首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biological signaling networks process extracellular cues to control important cell decisions such as death-survival, growth-quiescence, and proliferation-differentiation. After receptor activation, intracellular signaling proteins change in abundance, modification state, and enzymatic activity. Many of the proteins in signaling networks have been identified, but it is not known how signaling molecules work together to control cell decisions. To begin to address this issue, we report the use of partial least squares regression as an analytical method to glean signal-response relationships from heterogeneous multivariate signaling data collected from HT-29 human colon carcinoma cells stimulated to undergo programmed cell death. By partial least squares modeling, we relate dynamic and quantitative measurements of 20-30 intracellular signals to cell survival after treatment with tumor necrosis factor alpha (a death factor) and insulin (a survival factor). We find that partial least squares models can distinguish highly informative signals from redundant uninformative signals to generate a reduced model that retains key signaling features and signal-response relationships. In these models, measurements of biochemical characteristics, based on very different techniques (Western blots, kinase assays, etc.), are grouped together as covariates, showing that heterogenous data have been effectively fused. Importantly, informative protein predictors of cell responses are always multivariate, demonstrating the multicomponent nature of the decision process.  相似文献   

2.
3.
His-Asp phosphorelays are widespread signal transduction mechanisms in bacteria, fungi, and higher plants. In order to investigate a His-Asp phosphorelay network in filamentous fungi, which has been genetically characterized in part, we attempted to construct an in vitro phosphotransfer network in Aspergillus nidulans comprising all the necessary components. As a first step, we established an in vitro phosphotransfer system with a histidine-containing phosphotransmitter YpdA, a response regulator SrrA, and a bacterial histidine kinase ArcB as a phosphate donor. We demonstrated the phosphotransfer from ArcB to A. nidulans YpdA and the subsequent transfer from YpdA to SrrA. This is the first direct biochemical evidence for the presence of the phosphotransfer system in filamentous fungi. Furthermore, a retrograde phosphorylation from YpdA to FphA, a histidine kinase similar to bacterial phytochrome, was found. The overall picture of the His-Asp phosphorelays in A. nidulans is discussed based on the results of the in vitro study.  相似文献   

4.
We present a computational model that offers an integrated quantitative, dynamic, and topological representation of intracellular signal networks, based on known components of epidermal growth factor (EGF) receptor signal pathways. The model provides insight into signal-response relationships between the binding of EGF to its receptor at the cell surface and the activation of downstream proteins in the signaling cascade. It shows that EGF-induced responses are remarkably stable over a 100-fold range of ligand concentration and that the critical parameter in determining signal efficacy is the initial velocity of receptor activation. The predictions of the model agree well with experimental analysis of the effect of EGF on two downstream responses, phosphorylation of ERK-1/2 and expression of the target gene, c-fos.  相似文献   

5.
Cytokines and growth factors are critical regulators that connect intracellular and extracellular environments through binding to specific cell‐surface receptors. They regulate a wide variety of immunological, growth, and inflammatory response processes. The overall signal initiated by a population of cytokine molecules over long time periods is controlled by the subtle interplay of binding, signaling, and trafficking kinetics. Building on the work of others, we abstract a simple kinetic model that captures relevant features from cytokine systems as well as related growth factor systems. We explore a large range of potential biochemical behaviors, through systematic examination of the model's parameter space. Different rates for the same reaction topology lead to a dramatic range of biochemical network properties and outcomes. Evolution might productively explore varied and different portions of parameter space to create beneficial behaviors, and effective human therapeutic intervention might be achieved through altering network kinetic properties. Quantitative analysis of the results reveals the basis for tensions among a number of different network characteristics. For example, strong binding of cytokine to receptor can increase short‐term receptor activation and signal initiation but decrease long‐term signaling due to internalization and degradation. Further analysis reveals the role of specific biochemical processes in modulating such tensions. For instance, the kinetics of cytokine binding and receptor activation modulate whether ligand–receptor dissociation can generally occur before signal initiation or receptor internalization. Beyond analysis, the same models and model behaviors provide an important basis for the design of more potent cytokine therapeutics by providing insight into how binding kinetics affect ligand potency. © 2010 American Institute of Chemical Engineers Biotechnol. Prog., 2010  相似文献   

6.
His-Asp phosphorelays are evolutionary-conserved powerful biological tactics for intracellular signal transduction. Such a phosphorelay is generally made up of "sensor histidine (His)-kinases", "response regulators", and "histidine-containing (HPt) phosphotransmitters". In the higher plant, Arabidopsis thaliana, results from recent intensive studies suggested that His-Asp phosphorelays may be widely used for propagating environmental stimuli, such as phytohormones (e.g., ethylene and cytokinin). In this study, we first inspected extensively the occurrence of Arabidopsis response regulators in order to compile and characterize them. The results showed that this higher plant has, at least, 14 members of the family of response regulators that can be classified into two distinct subtypes (type-A and type-B), as judged from their structural designs, biochemical properties, and expression profiles. Comparative studies were conducted for each representative (ARR3 and ARR4 for type-A, and ARR10 for type-B). It was suggested that expression of the type-A response regulator is cytokinin-inducible, while that of the type-B response regulator appears to be not. Results from yeast two-hybrid analyses suggested that the type-B response regulator may have an ability to stably interact with a set of HPt phosphotransmitters (AHPs). These and other results will be discussed with special reference to the His-Asp phosphorelay signaling network in Arabidopsis thaliana.  相似文献   

7.
Sun Y  Ma YC  Huang J  Chen KY  McGarrigle DK  Huang XY 《Biochemistry》2005,44(44):14455-14462
Src-family tyrosine kinases mediate many receptor signals to various biological responses. Here we investigate the requirement of Src-family tyrosine kinases in adipogenesis. The biochemical mechanism by which insulin induces adipogenesis, converting fibroblast cells to adipocytes, is not clear. We show that fibroblast cells deficient of three ubiquitously expressed Src-family members (Src, Yes, and Fyn), SYF cells, are refractory to hormonally induced fat accumulation. The defect is rescued by reintroduction of c-Src into SYF cells. Furthermore, Src-family tyrosine kinases are required in the early steps of insulin signaling; it is responsible for the tyrosine phosphorylation of adaptor protein c-Cbl. Deficiency of c-Cbl blocked adipogenesis. These genetic and biochemical data clearly demonstrate that Src-family tyrosine kinases serve as a critical signal relay, via phosphorylation of c-Cbl, for fat accumulation, and provide potential new strategies for treating obesity.  相似文献   

8.
Improving the ability to reverse engineer biochemical networks is a major goal of systems biology. Lesions in signaling networks lead to alterations in gene expression, which in principle should allow network reconstruction. However, the information about the activity levels of signaling proteins conveyed in overall gene expression is limited by the complexity of gene expression dynamics and of regulatory network topology. Two observations provide the basis for overcoming this limitation: a. genes induced without de-novo protein synthesis (early genes) show a linear accumulation of product in the first hour after the change in the cell''s state; b. The signaling components in the network largely function in the linear range of their stimulus-response curves. Therefore, unlike most genes or most time points, expression profiles of early genes at an early time point provide direct biochemical assays that represent the activity levels of upstream signaling components. Such expression data provide the basis for an efficient algorithm (Plato''s Cave algorithm; PLACA) to reverse engineer functional signaling networks. Unlike conventional reverse engineering algorithms that use steady state values, PLACA uses stimulated early gene expression measurements associated with systematic perturbations of signaling components, without measuring the signaling components themselves. Besides the reverse engineered network, PLACA also identifies the genes detecting the functional interaction, thereby facilitating validation of the predicted functional network. Using simulated datasets, the algorithm is shown to be robust to experimental noise. Using experimental data obtained from gonadotropes, PLACA reverse engineered the interaction network of six perturbed signaling components. The network recapitulated many known interactions and identified novel functional interactions that were validated by further experiment. PLACA uses the results of experiments that are feasible for any signaling network to predict the functional topology of the network and to identify novel relationships.  相似文献   

9.
Bacteria sense and respond to their environment through signaling cascades generally referred to as two-component signaling networks. These networks comprise histidine kinases and their cognate response regulators. Histidine kinases have a number of biochemical activities: ATP binding, autophosphorylation, the ability to act as a phosphodonor for their response regulators, and in many cases the ability to catalyze the hydrolytic dephosphorylation of their response regulator. Here, we explore the functional role of “split kinases” where the ATP binding and phosphotransfer activities of a conventional histidine kinase are split onto two distinct proteins that form a complex. We find that this unusual configuration can enable ultrasensitivity and bistability in the signal-response relationship of the resulting system. These dynamics are displayed under a wide parameter range but only when specific biochemical requirements are met. We experimentally show that one of these requirements, namely segregation of the phosphatase activity predominantly onto the free form of one of the proteins making up the split kinase, is met in Rhodobacter sphaeroides. These findings indicate split kinases as a bacterial alternative for enabling ultrasensitivity and bistability in signaling networks. Genomic analyses reveal that up 1.7% of all identified histidine kinases have the potential to be split and bifunctional.  相似文献   

10.
The ability of an organism to survive depends on its capability to adapt to external conditions. In addition to metabolic versatility and efficient replication, reliable signal transduction is essential. As signaling systems are under permanent evolutionary pressure one may assume that their structure reflects certain functional properties. However, despite promising theoretical studies in recent years, the selective forces which shape signaling network topologies in general remain unclear. Here, we propose prevention of autoactivation as one possible evolutionary design principle. A generic framework for continuous kinetic models is used to derive topological implications of demanding a dynamically stable ground state in signaling systems. To this end graph theoretical methods are applied. The index of the underlying digraph is shown to be a key topological property which determines the so-called kinetic ground state (or off-state) robustness. The kinetic robustness depends solely on the composition of the subdigraph with the strongly connected components, which comprise all positive feedbacks in the network. The component with the highest index in the feedback family is shown to dominate the kinetic robustness of the whole network, whereas relative size and girth of these motifs are emphasized as important determinants of the component index. Moreover, depending on topological features, the maintenance of robustness differs when networks are faced with structural perturbations. This structural off-state robustness, defined as the average kinetic robustness of a network''s neighborhood, turns out to be useful since some structural features are neutral towards kinetic robustness, but show up to be supporting against structural perturbations. Among these are a low connectivity, a high divergence and a low path sum. All results are tested against real signaling networks obtained from databases. The analysis suggests that ground state robustness may serve as a rationale for some structural peculiarities found in intracellular signaling networks.  相似文献   

11.
The observation that platelet-derived growth factor (PDGF) increases the catalytic activity of Src family members (Src) suggests that they contribute to PDGF-dependent responses. The role of Src in PDGF-dependent cell cycle progression, phosphorylation of proteins, and chemotaxis has been tested by investigators using a variety of cell types and approaches, and it appears that the contribution of Src is highly variable. This idea is perhaps best illustrated by the finding that Src plays radically different roles downstream of the PDGF alpha- and beta-receptor subunits. Hence, Src is a versatile signal relay enzyme, whose contribution to a signaling cascade depends on variables such as the nature of the receptor via which the cell is activated, as well as the cell type itself.  相似文献   

12.
Multisite phosphorylation of proteins is a powerful signal processing mechanism that plays crucial roles in cell division and differentiation as well as in disease. We recently demonstrated a novel phenomenon in cell cycle regulation by showing that cyclin-dependent kinase–dependent multisite phosphorylation of a crucial substrate is performed sequentially in the N-to-C terminal direction along the disordered protein. The process is controlled by key parameters, including the distance between phosphorylation sites, the distribution of serines and threonines in sites, and the position of docking motifs. According to our model, linear patterns of phosphorylation along disordered protein segments determine the signal-response function of a multisite phosphorylation switch. Here we discuss the general advantages and engineering principles of multisite phosphorylation networks as processors of kinase signals. We also address the idea of using the mechanistic logic of linear multisite phosphorylation networks to design circuits for synthetic biology applications.  相似文献   

13.
Cells may discriminate among ligands with different dwell times for receptor binding through a mechanism called kinetic proofreading in which the formation of an activated receptor complex requires a progression of events that is aborted if the ligand dissociates before completion. This mechanism explains how, at equivalent levels of receptor occupancy, a rapidly dissociating ligand can be less effective than a more slowly dissociating analog at generating distal cellular responses. Simple mathematical models predict that kinetic proofreading is limited to the initial complex; once the signal passes to second messengers, the dwell time no longer regulates the signal. This suggests that an assay for kinetic proofreading might be used to determine which activation events occur within the initial signaling complex. In signaling through the high affinity IgE receptor FcepsilonRI, the transmembrane adaptor called linker for activation of T cells (LAT) is thought to nucleate a distinct secondary complex. Experiments in which the concentrations of two ligands with different dwell times are adjusted to equalize the level of LAT phosphorylation in rat basophilic leukemia 2H3 cells show that Erk2 phosphorylation, intracellular Ca(2+), and degranulation exhibit kinetic proofreading downstream of LAT phosphorylation. These results suggest that ligand-bound FcepsilonRI and LAT form a complex that is required for effective signal transmission.  相似文献   

14.
Lee DJ  Kim S  Ha YM  Kim J 《Planta》2008,227(3):577-587
Cytokinins are plant hormones that regulate diverse aspects of plant growth and development. Arabidopsis cytokinin signal transduction utilizes a multi-step two-component signaling (TCS) system by histidyl–aspartidyl phosphorelays. We here show that phosphorylation of ARR7, an A-type response regulator that acts as a negative regulator of cytokinin signaling, is required for its function in plants. Phosphorylation of ARR7 is inhibited in vitro by mutation in a putative phospho-accepting Asp residue into an Asn residue (ARR7D85N). While ectopic expression of ARR7 decreases root-growth inhibition, callus formation, and cytokinin-inducible gene expression, overexpression of ARR7 D85N at the similar level does not generate these phenotypes. ARR7D85N is localized to the nucleus and the half-life of this mutant protein is similar to that of ARR7 in Arabidopsis mesophyll protoplasts. These results suggest that the phosphorylation of ARR7 is necessary for ARR7-mediated cytokinin response.  相似文献   

15.
G Carpenter 《FASEB journal》1992,6(14):3283-3289
Among the intracellular milieu of proteins are molecules with defined biochemical functions that serve as substrates for ligand-activated tyrosine kinase receptors. It seems likely that some of these substrate molecules are elements of a critical signaling pathway used by growth factors to control cell proliferation and subverted by oncogenes to deregulate this process. Although the process of cell growth and division is relatively slow compared with other hormonally regulated responses, homeostasis in a human being requires approximately 20 x 10(6) cell divisions per second for the renewal of various cell populations. This review summarizes the present understanding of tyrosine kinase substrates that seem likely to have key roles in the signal transduction pathway that regulates cell proliferation. This includes structural features of these molecules, the influence of tyrosine phosphorylation on their functions, the biological roles of these proteins, and the capacity of these substrates to associate with activated receptor tyrosine kinases.  相似文献   

16.
The common model for integrin mediated signaling is based on integrin clustering and the potential for that clustering to recruit signaling molecules including FAK and src. The clustering model for transmembrane signaling originated with the analysis of the EGF receptor signaling and remains the predominant model. The roles for substrate-bound ligand and ligand occupancy in integrin-mediated signaling are less clear. A kinetic model was established using HT1080 cells in which there was a linear relationship between the strength of adhesion, the proportion of alpha5beta1 integrin that could be chemically cross-linked, and the number of receptor-ligand bonds. This graded signal produced a similarly graded response measured by the level of specific phosphorylation of FAK Y397. FAK Y397 phosphorylation could also be induced by antibody bound to the substrate. In contrast, clustering of alpha5beta1 on suspended cells with either antibody to beta1 or by clustering of soluble ligand bound to alpha5beta1 induced the phosphorylation of FAK Y861 but not Y397. There were no differences in signaling when activating antibodies were compared with blocking antibodies, presence or absence of ligand. Only tethering of alpha5beta1 to the substrate was required for induction of FAK Y397 phosphorylation.  相似文献   

17.
18.
Xing J  Chen J 《PloS one》2008,3(5):e2140
In their classical work (Proc. Natl. Acad. Sci. USA, 1981, 78:6840-6844), Goldbeter and Koshland mathematically analyzed a reversible covalent modification system which is highly sensitive to the concentration of effectors. Its signal-response curve appears sigmoidal, constituting a biochemical switch. However, the switch behavior only emerges in the 'zero-order region', i.e. when the signal molecule concentration is much lower than that of the substrate it modifies. In this work we showed that the switching behavior can also occur under comparable concentrations of signals and substrates, provided that the signal molecules catalyze the modification reaction in cooperation. We also studied the effect of dynamic disorders on the proposed biochemical switch, in which the enzymatic reaction rates, instead of constant, appear as stochastic functions of time. We showed that the system is robust to dynamic disorder at bulk concentration. But if the dynamic disorder is quasi-static, large fluctuations of the switch response behavior may be observed at low concentrations. Such fluctuation is relevant to many biological functions. It can be reduced by either increasing the conformation interconversion rate of the protein, or correlating the enzymatic reaction rates in the network.  相似文献   

19.
G protein‐coupled receptors (GPCRs) constitute the largest family of cell surface receptors that mediate numerous cell signaling pathways, and are targets of more than one‐third of clinical drugs. Thanks to the advancement of novel structural biology technologies, high‐resolution structures of GPCRs in complex with their signaling transducers, including G‐protein and arrestin, have been determined. These 3D complex structures have significantly improved our understanding of the molecular mechanism of GPCR signaling and provided a structural basis for signaling‐biased drug discovery targeting GPCRs. Here we summarize structural studies of GPCR signaling complexes with G protein and arrestin using rhodopsin as a model system, and highlight the key features of GPCR conformational states in biased signaling including the sequence motifs of receptor TM6 that determine selective coupling of G proteins, and the phosphorylation codes of GPCRs for arrestin recruitment. We envision the future of GPCR structural biology not only to solve more high‐resolution complex structures but also to show stepwise GPCR signaling complex assembly and disassembly and dynamic process of GPCR signal transduction.  相似文献   

20.
In a given environment, plants are constantly exposed to multitudes of stimuli. These stimuli are sensed and transduced to generate a diverse array of responses by several signal transduction pathways. Calcium (Ca2+) signaling is one such important pathway involved in transducing a large number of stimuli or signals in both animals and plants. Ca2+ engages a plethora of decoders to mediate signaling in plants. Among these groups of decoders, the sensor responder complex of calcineurin B‐like protein (CBL) and CBL‐interacting protein kinases (CIPKs) play a very significant role in transducing these signals. The signal transduction mechanism in most cases is phosphorylation events, but some structural role for the pair has also come to light recently. In this review, we discuss the structural nature of the sensor‐responder duo; their mechanism of substrate phosphorylation and also their structural role in modulating targets. Moreover, the mechanism of complex formation and mechanistic role of protein phosphatases with CBL–CIPK module has been mentioned. A comparison of CBL–CIPK with other decoders of Ca2+ signaling in plants also signifies the relatedness and diversity in signaling pathways. Further an attempt has been made to compare this aspect of Ca2+ signaling pathways in different plant species to develop a holistic understanding of conservation of stimulus–response‐coupling mediated by this Ca2+–CBL–CIPK module.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号