram-negative bacteria, whereas the other components are present in only a subset of species. BamA and BamD are also essential for viability, suggesting that these two proteins constitute the functional core of the bacterial BAM complex. Here, we present the crystal structure of BamD from the thermophilic bacteria Rhodothermus marinus refined to 2.15 Å resolution. The protein contains five tetratricopeptide repeats (TPRs) organized into two offset tandems, each capped by a terminal helix. The N-terminal domain contains three TPRs and displays remarkable structural similarity with proteins that recognize targeting signals in extended conformations. The C-terminal domain harbors the remaining two TPRs and previously described mutations that impair binding to other BAM components map to this domain. Therefore, the structure suggests a model where the C-terminal domain provides a scaffold for interaction with BAM components, while the N-terminal domain participates in interaction with the substrates, either recognizing the C-terminal consensus sequence or binding unfolded OMP intermediates.  相似文献   

6.
The multi-protein β-barrel assembly machine (BAM) of Escherichia coli is responsible for the folding and insertion of β-barrel containing integral outer membrane proteins (OMPs) into the bacterial outer membrane. An essential component of this complex is the BamA protein, which binds unfolded β-barrel precursors via the five polypeptide transport-associated (POTRA) domains in its N-terminus. The C-terminus of BamA contains a β-barrel domain, which tethers BamA to the outer membrane and is also thought to be involved in OMP insertion. Here we mutagenize BamA using linker scanning mutagenesis and demonstrate that all five POTRA domains are essential for BamA protein function in our experimental system. Furthermore, we generate a homology based model of the BamA β-barrel and test our model using insertion mutagenesis, deletion analysis and immunofluorescence to identify β-strands, periplasmic turns and extracellular loops. We show that the surface-exposed loops of the BamA β-barrel are essential.  相似文献   

7.
Folding and insertion of β-barrel outer membrane proteins (OMPs) is essential for Gram-negative bacteria. This process is mediated by the multiprotein complex BAM, composed of the essential β-barrel OMP BamA and four lipoproteins (BamBCDE). The periplasmic domain of BamA is key for its function and contains five "polypeptide transport-associated" (POTRA) repeats. Here, we report the crystal structure of the POTRA4-5 tandem, containing the essential for BAM complex formation and cell viability POTRA5. The domain orientation observed in the crystal is validated by solution NMR and SAXS. Using previously determined structures of BamA POTRA1-4, we present a spliced model of the entire BamA periplasmic domain validated by SAXS. Solution scattering shows that conformational flexibility between POTRA2 and 3 gives rise to compact and extended conformations. The length of BamA in its extended conformation suggests that the protein may bridge the inner and outer membranes across the periplasmic space.  相似文献   

8.
In Gram-negative bacteria, the β-barrel assembly machinery (BAM) complex catalyses the assembly of β-barrel proteins into the outer membrane, and is composed of five subunits: BamA, BamB, BamC, BamD and BamE. Once assembled, - β-barrel proteins can be involved in various functions including uptake of nutrients, export of toxins and mediating host-pathogen interactions, but the precise mechanism by which these ubiquitous and often essential β-barrel proteins are assembled is yet to be established. In order to determine the relative positions of BAM subunits in the membrane environment we reconstituted each subunit into a biomimetic membrane, characterizing their interaction and structural changes by Quartz Crystal Microbalance with Dissipation monitoring (QCM-D) and neutron reflectometry. Our results suggested that the binding of BamE, or a BamDE dimer, to BamA induced conformational changes in the polypeptide transported-associated (POTRA) domains of BamA, but that BamB or BamD alone did not promote any such changes. As monitored by neutron reflectometry, addition of an unfolded substrate protein extended the length of POTRA domains further away from the membrane interface as part of the mechanism whereby the substrate protein was folded into the membrane.  相似文献   

9.
The β-barrel assembly machinery (BAM) mediates folding and insertion of β-barrel outer membrane proteins (OMPs) into the outer membrane of Gram-negative bacteria. BAM is a five-protein complex consisting of the β-barrel OMP BamA and lipoproteins BamB, -C, -D, and -E. High resolution structures of all the individual BAM subunits and a BamD-BamC complex have been determined. However, the overall complex architecture remains elusive. BamA is the central component of BAM and consists of a membrane-embedded β-barrel and a periplasmic domain with five polypeptide translocation-associated (POTRA) motifs thought to interact with the accessory lipoproteins. Here we report the crystal structure of a fusion between BamB and a POTRA3–5 fragment of BamA. Extended loops 13 and 17 protruding from one end of the BamB β-propeller contact the face of the POTRA3 β-sheet in BamA. The interface is stabilized by several hydrophobic contacts, a network of hydrogen bonds, and a cation-π interaction between BamA Tyr-255 and BamB Arg-195. Disruption of BamA-BamB binding by BamA Y255A and probing of the interface by disulfide bond cross-linking validate the physiological relevance of the observed interface. Furthermore, the structure is consistent with previously published mutagenesis studies. The periplasmic five-POTRA domain of BamA is flexible in solution due to hinge motions in the POTRA2–3 linker. Modeling BamB in complex with full-length BamA shows BamB binding at the POTRA2–3 hinge, suggesting a role in modulation of BamA flexibility and the conformational changes associated with OMP folding and insertion.  相似文献   

10.
β-Barrel proteins are frequently found in the outer membrane of mitochondria, chloroplasts and Gram-negative bacteria. In Escherichia coli, these proteins are inserted in the outer membrane by the Bam (β-barrel assembly machinery) complex, a multiprotein machinery formed by the β-barrel protein BamA and the four peripheral membrane proteins BamB, BamC, BamD and BamE. The periplasmic part of BamA binds prefolded β-barrel proteins by a β-augmentation mechanism, thereby stabilizing the precursors prior to their membrane insertion. However, the role of the associated proteins within the Bam complex remains unknown. Here, we describe the crystal structure of BamB, a nonessential component of the Bam complex. The structure shows a typical eight-bladed β-propeller fold. Two sequence stretches of BamB were previously identified to be important for interaction with BamA. In our structure, both motifs are located in close proximity to each other and contribute to a conserved region forming a narrow groove on the top of the propeller. Moreover, crystal contacts reveal two interaction modes of how BamB might bind unfolded β-barrel proteins. In the crystal lattice, BamB binds to exposed β-strands by β-augmentation, whereas peptide stretches rich in aromatic residues can be accommodated in hydrophobic pockets located at the bottom of the propeller. Thus, BamB could simultaneously bind to BamA and prefolded β-barrel proteins, thereby enhancing the folding and membrane insertion capability of the Bam complex.  相似文献   

11.
β-barrel proteins are folded and inserted into outer membranes by multi-subunit protein complexes that are conserved across different types of outer membranes. In Gram-negative bacteria this complex is the barrel-assembly machinery (BAM), in mitochondria it is the sorting and assembly machinery (SAM) complex, and in chloroplasts it is the outer envelope protein Oep80. Mitochondrial β-barrel precursor proteins are translocated from the cytoplasm to the intermembrane space by the translocase of the outer membrane (TOM) complex, and stabilized by molecular chaperones before interaction with the assembly machinery. Outer membrane bacterial BamA interacts with four periplasmic accessory proteins, whereas mitochondrial Sam50 interacts with two cytoplasmic accessory proteins. Despite these major architectural differences between BAM and SAM complexes, their core proteins, BamA and Sam50, seem to function the same way. Based on the new SAM complex structures, we propose that the mitochondrial β-barrel folding mechanism follows the budding model with barrel-switching aiding in the release of new barrels. We also built a new molecular model for Tom22 interacting with Sam37 to identify regions that could mediate TOM-SAM supercomplex formation.  相似文献   

12.
Escherichia coli BamB is the largest of four lipoproteins in the β-barrel assembly machinery (BAM) complex. It interacts with the periplasmic domain of BamA, an integral outer membrane protein (OMP) essential for OMP biogenesis. Although BamB is not essential, it serves an important function in the BAM complex, significantly increasing the folding efficiency of some OMPs in vivo and in vitro. To learn more about the BAM complex, we solved structures of BamB in three different crystal forms. BamB crystallized in space groups P213, I222, and P212121, with one molecule per asymmetric unit in each case. Crystals from the space group I222 diffracted to 1. 65-Å resolution. BamB forms an eight-bladed β-propeller with a central pore and is shaped like a doughnut. A DALI search revealed that BamB shares structural homology to several eukaryotic proteins containing WD40 repeat domains, which commonly have β-propeller folds and often serve as scaffolding proteins within larger multi-protein complexes that carry out signal transduction, cell division, and chemotaxis. Using mutagenesis data from previous studies, we docked BamB onto a BamA structural model and assessed known and possible interactions between these two proteins. Our data suggest that BamB serves as a scaffolding protein within the BAM complex by optimally orienting the flexible periplasmic domain of BamA for interaction with other BAM components and chaperones. This may facilitate integration of newly synthesized OMPs into the outer membrane.  相似文献   

13.
The outer membrane of a Gram‐negative bacterium is a crucial barrier between the external environment and its internal physiology. This barrier is bridged selectively by β‐barrel outer membrane proteins (OMPs). The in vivo folding and biogenesis of OMPs necessitates the assistance of the outer membrane chaperone BamA. Nevertheless, OMPs retain the ability of independent self‐assembly in vitro. Hence, it is unclear whether substrate–chaperone dynamics is influenced by the intrinsic ability of OMPs to fold, the magnitude of BamA–OMP interdependence, and the contribution of BamA to the kinetics of OMP assembly. We addressed this by monitoring the assembly kinetics of multiple 8‐stranded β‐barrel OMP substrates with(out) BamA. We also examined whether BamA is species‐specific, or nonspecifically accelerates folding kinetics of substrates from independent species. Our findings reveal BamA as a substrate‐independent promiscuous molecular chaperone, which assists the unfolded OMP to overcome the kinetic barrier imposed by the bilayer membrane. We additionally show that while BamA kinetically accelerates OMP folding, the OMP primary sequence remains a vital deciding element in its assembly rate. Our study provides unexpected insights on OMP assembly and the functional relevance of BamA in vivo.  相似文献   

14.
Definitive identification of Treponema pallidum rare outer membrane proteins (OMPs) has long eluded researchers. TP0326, the sole protein in T. pallidum with sequence homology to a Gram-negative OMP, belongs to the BamA family of proteins essential for OM biogenesis. Structural modelling predicted that five polypeptide transport-associated (POTRA) domains comprise the N-terminus of TP0326, while the C-terminus forms an 18-stranded amphipathic β-barrel. Circular dichroism, heat modifiability by SDS-PAGE, Triton X-114 phase partitioning and liposome incorporation supported these topological predictions and confirmed that the β-barrel is responsible for the native protein's amphiphilicity. Expression analyses revealed that native TP0326 is expressed at low abundance, while a protease-surface accessibility assay confirmed surface exposure. Size-exclusion chromatography and blue native polyacrylamide gel electrophoresis revealed a modular Bam complex in T. pallidum larger than that of Escherichia coli. Non-orthologous ancillary factors and self-association of TP0326 via its β-barrel may both contribute to the Bam complex. T. pallidum-infected rabbits mount a vigorous antibody response to both POTRA and β-barrel portions of TP0326, whereas humans with secondary syphilis respond predominantly to POTRA. The syphilis spirochaete appears to have devised a stratagem for harnessing the Bam pathway while satisfying its need to limit surface antigenicity.  相似文献   

15.
Protein folding in cells reflects a delicate interplay between biophysical properties of the nascent polypeptide, the vectorial nature and rate of translation, molecular crowding, and cellular biosynthetic machinery. To better understand how this complex environment affects de novo folding pathways as they occur in the cell, we expressed β-barrel fluorescent proteins derived from GFP and RFP in an in vitro system that allows direct analysis of cotranslational folding intermediates. Quantitative analysis of ribosome-bound eCFP and mCherry fusion proteins revealed that productive folding exhibits a sharp threshold as the length of polypeptide from the C terminus to the ribosome peptidyltransferase center is increased. Fluorescence spectroscopy, urea denaturation, and limited protease digestion confirmed that sequestration of only 10-15 C-terminal residues within the ribosome exit tunnel effectively prevents stable barrel formation, whereas folding occurs unimpeded when the C terminus is extended beyond the ribosome exit site. Nascent FPs with 10 of the 11 β-strands outside the ribosome exit tunnel acquire a non-native conformation that is remarkably stable in diverse environments. Upon ribosome release, these structural intermediates fold efficiently with kinetics that are unaffected by the cytosolic crowding or cellular chaperones. Our results indicate that during synthesis, fluorescent protein folding is initiated cotranslationally via rapid formation of a highly stable, on-pathway structural intermediate and that the rate-limiting step of folding involves autonomous incorporation of the 11th β-strand into the mature barrel structure.  相似文献   

16.
The insertase BamA is the central protein of the Bam complex responsible for outer membrane protein biogenesis in Gram-negative bacteria. BamA features a 16-stranded transmembrane β-barrel and five periplasmic POTRA domains, with a total molecular weight of 88 kDa. Whereas the structure of BamA has recently been determined by X-ray crystallography, its functional mechanism is not well understood. This mechanism comprises the insertion of substrates from a dynamic, chaperone-bound state into the bacterial outer membrane, and NMR spectroscopy is thus a method of choice for its elucidation. Here, we report solution NMR studies of different BamA constructs in three different membrane mimetic systems: LDAO micelles, DMPC:DiC7PC bicelles and MSP1D1:DMPC nanodiscs. The impact of biochemical parameters on the spectral quality was investigated, including the total protein concentration and the detergent:protein ratio. The barrel of BamA is folded in micelles, bicelles and nanodiscs, but the N-terminal POTRA5 domain is flexibly unfolded in the absence of POTRA4. Measurements of backbone dynamics show that the variable insertion region of BamA, located in the extracellular lid loop L6, features high local flexibility. Our work establishes biochemical preparation schemes for BamA, which will serve as a platform for structural and functional studies of BamA and its role within the Bam complex by solution NMR spectroscopy.  相似文献   

17.
The assembly of β-barrel Outer Membrane Proteins (OMPs) in the outer membrane is essential for Gram-negative bacteria. The process requires the β-Barrel Assembly Machine (BAM), a multiprotein complex that, in E. coli, is composed of the OMP BamA and four lipoproteins BamB-E. Whereas BamA and BamD are essential, deletion of BamB, C or E produce membrane permeability defects. Here we present the high-resolution structure of BamB from Pseudomonas aeruginosa. This protein can complement the deletion of bamB in E. coli indicating that they are functionally equivalent. Conserved structural features include an eight-bladed β-propeller fold stabilized by tryptophan docking motifs with a central pore about 8 Å in diameter at the narrowest point. This pore distinguishes BamB from related β-propellers, such as quinoprotein dehydrogenases. However, a double mutation designed to block this pore was fully functional indicating that the opening is not essential. Two loops protruding from the bottom of the propeller are conserved and mediate binding to BamA. Conversely, an additional loop only present in E. coli BamB is not required for function. A cluster of highly conserved residues in a groove between blades 6 and 7 is crucial for proper BamB folding or biogenesis. It has been proposed that BamB may bind nascent OMPs by β-augmentation to its propeller outer strands, or recognize the aromatic residue signature at the C-terminus of OMPs. However, Isothermal Titration Calorimetry experiments and structural analysis do not support these proposals. The structural and mutagenesis analysis suggests that the main function of BamB is to bind and modulate BamA, rather than directly interact with nascent OMPs.  相似文献   

18.
The cell envelope is essential for the survival of Gram-negative bacteria. This specialised membrane is densely packed with outer membrane proteins (OMPs), which perform a variety of functions. How OMPs fold into this crowded environment remains an open question. Here, we review current knowledge about OMP folding mechanisms in vitro and discuss how the need to fold to a stable native state has shaped their folding energy landscapes. We also highlight the role of chaperones and the β-barrel assembly machinery (BAM) in assisting OMP folding in vivo and discuss proposed mechanisms by which this fascinating machinery may catalyse OMP folding.  相似文献   

19.
Autotransporter proteins comprise a large family of virulence factors that consist of a β-barrel translocation unit and an extracellular effector or passenger domain. The β-barrel anchors the protein to the outer membrane of Gram-negative bacteria and facilitates the transport of the passenger domain onto the cell surface. By inserting an epitope tag into the N terminus of the passenger domain of the inverse autotransporter intimin, we generated a mutant defective in autotransport. Using this stalled mutant, we could show that (i) at the time point of stalling, the β-barrel appears folded; (ii) the stalled autotransporter is associated with BamA and SurA; (iii) the stalled intimin is decorated with large amounts of SurA; (iv) the stalled autotransporter is not degraded by periplasmic proteases; and (v) inverse autotransporter passenger domains are translocated by a hairpin mechanism. Our results suggest a function for the BAM complex not only in insertion and folding of the β-barrel but also for passenger translocation.  相似文献   

20.
The assembly of proteins into bacterial outer membranes is a key cellular process that we are only beginning to understand, mediated by the β‐barrel assembly machinery (BAM). Two crucial elements of that machinery are the core BAM complex and the translocation and assembly module (TAM), with each containing a member of the Omp85 superfamily of proteins: BamA in the BAM complex, TamA in the TAM. Here, we used the substrate protein FimD as a model to assess the selectivity of substrate interactions for the TAM relative to those of the BAM complex. A peptide scan revealed that TamA and BamA bind the β‐strands of FimD, and do so selectively. Chemical cross‐linking and molecular dynamics are consistent with this interaction taking place between the first and last strand of the TamA barrel domain, providing the first experimental evidence of a lateral gate in TamA: a structural element implicated in membrane protein assembly. We suggest that the lateral gates in TamA and BamA provide different environments for substrates to engage, with the differences observed here beginning to address how the TAM can be more effective than the BAM complex in the folding of some substrate proteins.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号