首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellular therapies have shown immense promise in the treatment of nonhealing wounds. Cell sheets are an emerging strategy in tissue engineering, and these cell sheets are promising as a delivery method of mesenchymal stem cells to the wound bed. Cell sheet technology utilizes temperature dependent polymers to allow for lifting of cultured cells and extracellular matrix without the use of digestive enzymes. While mesenchymal stem cells (MSCs) have shown success in cell sheets for myocardial repair, examination of cell sheets in the field of wound healing has been limited. We previously developed a novel cell sheet composed of human adipose-derived stem cells (ASCs). Both single and triple layer cell sheets were examined in a full-thickness murine wound model. The treatment cell sheets were compared with untreated controls and analyzed at timepoints of 7, 14, 18 and 21 d. The ASC cell sheets showed increased healing at 7, 14 and 18 d, and this effect was increased in the triple layer cell sheet group. Future development of these cell sheets will focus on increasing angiogenesis in the wound bed, utilizing multiple cell types, and examining allogeneic cell sheets. Here we review our experiment, expand upon our future directions and discuss the potential of an off-the-shelf cell sheet. In the field of wound healing, such a cell sheet is both clinically and scientifically exciting.  相似文献   

2.
In epithelial cell movements, which occur during wound healing or embryonic morphogenesis, sheets of cells move together as a unit. Molecular mechanisms that regulate this sheet movement have been largely unknown, although cell locomotion or movement mechanisms for individual cells, such as for fibroblastic cells, have been extensively studied. Here, we show that, during wound healing, sheets of MDCK epithelial cells migrate coordinately as a unit, and wound-induced activation of ERK MAP kinase (ERK1/2) propagates in cell sheets in accordance with the cell sheet movement. Inhibition of ERK1/2 activation by specific MEK inhibitors or by expressing dominant-negative ERK2 results in marked inhibition of the sheet movement during wound healing, and inhibition of the cell sheet movement by disrupting actin cytoskeleton suppresses propagation of ERK1/2 activation. These results indicate that cell movement and ERK1/2 activation form a positive feedback loop, which facilitates cell sheet migration. Moreover, we find that Src family kinase inhibitors suppress both cell migration and propagation of ERK1/2 activation, suggesting that Src family kinase may participate in this feedback loop. Interestingly, neither cell sheet migration as a unit nor migration-dependent propagation of ERK1/2 activation occurs during wound healing in fibroblastic 3Y1 cells. Thus, our results identify specific requirements of ERK1/2 MAP kinase for epithelial cell sheet movement.  相似文献   

3.
Baek SH  Cho HW  Kwon YC  Lee JH  Kim MJ  Lee H  Choe KM 《FEBS letters》2012,586(6):772-777
Rho-family small GTPases regulate epithelial cell sheet migration by organizing actin and myosin during wound healing. Here, we report that Pak3, but not Pak1, is a downstream target protein for Rac1 in wound closure of the Drosophila larval epidermis. Pak3-deficient larvae failed to close a wound hole and this defect was not rescued by Pak1 expression, indicating differential functions of the two proteins. Pak3 localized to the wound margin, which selectively required Rac1. Pak3-deficient larvae showed severe defects in actin-myosin organization at the wound margin and in submarginal cells, which was reminiscent of the phenotypes of Rac1-deficient larvae. These results suggest that Pak3 specifically mediates Rac1 signaling in organizing actin and myosin during Drosophila epidermal wound healing.  相似文献   

4.
Hypoxia activates genetic programs that facilitate cell survival; however, in cancer, it may promote invasion and metastasis. In this study, we show that breast cancer cells cultured in 1.0% O(2) demonstrate changes consistent with epithelial-mesenchymal transition (EMT). Snail translocates to the nucleus, and E-cadherin is lost from plasma membranes. Vimentin expression, cell migration, Matrigel invasion, and collagen remodeling are increased. Hypoxia-induced EMT is accompanied by increased expression of the urokinase-type plasminogen activator receptor (uPAR) and activation of cell signaling factors downstream of uPAR, including Akt and Rac1. Glycogen synthase kinase-3beta is phosphorylated, and Snail expression is increased. Hypoxia-induced EMT is blocked by uPAR gene silencing and mimicked by uPAR overexpression in normoxia. Antagonizing Rac1 or phosphatidylinositol 3-kinase also inhibits development of cellular properties associated with EMT in hypoxia. Breast cancer cells implanted on chick chorioallantoic membranes and treated with CoCl(2), to model hypoxia, demonstrate increased dissemination. We conclude that in hypoxia, uPAR activates diverse cell signaling pathways that cooperatively induce EMT and may promote cancer metastasis.  相似文献   

5.
6.
Cell morphology dictates response to a wide variety of stimuli, controlling cell metabolism, differentiation, proliferation, and death. Epithelial-mesenchymal transition (EMT) is a developmental process in which epithelial cells acquire migratory characteristics, and in the process convert from a "cuboidal" epithelial structure into an elongated mesenchymal shape. We had shown previously that matrix metalloproteinase-3 (MMP3) can stimulate EMT of cultured mouse mammary epithelial cells through a process that involves increased expression of Rac1b, a protein that stimulates alterations in cytoskeletal structure. We show here that cells treated with MMP-3 or induced to express Rac1b spread to cover a larger surface, and that this induction of cell spreading is a requirement of MMP-3/Rac1b-induced EMT. We find that limiting cell spreading, either by increasing cell density or by culturing cells on precisely defined micropatterned substrata, blocks expression of characteristic markers of EMT in cells treated with MMP-3. These effects are not caused by general disruptions in cell signaling pathways, as TGF-beta-induced EMT is not affected by similar limitations on cell spreading. Our data reveal a previously unanticipated cell shape-dependent mechanism that controls this key phenotypic alteration and provide insight into the distinct mechanisms activated by different EMT-inducing agents.  相似文献   

7.
Epithelial-mesenchymal transition (EMT), which is characterized by the suppression of the adhesion protein E-cadherin, is a crucial process that promotes metastasis and stem-like properties of cancer cells. However, the dissociation of cellular aggregates is not sufficient to explain why cancer cells move, and the motile nature of cancer cells undergoing EMT remains elusive. Here, we identify a mechanism in which the EMT inducer Twist1 elicits cancer cell movement through activation of RAC1. Twist1 cooperates with BMI1 to suppress let-7i expression, which results in upregulation of NEDD9 and DOCK3, leading to RAC1 activation and enabling mesenchymal-mode movement in three-dimensional environments. Moreover, the suppression of let-7i contributes to Twist1-induced stem-like properties. Clinically, activation of the Twist1-let-7i-NEDD9 axis in head and neck cancer patients correlates with tumour invasiveness and worse outcome. Our results uncover an essential mechanism to explain how Twist1 induces the motile stem-like cancer cell phenotype beyond simply suppressing E-cadherin.  相似文献   

8.
Repair of the airway epithelium after injury is critical for restoring normal lung. The reepithelialization process involves spreading and migration followed later by cell proliferation. Rho-GTPases are key components of the wound healing process in many different types of tissues, but the specific roles for RhoA and Rac1 vary and have not been identified in lung epithelial cells. We investigated whether RhoA and Rac1 regulate wound closure of bronchial epithelial cells. RhoA and Rac1 proteins were efficiently expressed in a cell line of human bronchial epithelial cells (16HBE) by adenovirus-based gene transfer. We found that both constitutively active RhoA and dominant negative RhoA inhibited wound healing, suggesting that both activation and inhibition of RhoA interfere with normal wound healing. Overexpression of wild-type Rac1 induced upregulation of RhoA, disrupted intercellular junctions, and inhibited wound closure. Dominant negative Rac1 also inhibited wound closure. Inhibition of the downstream effector of RhoA, Rho-kinase, with Y-27632 suppressed actin stress fibers and focal adhesion formation, increased Rac1 activity, and stimulated wound closure. The activity of both RhoA and Rac1 are influenced by the polymerization state of microtubules, and cell migration involves coordinated action of actin and microtubules. Microtubule depolymerization upon nocodazole treatment led to an increase in focal adhesions and decreased wound closure. We conclude that coordination of both RhoA and Rac1 activity contributes to bronchial epithelial wound repair mechanisms in vitro, that inhibition of Rho-kinase accelerates wound closure, and that efficient repair involves intact microtubules.  相似文献   

9.
E-cadherin is a major cell-cell adhesion protein of epithelia that is trafficked to the basolateral cell surface in a polarized fashion. The exact post-Golgi route and regulation of E-cadherin transport have not been fully described. The Rho GTPases Cdc42 and Rac1 have been implicated in many cell functions, including the exocytic trafficking of other proteins in polarized epithelial cells. These Rho family proteins are also associated with the cadherin-catenin complexes at the cell surface. We have used functional mutants of Rac1 and Cdc42 and inactivating toxins to demonstrate specific roles for both Cdc42 and Rac1 in the post-Golgi transport of E-cadherin. Dominant-negative mutants of Cdc42 and Rac1 accumulate E-cadherin at a distinct post-Golgi step. This accumulation occurs before p120ctn interacts with E-cadherin, because p120ctn localization was not affected by the Cdc42 or Rac1 mutants. Moreover, the GTPase mutants had no effect on the trafficking of a targeting mutant of E-cadherin, consistent with the selective involvement of Cdc42 and Rac1 in basolateral trafficking. These results provide a new example of Rho GTPase regulation of basolateral trafficking and demonstrate novel roles for Cdc42 and Rac1 in the post-Golgi transport of E-cadherin. Rho family GTPases; catenin; polarity; sorting; actin  相似文献   

10.
p120 catenin regulates the activity of the Rho family guanosine triphosphatases (including RhoA and Rac1) in an adhesion-dependent manner. Through this action, p120 promotes a sessile cellular phenotype when associated with epithelial cadherin (E-cadherin) or a motile phenotype when associated with mesenchymal cadherins. In this study, we show that p120 also exerts significant and diametrically opposing effects on tumor cell growth depending on E-cadherin expression. Endogenous p120 acts to stabilize E-cadherin complexes and to actively promote the tumor-suppressive function of E-cadherin, potently inhibiting Ras activation. Upon E-cadherin loss during tumor progression, the negative regulation of Ras is relieved; under these conditions, endogenous p120 promotes transformed cell growth both in vitro and in vivo by activating a Rac1–mitogen-activated protein kinase signaling pathway normally activated by the adhesion of cells to the extracellular matrix. These data indicate that both E-cadherin and p120 are important regulators of tumor cell growth and imply roles for both proteins in chemoresistance and targeted therapeutics.  相似文献   

11.
12.
Transforming growth factor-β1 (TGF-β1) activates Rac1 GTPase in mouse transformed keratinocytes. Expression of a constitutively active Q61LRac1 mutant induced an epithelial to mesenchymal transition (EMT) linked to stimulation of cell migration and invasion. On the contrary, expression of a dominant-negative N17TRac1 abolished TGF-β1-induced cell scattering, migration and invasion. Moreover, Q61LRac1 enhanced metalloproteinase-9 (MMP9) production to levels comparable to those induced by TGF-β1, while N17TRac1 was inhibitory. TGF-β1-mediated EMT involves the expression of the E-cadherin repressor Snail1, regulated by the Rac1 and mitogen-activated protein kinase (MAPK) pathways. Furthermore, MMP9 production was MAPK-dependent, as the MEK inhibitor PD98059 decreased TGF-β1-induced MMP9 expression and secretion in Q61LRac1 expressing cells. We propose that regulation of TGF-β1-mediated plasticity of transformed keratinocytes requires the cooperation between the Rac1 and MAPK signalling pathways.  相似文献   

13.
Gamma-Aminobutyric Acid Type B Receptor (GABABR) plays essential roles in tumor progression. However, the function of GABABR in colorectal cancer (CRC) needs further clarification. As the main part of GABABR, GABABR1 expression was identified significantly lower in tumor tissues than those in non-tumor normal tissues and that CRC patients with high GABABR1 expression lived longer. Further studies indicated that knockdown of GABABR1 elevated CRC cell proliferation, migration, and invasion. Furthermore, knockdown of GABABR1 activated the expression of the epithelial-mesenchymal transition (EMT)-related proteins N-cadherin and Vimentin, whereas decrease the protein level of E-cadherin. In addition, activation of Hippo/YAP1 signaling contributes to the GABABR1 down-regulation promoted proliferation, migration, invasion and EMT in CRC cells. At last, we verified the contribution of Hippo/YAP1 signaling in the GABABR1 down-regulation impaired biological phenotype of colon cancer cells in vivo. In summary, these data indicate that GABABR1 impairs the migration and invasion of CRC cells by inhibiting EMT and the Hippo/YAP1 pathway, suggesting that GABABR1 could be a potential therapeutic target for CRC.  相似文献   

14.
15.
16.
Numb is an endocytic adaptor protein that regulates internalization and post-endocytic trafficking of cell surface proteins. In polarized epithelial cells Numb is localized to the basolateral membrane, and recent work has implicated Numb in regulation of cell adhesion and migration, suggesting a role for Numb in epithelial–mesenchymal transition (EMT). We depleted MDCK cells of Numb and examined the effects downstream of EMT-promoting stimuli. While knockdown of Numb did not affect apicobasal polarity, we show that depletion of Numb destabilizes E-cadherin-based cell–cell adhesion and promotes loss of epithelial cell morphology. In addition, Numb knockdown in MDCK cells potentiates HGF-induced lamellipodia formation and cell dispersal. Examination of Rac1-GTP levels in Numb knockdown cells revealed hyperactivation of Rac1 following extracellular calcium depletion and HGF stimulation, which corresponds with enhanced loss of cell adhesions and lamellipodia formation. Furthermore, inhibition of Rac1 in Numb depleted cells stabilized cell–cell contacts following depletion of extracellular calcium. Together, these data indicate that Numb acts to suppress Rac1-GTP accumulation, and its loss leads to increased sensitivity toward extracellular signals that disrupt cell–cell adhesion to induce epithelial–mesenchymal transition (EMT) and cell dispersal.  相似文献   

17.
BACKGROUND: Sheets of cells move together as a unit during wound healing and embryonic tissue movements, such as those occurring during gastrulation and neurulation. We have used epithelial wound closure as a model system for such movements and examined the mechanisms of closure and the importance of the Rho family of Ras-related small GTPases in this process. RESULTS: Wounds induced in Madin-Darby canine kidney (MDCK) epithelial cell monolayers close by Rac- and phosphoinositide-dependent cell crawling, with formation of lamellipodia at the wound margin, and not by contraction of a perimarginal actomyosin purse-string. Although Rho-dependent actin bundles usually form at the margin, neither Rho activity nor formation of these structures is required for wound closure to occur at a normal rate. Cdc42 activity is also not required for closure. Inhibition of Rho or Cdc42 results, however, in statistically significant decreases in the regularity of wound closure, as determined by the ratio of wound margin perimeter over the remaining denuded area at different times. The Rac-dependent force generation for closure is distributed over several rows of cells from the wound margin, as inhibition of motility in the first row of cells alone does not inhibit closure and can be compensated for by generation of motile force in cells behind the margin. Furthermore, we observed high levels of Rac-dependent actin assembly in the first few rows of cells from the wound margin. CONCLUSIONS: Wounds in MDCK cell sheets do not close by purse-string contraction but by a crawling behavior involving Rac, phosphoinositides and active movement of multiple rows of cells. This finding suggests a new distributed mode of signaling and movement that, nevertheless, resembles individual cell motility. Although Rho and Cdc42 activities are not required for closure, they have a role in determining the regularity of closure.  相似文献   

18.
Cells move along surfaces both as single cells and multi-cellular units. Recent research points toward pivotal roles for water flux through aquaporins (AQPs) in single cell migration. Their expression is known to facilitate this process by promoting rapid shape changes. However, little is known about the impact on migrating epithelial sheets during wound healing and epithelial renewal. Here, we investigate and compare the effects of AQP9 on single cell and epithelial sheet migration. To achieve this, MDCK-1 cells stably expressing AQP9 were subjected to migration assessment. We found that AQP9 facilitated cell locomotion at both the single and multi-cellular level. Furthermore, we identified major differences in the monolayer integrity and cell size upon expression of AQP9 during epithelial sheet migration, indicating a rapid volume-regulatory mechanism. We suggest a novel mechanism for epithelial wound healing based on AQP-induced swelling and expansion of the monolayer.  相似文献   

19.
We previously demonstrated that both Tiam1, an activator of Rac, and constitutively active V12Rac promote E-cadherin–mediated cell–cell adhesion in epithelial Madin Darby canine kidney (MDCK) cells. Moreover, Tiam1 and V12Rac inhibit invasion of Ras-transformed, fibroblastoid MDCK-f3 cells by restoring E-cadherin–mediated cell–cell adhesion. Here we show that the Tiam1/Rac-induced cellular response is dependent on the cell substrate. On fibronectin and laminin 1, Tiam1/Rac signaling inhibits migration of MDCK-f3 cells by restoring E-cadherin–mediated cell– cell adhesion. On different collagens, however, expression of Tiam1 and V12Rac promotes motile behavior, under conditions that prevent formation of E-cadherin adhesions. In nonmotile cells, Tiam1 is present in adherens junctions, whereas Tiam1 localizes to lamellae of migrating cells. The level of Rac activation by Tiam1, as determined by binding to a glutathione-S-transferase– PAK protein, is similar on fibronectin or collagen I, suggesting that rather the localization of the Tiam1/Rac signaling complex determines the substrate-dependent cellular responses. Rac activation by Tiam1 requires PI3-kinase activity. Moreover, Tiam1- but not V12Rac-induced migration as well as E-cadherin–mediated cell– cell adhesion are dependent on PI3-kinase, indicating that PI3-kinase acts upstream of Tiam1 and Rac.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号