首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mandibular glands of queen honeybees produce a pheromone that modulates many aspects of worker honeybee physiology and behavior and is critical for colony social organization. The exact chemical blend produced by the queen differs between virgin and mated, laying queens. Here, we investigate the role of mating and reproductive state on queen pheromone production and worker responses. Virgin queens, naturally mated queens, and queens instrumentally inseminated with either semen or saline were collected 2 days after mating or insemination. Naturally mated queens had the most activated ovaries and the most distinct chemical profile in their mandibular glands. Instrumentally inseminated queens were intermediate between virgins and naturally mated queens for both ovary activation and chemical profiles. There were no significant differences between semen- and saline-inseminated queens. Workers were preferentially attracted to the mandibular gland extracts from queens with significantly more activated ovaries. These studies suggest that the queen pheromone blend is modulated by the reproductive status of the queens, and workers can detect these subtle differences and are more responsive to queens with higher reproductive potential. Furthermore, it appears as if insemination substance does not strongly affect physiological characteristics of honeybee queens 2 days after insemination, suggesting that the insemination process or volume is responsible for stimulating these early postmating changes in honeybee queens.  相似文献   

2.
Effects of insemination quantity on honey bee queen physiology   总被引:1,自引:0,他引:1  
Mating has profound effects on the physiology and behavior of female insects, and in honey bee (Apis mellifera) queens, these changes are permanent. Queens mate with multiple males during a brief period in their early adult lives, and shortly thereafter they initiate egg-laying. Furthermore, the pheromone profiles of mated queens differ from those of virgins, and these pheromones regulate many different aspects of worker behavior and colony organization. While it is clear that mating causes dramatic changes in queens, it is unclear if mating number has more subtle effects on queen physiology or queen-worker interactions; indeed, the effect of multiple matings on female insect physiology has not been broadly addressed. Because it is not possible to control the natural mating behavior of queens, we used instrumental insemination and compared queens inseminated with semen from either a single drone (single-drone inseminated, or SDI) or 10 drones (multi-drone inseminated, or MDI). We used observation hives to monitor attraction of workers to SDI or MDI queens in colonies, and cage studies to monitor the attraction of workers to virgin, SDI, and MDI queen mandibular gland extracts (the main source of queen pheromone). The chemical profiles of the mandibular glands of virgin, SDI, and MDI queens were characterized using GC-MS. Finally, we measured brain expression levels in SDI and MDI queens of a gene associated with phototaxis in worker honey bees (Amfor). Here, we demonstrate for the first time that insemination quantity significantly affects mandibular gland chemical profiles, queen-worker interactions, and brain gene expression. Further research will be necessary to elucidate the mechanistic bases for these effects: insemination volume, sperm and seminal protein quantity, and genetic diversity of the sperm may all be important factors contributing to this profound change in honey bee queen physiology, queen behavior, and social interactions in the colony.  相似文献   

3.
The presence of the honey bee queen reduces worker ovary activation. When the queen is healthy and fecund, this is interpreted as an adaptive response as workers can gain fitness from helping the queen raise additional offspring, their sisters. However, when the queen is absent, workers activate their ovaries and lay unfertilized eggs that become males. Queen pheromones are recognised as a factor affecting worker ovary activation. Recent work has shown that queen mandibular pheromone composition changes with queen mating condition and workers show different behavioural responses to pheromone extracts from these queens. Here, we tested whether workers reared in colonies with queens of different mating condition varied in level of ovary activation. We also examined the changes in the chemical composition of the queen mandibular glands to determine if the pheromone blend varied among the queens. We found that the workers activated their ovaries when queens were unmated and had lower ovary activation when raised with mated queens, suggesting that workers detect and respond adaptively to queens of differing mating status. Moreover, variation in queen mandibular gland’s chemical composition correlated with the levels of worker ovary activation. Although correlative, this evidence suggests that queen pheromone may act as a signal of queen mating condition for workers, in response to which they alter their level of ovary activation.  相似文献   

4.
Summary The role of the queen in relation to wax secretion and comb building in honeybees was analyzed with respect to queen status (mated, virgin and dead queens and queenlessness), and pheromones of the head and abdominal tergite of queens. Worker variables considered were colony size, percentage of bees bearing wax scales, wax scale weight, and weight of constructed combs.The amount of wax recovered from festoon bees and the percentage of festoon bees bearing wax were independent of queen status, the pheromones of queens and access to the queen. Colonies with full access to freely moving mated queens always constructed significantly more comb than those headed by virgin or dead queens as well as all permutations of caged and division board queens whose mandibular glands and/or abdominal tergite glands were operative or not.Despite pheromonal similarity of virgin queens to mated ones, colonies headed by virgin queens constructed as little comb as did queenless colonies. The bouquets of the mandibular glands did not differ significantly among queens nor was the amount of comb constructed correlated with pheromonal bouquet. Comb building is greatest among colonies having full access to freely moving queens but the stimulus for such building is not attributable to the 90DA, 9HDA and 10HDA components of the queen's mandibular gland secretions.  相似文献   

5.
Ropalidia marginata, a primitively eusocial wasp, is different from typical primitively eusocial species in having docile queens who cannot be using dominance to maintain reproductive monopoly and instead appear to use a pheromone from the Dufour's gland to do so. When a docile queen is removed from her colony, one of the workers (potential queen, PQ) becomes highly aggressive, and if the queen is not returned, gradually loses her aggression and becomes the new docile queen within a few days. We hypothesized that the decrease in aggression of the PQ with time since queen removal should be correlated with her change in ovaries and pheromone profile. Because the Dufour's gland hydrocarbon composition in R. marginata can be correlated with fertility, this also gave us an opportunity to test whether PQ is different from workers in her Dufour's gland hydrocarbons. In this study, we therefore trace the road to royalty in R. marginata, that is, the transition of the PQ during queen establishment, in terms of her ovaries, aggression, and Dufour's gland hydrocarbons. Our study focuses on queen establishment, which is important for understanding how reproductive conflict can be manifested and resolved.  相似文献   

6.
Odorant-binding proteins (OBPs) and chemosensory proteins (CSPs) mediate both perception and release of chemical stimuli in insects. The genome of the honey bee contains 21 genes encoding OBPs and 6 encoding CSPs. Using a proteomic approach, we have investigated the expression of OBPs and CSPs in the mandibular glands of adult honey bees in relation to caste and age. OBP13 is mostly expressed in young individuals and in virgin queens, while OBP21 is abundant in older bees and is prevalent in mated queens. OBP14, which had been found in larvae, is produced in hive workers' glands. Quite unexpectedly, the mandibular glands of drones also contain OBPs, mainly OBP18 and OBP21. We have expressed three of the most represented OBPs and studied their binding properties. OBP13 binds with good specificity oleic acid and some structurally related compounds, OBP14 is better tuned to monoterpenoid structures, while OBP21 binds the main components of queen mandibular pheromone as well as farnesol, a compound used as a trail pheromone in the honey bee and other hymenopterans. The high expression of different OBPs in the mandibular glands suggests that such proteins could be involved in solubilization and release of semiochemicals.  相似文献   

7.
Honey bee colonies consist of tens of thousands of workers and a single reproductive queen that produces a pheromone blend which maintains colony organization. Previous studies indicated that the insemination quantity and volume alter queen mandibular pheromone profiles. In our 11-month long field study we show that workers are more attracted to high-volume versus low-volume inseminated queens, however, there were no significant differences between treatments in the number of queen cells built by workers in preparation for supersedure. Workers exposed to low-volume inseminated queens initiated production of queen-like esters in their Dufour's glands, but there were no significant difference in the amount of methyl farnesoate and juvenile hormone in worker hemolymph. Lastly, queen overwintering survival was unexpectedly lower in high-volume inseminated queens. Our results suggest that the queen insemination volume could ultimately affect colony health and productivity.  相似文献   

8.

Background

In social insects, the queen is essential to the functioning and homeostasis of the colony. This influence has been demonstrated to be mediated through pheromone communication. However, the only social insect for which any queen pheromone has been identified is the honey bee (Apis mellifera) with its well-known queen mandibular pheromone (QMP). Although pleiotropic effects on colony regulation are accredited to the QMP, this pheromone does not trigger the full behavioral and physiological response observed in the presence of the queen, suggesting the presence of additional compounds. We tested the hypothesis of a pheromone redundancy in honey bee queens by comparing the influence of queens with and without mandibular glands on worker behavior and physiology.

Results

Demandibulated queens had no detectable (E)-9-oxodec-2-enoic acid (9-ODA), the major compound in QMP, yet they controlled worker behavior (cell construction and queen retinue) and physiology (ovary inhibition) as efficiently as intact queens.

Conclusions

We demonstrated that the queen uses other pheromones as powerful as QMP to control the colony. It follows that queens appear to have multiple active compounds with similar functions in the colony (pheromone redundancy). Our findings support two hypotheses in the biology of social insects: (1) that multiple semiochemicals with synonymous meaning exist in the honey bee, (2) that this extensive semiochemical vocabulary exists because it confers an evolutionary advantage to the colony.  相似文献   

9.
Extracts of mandibular glands taken from adult queens of the honey bee, Apis mellifera carnica, were analysed by gas chromatography-mass spectroscopy. More than 100 compounds could be identified among which oxygenated fatty acids with six, eight, 10 and 12 carbon atoms are particularly interesting since they show structural relationships to the queen substance, (E)-9-oxo-2-decenoic acid. Changes in the patterns of volatiles were followed up from emergence until the full dominant status of an egg-laying queen in a strong colony. Generally, the amount of volatiles per gland was found to increase with age. The final level of queen substance (9-ODA) content is reached at the postmating stage about 10 days after emergence. Ontogenetic patterns of concentrations were determined for those components regarded to predominantly contribute to the royal pheromone. Characteristic compositions of signals, possibly involved in the premating, mating and postmating dominance status of a honey bee queen are discussed. Copyright 1997 Elsevier Science Ltd. All rights reserved  相似文献   

10.
Alarm pheromones of social insects are best known for their role in the defence and maintenance of colony integrity. Previous studies with the fire ant Solenopsis invicta Buren (Hymenoptera: Formicidae) demonstrate that the mandibular glands of workers (sterile females) and male and female sexuals produce an alarm pheromone, 2‐ethyl‐3,6‐dimethylpyrazine. The function of alarm pheromones in worker ants is well understood and divergent from the function of these compounds in the winged sexual forms. The present study quantifies the amount of pyrazine in the mandibular glands from male and female alate sexuals, as well as queens. Pyrazine production in female alates starts in the late pupal stage and increases until they reach mating flight‐ready maturity; however, after mating flight participation, the pyrazine level declines by >50%. Interestingly, mature male alates lose >85% of their mandibular gland pyrazine during mating flight activity. The results of the present study indicate that male and female sexuals use mandibular gland secretions for mating flight initiation and during mating flights. Furthermore, the ontogeny of mandibular gland products (pyrazine as the marker) from newly‐mated queens to mature colony queens shows a more than two‐fold increase in the amount of pyrazine by 6 months after mating. However, this is followed by a decline to trace amounts in mature colony queens (>2 years old), suggesting a function for mandibular gland products during colony development. Multifunctional use of social insect pheromones is well documented and data are reported in the present study suggesting new roles for mandibular gland products in fire ants.  相似文献   

11.
In this study, the functional morphology of the mandibular glands of pharaoh ant queens is investigated through histological and behavioural observations. The mandibular glands of queens of different age stages and mating status were examined at the light microscopical as well as the ultrastructural level. The results clearly show a high activity of the gland at the time of hatching, followed by a rapid degeneration independent of the queens' mating status. We therefore hypothesize the glandular secretion serves to stimulate workers to remove the queens' pupal skin. Experiments to compare hatching ability of isolated pupae and pupae assisted by workers confirmed the necessity of worker assistance, which is even more crucial to allow proper wing formation in queens and males. Together with the histological data, this suggests that the mandibular gland may indeed play a role in the social facilitation of hatching, although bioassays are required to give decisive answers about the mandibular gland's function.  相似文献   

12.
Summary Queen rearing is suppressed in honey bees (Apis mellifera L.) by pheromones, particularly the queen's mandibular gland pheromone. In this study we compared this pheromonally-based inhibition between temperate and tropically-evolved honey bees. Colonies of European and Africanized bees were exposed to synthetic queen mandibular gland pheromone (QMP) for ten days following removal of resident queens, and their queen rearing responses were examined. Queen rearing was suppressed similarly in both European and Africanized honey bees with the addition of synthetic QMP, indicating that QMP acts on workers of both races in a comparable fashion. QMP completely suppressed queen cell production for two days, but by day six, cells containing queen larvae were present in all treated colonies, indicating that other signals play a role in the suppression of queen rearing. In queenless control colonies not treated with QMP, Africanized bees reared 30% fewer queens than Europeans, possibly due to racial differences in response to feedback from developing queens and/or their cells. Queen development rate was faster in Africanized colonies, or they selected older larvae to initiate cells, as only 1 % of queen cells were unsealed after 10 days compared with 12% unsealed cells in European colonies.  相似文献   

13.
Queen substances from the abdomen of the honey bee queen   总被引:1,自引:0,他引:1  
Summary The secretion of the mandibular glands of a honey bee queen enables the worker bees to react to the presence of their queen. Extirpating the mandibular glands of the queen does not prevent that she is accepted by her colony. Hitherto this was attributed to contamination of the queen's body by mandibular gland substances during or preceding the extirpation. When, however, these glands are extirpated before they have secreted any material and the queens are inseminated artificially, the colonies still accept these queens. A normal-sized retinue, the absence of emergency cell building and the absence of activation of the worker's ovaries indicate that such a queen is still able to maintain her social position. This supports Verheijen-Voogd's (1959) conclusion that the queen's influence on her workers has a behavioural basis (chemoreception) rather than a biochemical one.Laboratory experiments reveal that apart from the mandibular gland substances other queen pheromones are produced in glands on the abdomen, most probably in the glands described by Renner and Baumann (1964).  相似文献   

14.
There is evidence that ant‐derived chemical stimuli are involved in regulating the digging behavior in Solenopsis invicta Buren. However, the source gland(s) and chemistry of such stimuli have never been revealed. In this study, extracts of mandibular, Dufour's, postpharyngeal, and poison glands were evaluated for their effect on ant digging and residing preferences of S. invicta workers from three colonies. In the intracolonial bioassays, workers showed significant digging preferences to mandibular gland extracts in 2 of 3 colonies and significant residing preferences in 1 of 3 colonies; significant digging preferences to Dufour's gland extracts in 1 of 3 colonies and significant residing preferences in 2 of 3 colonies. No digging and residing preferences were found for postpharyngeal and poison gland extracts. In intercolonial bioassays, significant digging and residing preferences were found for mandibular gland extracts in 3 of 6 colony combinations. Significant digging preferences to Dufour's gland extracts were found in 4 of 6 colony combinations and significant residing preferences in all 6 colony combinations. For postpharyngeal gland extracts, significant digging preferences were found only in 1 of 6 colonial combinations and no significant residing preferences were found. For poison gland extracts, no significant digging preferences were found; significant residing preferences were found in 1 of 6 colony combinations. However, a significant residing deterrence (negative residing preference index) was found for 2 of 6 colony combinations. Statistical analyses using data pooled from all colonies showed that mandibular and Dufour's gland extracts caused significant digging and residing preferences in both intracolonial and intercolonial bioassays but not postpharyngeal and poison gland extracts. By analyzing the data pooled from the same three colonies used for gland extract bioassays, it was found that, in no cases, workers showed significant digging and residing preferences to 2‐ethyl‐3,6‐dimethylpyrazine, an alarm pheromone component from mandibular gland.  相似文献   

15.
The poison sac of the fire ant Solenopsis invicta is the only identified glandular source of pheromones produced by a functional ant queen. This structure, which contains the poison gland, has previously been shown to be the source of a releaser pheromone that mediates queen recognition and tending by workers. The poison sac has also been demonstrated to be the source of a primer pheromone that inhibits winged, virgin queens from shedding their wings (dealating) and developing their ovaries. To determine if the poison sac was the only source of these pheromones, we excised the poison sac from queens and observed whether operated queens retained their pheromonal effects. In a first experiment, the poison sac was removed from functional (egg-laying) queens which were then paired with unoperated nestmate queens in small colonies. Counts of the workers surrounding each queen two weeks after the operation showed that queens without poison sac were as effective as their unoperated nestmates in attracting worker retinues. In a second experiment, we removed the poison sacs of virgin queens which had not yet begun laying eggs and thus had not begun producing queen pheromone. After allowing them to develop their ovaries, these individuals produced amounts of queen recognition pheromone comparable to those secreted by unoperated or sham operated virgin queens as determined by bioassay. Testing the head, thorax and abdomens of functional queens separately revealed that the head was the most attractive region in relation to its relative surface area. Bioassays of extracts of two cephalic glands-the mandibular gland and postpharyngeal gland-showed that the postpharyngeal gland is a second source of the queen recognition pheromone. Finally, we found that virgin queens whose poison sacs were removed before they began producing queen pheromone initiated production of a primer pheromone that inhibits winged virgin queens from dealating, indicating that this pheromonal effect also has an additional but as yet undetermined source. These results parallel those on the honey bee in which several of the pheromonal effects of functional queens appear to have multiple glandular sources.  相似文献   

16.
Assessing the mating 'health' of commercial honey bee queens   总被引:1,自引:0,他引:1  
Honey bee queens mate with multiple males, which increases the total genetic diversity within colonies and has been shown to confer numerous benefits for colony health and productivity. Recent surveys of beekeepers have suggested that 'poor queens' are a top management concern, thus investigating the reproductive quality and mating success of commercially produced honey bee queens is warranted. We purchased 80 commercially produced queens from large queen breeders in California and measured them for their physical size (fresh weigh and thorax width), insemination success (stored sperm counts and sperm viability), and mating number (determined by patriline genotyping of worker offspring). We found that queens had an average of 4.37 +/- 1.446 million stored sperm in their spermathecae with an average viability of 83.7 +/- 13.33%. We also found that the tested queens had mated with a high number of drones (average effective paternity frequency: 17.0 +/- 8.98). Queen "quality" significantly varied among commercial sources for physical characters but not for mating characters. These findings suggest that it may be more effective to improve overall queen reproductive potential by culling lower-quality queens rather than systematically altering current queen production practices.  相似文献   

17.
18.
The ponerine ant Ectatomma ruidum, though previously reported to possess only rudimentary recruitment ability, was found to lay chemical trails for mass recruitment to rich or difficult food sources. The pheromone originates from the Dufour's gland, a new source of trail pheromones in the primitive ant subfamily Ponerinae. During nest emigrations, E. ruidum practices stereotyped social carrying in the myrmicine mode. The discovery of this form of social carrying and of a recruitment pheromone in the Dufour's gland secretions support the hypothesis that the subfamily Myrmicinae is derived from an ectatommine ancestor. Other communication behaviors exhibited by E. ruidum include exchange of liquid food carried between the mandibles, chemical alarm communication, nest entrance marking, and an additional social carrying posture previously unknown in ants.  相似文献   

19.
Genetic and environmental influences on the worker honey bee retinue response to queen mandibular gland pheromone (QMP) were investigated. Worker progeny were reared from queens originating from four sources: Australia, New Zealand, and two locations in British Columbia, Canada (Simon Fraser University and Vancouver Island). Progeny from New Zealand queens responded significantly higher (P < 0.05) than progeny from Australia in a QMP retinue bioassay. Retinue response was not related to queen production of pheromone or colony environment, and the strain-dependent differences in retinue bioassay responses were maintained over a wide range of dosages. Selected high- and low-responding colonies were bioassayed over the course of 1 year. High-responding colonies contacted QMP lures more frequently than low-responding colonies (P < 0.05) throughout the year except in late summer. We conclude that there is a strong genetic component to QMP response by worker honey bees, as well as a seasonal effect on response.  相似文献   

20.
Anarchistic queen honey bees have normal queen mandibular pheromones   总被引:3,自引:0,他引:3  
Summary. Anarchistic honey bees are a line developed by recurrent selection in which workers frequently lay eggs. In unselected colonies, workers refrain from reproduction in response to pheromonal signals that indicate the presence of brood and a queen. We show that queen type (anarchistic or wild type) has no effect on rates of ovary activation of anarchistic or wild type workers. In addition, we show that an important component of the queens signalling system, the queen mandibular gland pheromone, is similar in wild type and anarchistic queens. Anarchistic larvae do not inhibit worker ovary development to the same degree as wild type larvae, however all colonies in this experiment contained only wild type larvae. Anarchistic workers had greater rates of ovary activation than wild type workers in colonies headed by either queen type. We therefore conclude that there must be differences in the transmission or reception of queen pheromones, or worker sensitivity to these compounds. These results clearly demonstrate that anarchy is a complex syndrome, not simply the result of reduced pheromone production by anarchist queens and larvae.Received 23 December 2003; revised 14 May 2004; accepted 1 June 2004.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号