首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Unconfined compression test has been frequently used to study the mechanical behaviors of articular cartilage, both theoretically and experimentally. It has also been used in explant and gel-cell-complex studies in tissue engineering. In biphasic and poroelastic theories, the effect of charges fixed on the proteoglycan macromolecules in articular cartilage is embodied in the apparent compressive Young's modulus and the apparent Poisson's ratio of the tissue, and the fluid pressure is considered to be the portion above the osmotic pressure. In order to understand how proteoglycan fixed charges might affect the mechanical behaviors of articular cartilage, and in order to predict the osmotic pressure and electric fields inside the tissue in this experimental configuration, it is necessary to use a model that explicitly takes into account the charged nature of the tissue and the flow of ions within its porous interstices. In this paper, we used a finite element model based on the triphasic theory to study how fixed charges in the porous-permeable soft tissue can modulate its mechanical and electrochemical responses under a step displacement in unconfined compression. The results from finite element calculations showed that: 1) A charged tissue always supports a larger load than an uncharged tissue of the same intrinsic elastic moduli. 2) The apparent Young's modulus (the ratio of the equilibrium axial stress to the axial strain) is always greater than the intrinsic Young's modulus of an uncharged tissue. 3) The apparent Poisson's ratio (the negative ratio of the lateral strain to the axial strain) is always larger than the intrinsic Poisson's ratio of an uncharged tissue. 4) Load support derives from three sources: intrinsic matrix stiffness, hydraulic pressure and osmotic pressure. Under the unconfined compression, the Donnan osmotic pressure can constitute between 13%-22% of the total load support at equilibrium. 5) During the stress-relaxation process following the initial instant of loading, the diffusion potential (due to the gradient of the fixed charge density and the associated gradient of ion concentrations) and the streaming potential (due to fluid convection) compete against each other. Within the physiological range of material parameters, the polarity of the electric potential depends on both the mechanical properties and the fixed charge density (FCD) of the tissue. For softer tissues, the diffusion effects dominate the electromechanical response, while for stiffer tissues, the streaming potential dominates this response. 6) Fixed charges do not affect the instantaneous strain field relative to the initial equilibrium state. However, there is a sudden increase in the fluid pressure above the initial equilibrium osmotic pressure. These new findings are relevant and necessary for the understanding of cartilage mechanics, cartilage biosynthesis, electromechanical signal transduction by chondrocytes, and tissue engineering.  相似文献   

2.
Boschetti F  Peretti GM 《Biorheology》2008,45(3-4):337-344
Osteoarthritis (OA) is a disease affecting articular cartilage and the underlying bone, resulting from many biological and mechanical interacting factors which change the extracellular matrix (ECM) and cells and lead to increasing levels of cartilage degeneration, like softening, fibrillation, ulceration and cartilage loss. The early diagnosis of the disease is fundamental to prevent pain, further tissue degeneration and reduce hospital costs. Although morphological modifications can be detected by modern non-invasive diagnostic techniques, they may not be evident in the early stages of OA. The mechanical properties of articular cartilage are related to its composition and structure and are sensitive to even small changes in the ECM that could occur in early OA. The aim of the present study was to compare the mechanical properties of healthy and OA cartilage using a combined experimental-numerical approach. Experimental assessments consisted of step wise confined and unconfined compression and tension stress relaxation tests on disks (for compression) or strips (for tension) of cartilage obtained from human femoral heads discarded from the operating room after total hip replacement. The numerical model was based on the biphasic theory and included the tension-compression non-linearity. Considering OA samples vs normal samples, the static compressive modulus was 55-68% lower, the permeability was 60-80% higher, the dynamic compressive modulus was 59-64% lower, the static tension modulus was 72-83% lower. The model successfully simulated the experimental tests performed on healthy and OA cartilage and was used in combination with the experimental tests to evaluate the role of different ECM components in the mechanical response of normal and OA cartilage.  相似文献   

3.
Swelling of articular cartilage depends on its fixed charge density and distribution, the stiffness of its collagen-proteoglycan matrix, and the ion concentrations in the interstitium. A theory for a tertiary mixture has been developed, including the two fluid-solid phases (biphasic), and an ion phase, representing cation and anion of a single salt, to describe the deformation and stress fields for cartilage under chemical and/or mechanical loads. This triphasic theory combines the physico-chemical theory for ionic and polyionic (proteoglycan) solutions with the biphasic theory for cartilage. The present model assumes the fixed charge groups to remain unchanged, and that the counter-ions are the cations of a single-salt of the bathing solution. The momentum equation for the neutral salt and for the intersitial water are expressed in terms of their chemical potentials whose gradients are the driving forces for their movements. These chemical potentials depend on fluid pressure p, salt concentration c, solid matrix dilatation e and fixed charge density cF. For a uni-uni valent salt such as NaCl, they are given by mu i = mu io + (RT/Mi)ln[gamma 2 +/- c(c + cF)] and mu w = mu wo + [p-RT phi (2c + cF) + Bwe]/pwT, where R, T, Mi, gamma +/-, phi, pwT and Bw are universal gas constant, absolute temperature, molecular weight, mean activity coefficient of salt, osmotic coefficient, true density of water, and a coupling material coefficient, respectively. For infinitesimal strains and material isotropy, the stress-strain relationship for the total mixture stress is sigma = - pI-TcI + lambda s(trE)I + 2 musE, where E is the strain tensor and (lambda s, mu s) are the Lamé constants of the elastic solid matrix. The chemical-expansion stress (-Tc) derives from the charge-to-charge repulsive forces within the solid matrix. This theory can be applied to both equilibrium and non-equilibrium problems. For equilibrium free swelling problems, the theory yields the well known Donnan equilibrium ion distribution and osmotic pressure equations, along with an analytical expression for the "pre-stress" in the solid matrix. For the confined-compression swelling problem, it predicts that the applied compressive stress is shared by three load support mechanisms: 1) the Donnan osmotic pressure; 2) the chemical-expansion stress; and 3) the solid matrix elastic stress. Numerical calculations have been made, based on a set of equilibrium free-swelling and confined-compression data, to assess the relative contribution of each mechanism to load support. Our results show that all three mechanisms are important in determining the overall compressive stiffness of cartilage.  相似文献   

4.
Primary cilia are slender, microtubule based structures found in the majority of cell types with one cilium per cell. In articular cartilage, primary cilia are required for chondrocyte mechanotransduction and the development of healthy tissue. Loss of primary cilia in Col2aCre;ift88fl/fl transgenic mice results in up-regulation of osteoarthritic (OA) markers and development of OA like cartilage with greater thickness and reduced mechanical stiffness. However no previous studies have examined whether loss of primary cilia influences the intrinsic mechanical properties of articular cartilage matrix in the form of the modulus or just the structural properties of the tissue. The present study describes a modified analytical model to derive the viscoelastic moduli based on previous experimental indentation data. Results show that the increased thickness of the articular cartilage in the Col2aCre;ift88fl/fl transgenic mice is associated with a reduction in both the instantaneous and equilibrium moduli at indentation strains of greater than 20%. This reveals that the loss of primary cilia causes a significant reduction in the mechanical properties of cartilage particularly in the deeper zones and possibly the underlying bone. This is consistent with histological analysis and confirms the importance of primary cilia in the development of a mechanically functional articular cartilage.  相似文献   

5.
In articular cartilage, chondrocytes are surrounded by a narrow region called the pericellular matrix (PCM), which is biochemically, structurally, and mechanically distinct from the bulk extracellular matrix (ECM). Although multiple techniques have been used to measure the mechanical properties of the PCM using isolated chondrons (the PCM with enclosed cells), few studies have measured the biomechanical properties of the PCM in situ. The objective of this study was to quantify the in situ mechanical properties of the PCM and ECM of human, porcine, and murine articular cartilage using atomic force microscopy (AFM). Microscale elastic moduli were quantitatively measured for a region of interest using stiffness mapping, or force-volume mapping, via AFM. This technique was first validated by means of elastomeric models (polyacrylamide or polydimethylsiloxane) of a soft inclusion surrounded by a stiff medium. The elastic properties of the PCM were evaluated for regions surrounding cell voids in the middle/deep zone of sectioned articular cartilage samples. ECM elastic properties were evaluated in regions visually devoid of PCM. Stiffness mapping successfully depicted the spatial arrangement of moduli in both model and cartilage surfaces. The modulus of the PCM was significantly lower than that of the ECM in human, porcine, and murine articular cartilage, with a ratio of PCM to ECM properties of ∼0.35 for all species. These findings are consistent with previous studies of mechanically isolated chondrons, and suggest that stiffness mapping via AFM can provide a means of determining microscale inhomogeneities in the mechanical properties of articular cartilage in situ.  相似文献   

6.
The compressive stiffness of an elastic material is traditionally characterized by its Young's modulus. Young's modulus of articular cartilage can be directly measured using unconfined compression geometry by assuming the cartilage to be homogeneous and isotropic. In isotropic materials, Young's modulus can also be determined acoustically by the measurement of sound speed and density of the material. In the present study, acoustic and mechanical techniques, feasible for in vivo measurements, were investigated to quantify the static and dynamic compressive stiffness of bovine articular cartilage in situ. Ultrasound reflection from the cartilage surface, as well as the dynamic modulus were determined with the recently developed ultrasound indentation instrument and compared with the reference mechanical and ultrasound speed measurements in unconfined compression (n=72). In addition, the applicability of manual creep measurements with the ultrasound indentation instrument was evaluated both experimentally and numerically. Our experimental results indicated that the sound speed could predict 47% and 53% of the variation in the Young's modulus and dynamic modulus of cartilage, respectively. The dynamic modulus, as determined manually with the ultrasound indentation instrument, showed significant linear correlations with the reference Young's modulus (r(2)=0.445, p<0.01, n=70) and dynamic modulus (r(2)=0.779, p<0.01, n=70) of the cartilage. Numerical analyses indicated that the creep measurements, conducted manually with the ultrasound indentation instrument, were sensitive to changes in Young's modulus and permeability of the tissue, and were significantly influenced by the tissue thickness. We conclude that acoustic parameters, i.e. ultrasound speed and reflection, are indicative to the intrinsic mechanical properties of the articular cartilage. Ultrasound indentation instrument, when further developed, provides an applicable tool for the in vivo detection of cartilage mechano-acoustic properties. These techniques could promote the diagnostics of osteoarthrosis.  相似文献   

7.
Reported mechanical properties of orbital connective tissue and fat have been too sparse to model strain–stress relationships underlying biomechanical interactions in strabismus. We performed rheological tests to develop a multi-mode upper convected Maxwell (UCM) model of these tissues under shear loading. From 20 fresh bovine orbits, 30 samples of connective tissue were taken from rectus pulley regions and 30 samples of fatty tissues from the posterior orbit. Additional samples were defatted to determine connective tissue weight proportion, which was verified histologically. Mechanical testing in shear employed a triborheometer to perform: strain sweeps at 0.5–2.0 Hz; shear stress relaxation with 1% strain; viscometry at 0.01−0.5 s−1 strain rate; and shear oscillation at 1% strain. Average connective tissue weight proportion was 98% for predominantly connective tissue and 76% for fatty tissue. Connective tissue specimens reached a long-term relaxation modulus of 668 Pa after 1,500 s, while corresponding values for fatty tissue specimens were 290 Pa and 1,100 s. Shear stress magnitude for connective tissue exceeded that of fatty tissue by five-fold. Based on these data, we developed a multi-mode UCM model with variable viscosities and time constants, and a damped hyperelastic response that accurately described measured properties of both connective and fatty tissues. Model parameters differed significantly between the two tissues. Viscoelastic properties of predominantly connective orbital tissues under shear loading differ markedly from properties of orbital fat, but both are accurately reflected using UCM models. These viscoelastic models will facilitate realistic global modeling of EOM behavior in binocular alignment and strabismus.  相似文献   

8.
Osteoarthritis (OA) is a joint disease characterized by cartilage degeneration, a thickening of subchondral bone, and formation of marginal osteophytes. Previous mechanical characterization of cartilage in our laboratory suggests that energy storage and dissipation is reduced in osteoarthritis as the extent of fibrillation and fissure formation increases. It is not clear whether the loss of energy storage and dissipation characteristics is a result of biochemical and/or biophysical changes that occur to hyaline cartilage in joints. The purpose of this study is to present data, on the strain rate dependence of the elastic and viscous behaviors of cartilage, in order to further characterize changes that occur in the mechanical properties that are associated with OA. We have previously hypothesized that the changes seen in the mechanical properties of cartilage may be due to altered mechanochemical transduction by chondrocytes. Results of incremental tensile stress-strain tests at strain rates between 100%/min and 10,000%/min conducted on OA cartilage indicate that the slope of the elastic stress-strain curve increases with increasing strain rate, unlike the reported behavior of skin and self-assembled collagen fibers. It is suggested that the strain-rate dependence of the elastic stress-strain curve is due to the presence of large quantities of proteoglycans (PGs), which protect articular cartilage by increasing the apparent stiffness. The increased apparent stiffness of articular cartilage at high strain rates may limit the stresses borne and prolong the onset of OA. It is further hypothesized that increased compressive loading of chondrocytes in the intermediate zone of articular cartilage occurs as a result of normal wear to the superficial zone or from excessive impact loading. Once the superficial zone of articular cartilage is worn away, the tension is decreased throughout all cartilage zones leading to increased chondrocyte compressive loading and up-regulation of mechanochemical transduction processes that elaborate catabolic enzymes.  相似文献   

9.
Articular cartilage is a hydrated soft tissue composed of negatively charged proteoglycans fixed within a collagen matrix. This charge gradient causes the tissue to imbibe water and swell, creating a net osmotic pressure that enhances the tissue's ability to bear load. In this study we designed and utilized an apparatus for directly measuring the osmotic pressure of chondroitin sulfate, the primary glycosaminoglycan found in articular cartilage, in solution with varying bathing ionic strength (0.015 M, 0.15 M, 0.5 M, 1 M, and 2 M NaCl) at room temperature. The osmotic pressure (pi) was found to increase nonlinearly with increasing chondroitin sulfate concentration and decreasing NaCl ionic bath environment. Above 1 M NaCl, pi changes negligibly with further increases in salt concentration, suggesting that Donnan osmotic pressure is negligible above this threshold, and the resulting pressure is attributed to configurational entropy. Results of the current study were also used to estimate the contribution of osmotic pressure to the stiffness of cartilage based on theoretical and experimental considerations. Our findings indicate that the osmotic pressure resulting from configurational entropy is much smaller in cartilage (based on an earlier study on bovine articular cartilage) than in free solution. The rate of change of osmotic pressure with compressive strain is found to contribute approximately one-third of the compressive modulus (H(A)(eff)) of cartilage (Pi approximately H(A)(eff)/3), with the balance contributed by the intrinsic structural modulus of the solid matrix (i.e., H(A) approximately 2H(A)(eff)/3). A strong dependence of this intrinsic modulus on salt concentration was found; therefore, it appears that proteoglycans contribute structurally to the magnitude of H(A), in a manner independent of osmotic pressure.  相似文献   

10.
Low molecular mass serine proteinase inhibitors isolated from human articular cartilage, intervertebral disc, meniscus, and costal cartilage were compared chromatographically. Similar charge and size properties were exhibited when these inhibitors were examined by gel permeation and cation exchange chromatography. The individual proteinase inhibitory species separated by these procedures all cross-reacted with a polyclonal antibody raised against the mucous proteinase inhibitors (MPIs) obtained from human bronchial secretions, however the distribution of these MPI-like species varied with the origin of the connective tissue. The major inhibitory species present in human articular cartilage and intervertebral disc were purified to homogeneity using gel filtration, cation exchange, trypsin affinity and high performance reverse phase chromatography. The amino-terminal sequences of the purified cartilage intervertebral disc inhibitors was found to be identical to the published sequence of MPIs isolated from parotid and seminal secretions. These findings indicate that the endogenous small molecular mass cationic serine proteinase inhibitory proteins present in human cartilaginous connective tissues are members of the MPI family of proteinase inhibitors.  相似文献   

11.

Background

The major connective tissues of the knee joint act in concert during locomotion to provide joint stability, smooth articulation, shock absorption, and distribution of mechanical stresses. These functions are largely conferred by the intrinsic material properties of the tissues, which are in turn determined by biochemical composition. A thorough understanding of the structure-function relationships of the connective tissues of the knee joint is needed to provide design parameters for efforts in tissue engineering.

Methodology/Principal Findings

The objective of this study was to perform a comprehensive characterization of the tensile properties, collagen content, and pyridinoline crosslink abundance of condylar cartilage, patellar cartilage, medial and lateral menisci, cranial and caudal cruciate ligaments (analogous to anterior and posterior cruciate ligaments in humans, respectively), medial and lateral collateral ligaments, and patellar ligament from immature bovine calves. Tensile stiffness and strength were greatest in the menisci and patellar ligament, and lowest in the hyaline cartilages and cruciate ligaments; these tensile results reflected trends in collagen content. Pyridinoline crosslinks were found in every tissue despite the relative immaturity of the joints, and significant differences were observed among tissues. Notably, for the cruciate ligaments and patellar ligament, crosslink density appeared more important in determining tensile stiffness than collagen content.

Conclusions/Significance

To our knowledge, this study is the first to examine tensile properties, collagen content, and pyridinoline crosslink abundance in a direct head-to-head comparison among all of the major connective tissues of the knee. This is also the first study to report results for pyridinoline crosslink density that suggest its preferential role over collagen in determining tensile stiffness for certain tissues.  相似文献   

12.
The purpose of this study was to explore the triphasic mechanical properties of osteoarthritic cartilage with different pathological grades. First, samples of cartilage from rabbits with different stages of osteoarthritis (OA) were graded. Following this, the cartilage was strained by a swelling experiment, and changes were measured using a high-frequency ultrasound system. The result, together with fixed charge density and water volume fraction of cartilage samples, was used to estimate the uniaxial modulus of the cartilage tissue, based on a triphasic model. For the control cartilage samples, the uniaxial elastic modulus on the cartilage surface was lower than those in the middle and deep layers. With an increase in the OA grade, the uniaxial elastic modulus of the surface, middle and deep layers decreased. A significant difference was found in the surface elastic modulus of different OA grades (P<0.01), while no significant differences were identified for OA cartilages of Grades 1 and 2 in the middle and deep layers (P<0.01). Compared with Grades 1 and 2, there was a significant reduction in the elastic modulus in the middle and deep layers of Grade 3 OA cartilage (P<0.05). Overall, this study may provide a new quantitative method to evaluate the severity of OA using the mechanical properties of cartilage tissue.  相似文献   

13.
Irisin, a newly identified hormone and cardiokine, is critical for modulating body metabolism. New evidence indicates that irisin protects the heart against myocardial ischemic injury. However, whether irisin enhances cardiac progenitor cell (CPC)-induced cardiac repair remains unknown. This study examines the effect of irisin on CPC-induced cardiac repair when these cells are introduced into the infarcted myocardium. Nkx2.5+ CPC stable cells were isolated from mouse embryonic stem cells. Nkx2.5 + CPCs (0.5 × 10 6) were reintroduced into the infarcted myocardium using PEGlylated fibrin delivery. The mouse myocardial infarction model was created by permanent ligation of the left anterior descending (LAD) artery. Nkx2.5 + CPCs were pretreated with irisin at a concentration of 5 ng/ml in vitro for 24 hr before transplantation. Myocardial functions were evaluated by echocardiographic measurement. Eight weeks after engraftment, Nkx2.5 + CPCs improved ventricular function as evident by an increase in ejection fraction and fractional shortening. These findings are concomitant with the suppression of cardiac hypertrophy and attenuation of myocardial interstitial fibrosis. Transplantation of Nkx2.5 + CPCs promoted cardiac regeneration and neovascularization, which were increased with the pretreatment of Nkx2.5 + CPCs with irisin. Furthermore, irisin treatment promoted myocyte proliferation as indicated by proliferative markers Ki67 and phosphorylated histone 3 and decreased apoptosis. Additionally, irisin resulted in a marked reduction of histone deacetylase 4 and increased p38 acetylation in cultured CPCs. These results indicate that irisin promoted Nkx2.5 + CPC-induced cardiac regeneration and functional improvement and that irisin serves as a novel therapeutic approach for stem cells in cardiac repair.  相似文献   

14.
Few methods exist to study cartilage mechanics in small animal joints due to the difficulties associated with handling small tissue samples. In this study, we apply an osmotic loading method to quantify the intrinsic material properties of articular cartilage in small animal joints. Cartilage samples were studied from the femoral condyle and tibial plateau of two-month old guinea pigs. Swelling strains were measured using confocal fluorescence scanning microscopy in samples subjected to osmotic loading. A histochemical staining method was developed and calibrated for quantification of negative fixed charge density in guinea pig cartilage. Site-matched swelling strain data and fixed charge density values were then used with a triphasic theoretical model for cartilage swelling to determine the uniaxial modulus of the cartilage solid matrix. Moduli obtained in this study (7.2 MPa femoral condyle; 10.8 MPa, tibial plateau) compare well with previously reported values for the tensile moduli of human and other animal cartilages determined from uniaxial tension experiments. This study provides the first available data for material properties and fixed charge density in cartilage from the guinea pig knee and suggests a promising method for tracking changes in cartilage mechanics in small animal models of degeneration.  相似文献   

15.
The objective of this study was to explore the effects of intermittent hydrostatic pressure (IHP) on the chondrogenic differentiation of cartilage progenitor cells (CPCs) cultivated in alginate beads. CPCs were isolated from the knee joint cartilage of rabbits, and infrapatellar fat pad‐derived stem cells (FPSCs) and chondrocytes (CCs) were included as the control cell types. Cells embedded in alginate beads were treated with IHP at 5 Mpa and 0.5 Hz for 4 h/day for 1, 2, or 4 weeks. The cells' migratory and proliferative capacities were evaluated using the scratch and Live/Dead assays, respectively. Hematoxylin and eosin staining, safranin O staining, and immunohistochemical staining were performed to determine the effects of IHP on the synthesis of extracellular matrix (ECM) proteins. Real‐time polymerase chain reaction analysis was performed to measure the expression of genes related to chondrogenesis. The scratch and Live/Dead assays revealed that IHP significantly promoted the migration and proliferation of FPSCs and CPCs to different extents. The staining experiments showed greater production of cartilage ECM components (glycosaminoglycans and collagen II) by cells exposed to IHP, and the gene expression analysis demonstrated that IHP stimulated the expression of chondrocyte‐related genes. Importantly, these effects of IHP were more prominent in CPCs than in FPSCs and CCs. Considering all of our experimental results combined, we conclude that CPCs demonstrated a stronger chondrogenic differentiation capacity than the FPSCs and CCs under stimulation with IHP. Thus, the use of CPCs, combined with mechanical stimulation, may represent a valuable strategy for cartilage tissue engineering.  相似文献   

16.
Advanced glycation end-products (AGE) contribute to age-related connective tissue damage and functional deficit. The documented association between AGE formation on collagens and the correlated progressive stiffening of tissues has widely been presumed causative, despite the lack of mechanistic understanding. The present study investigates precisely how AGEs affect mechanical function of the collagen fibril – the supramolecular functional load-bearing unit within most tissues. We employed synchrotron small-angle X-ray scattering (SAXS) and carefully controlled mechanical testing after introducing AGEs in explants of rat-tail tendon using the metabolite methylglyoxal (MGO). Mass spectrometry and collagen fluorescence verified substantial formation of AGEs by the treatment. Associated mechanical changes of the tissue (increased stiffness and failure strength, decreased stress relaxation) were consistent with reports from the literature. SAXS analysis revealed clear changes in molecular deformation within MGO treated fibrils. Underlying the associated increase in tissue strength, we infer from the data that MGO modified collagen fibrils supported higher loads to failure by maintaining an intact quarter-staggered conformation to nearly twice the level of fibril strain in controls. This apparent increase in fibril failure resistance was characterized by reduced side-by-side sliding of collagen molecules within fibrils, reflecting lateral molecular interconnectivity by AGEs. Surprisingly, no change in maximum fibril modulus (2.5 GPa) accompanied the changes in fibril failure behavior, strongly contradicting the widespread assumption that tissue stiffening in ageing and diabetes is directly related to AGE increased fibril stiffness. We conclude that AGEs can alter physiologically relevant failure behavior of collagen fibrils, but that tissue level changes in stiffness likely occur at higher levels of tissue architecture.  相似文献   

17.
The dermis of the sea cucumber body wall is a typical catch connective tissue that rapidly changes its mechanical properties in response to various stimuli. Dynamic mechanical properties were measured in stiff, standard, and soft states of the sea cucumber Actinopyga mauritiana. Sinusoidal deformations were applied, either at a constant frequency of 0.1 Hz with varying maximum strain of 2%-20% or at a fixed maximum strain of 1.8% with varying frequency of 0.0005-50 Hz. The dermis showed viscoelasticity with both strain and strain-rate dependence. The dermis in the standard state showed a J-shaped stress-strain curve with a stiffness of 1 MPa and a dissipation ratio of 60%; the curve of the stiff dermis was linear with high stiffness (3 MPa) and a low dissipation ratio (30%). Soft dermis showed a J-shaped curve with low stiffness (0.3 MPa) and a high dissipation ratio (80%). The strain-induced softening was observed in the soft state. Stiff samples had a higher storage modulus and a lower tangent delta than soft ones, implying a larger contribution of the elastic component in the stiff state. A simple molecular model was proposed that accounted for the mechanical behavior of the dermis. The model suggested that stiffening stimulation increased inter-molecular bonds, whereas softening stimulation affected intra-molecular bonds. The adaptive significance of each mechanical state in the behavior of sea cucumbers is discussed.  相似文献   

18.
The catch apparatus (CA) is the collagenous ligament at the spinal joint of sea urchins. It maintains spine posture by stiffening and allows spine movement by softening. A CA preparation, which was isolated from ossicles, was used to test the hypothesis that frictional forces between collagen fibers and ossicles are the source of stiffness changes. Isolated preparations of the CA changed in stiffness, thus falsifying the hypothesis. Another hypothesis proposes that muscle fibers, which represent a relatively small component of the CA, cause stiffening of the CA by contraction. Chemicals that evoked contraction in spine muscles did not always stiffen the CA: the CA of Heterocentrotus mammillatus softened in response to artificial seawater with potassium concentration elevated to 100 mM. This provided evidence against the muscle-based hypothesis. The present results suggest that the stiffness changes of the CA are based on changes in the mechanical properties of the extracellular components of the connective tissue and are therefore related to the connective tissue catch that is widespread in other echinoderms.  相似文献   

19.
Articular cartilage is a biological weight-bearing tissue covering the bony ends of articulating joints. Negatively charged proteoglycan (PG) in articular cartilage is one of the main factors that govern its compressive mechanical behavior and swelling phenomenon. PG is nonuniformly distributed throughout the depth direction, and its amount or distribution may change in the degenerated articular cartilage such as osteoarthritis. In this paper, we used a 50 MHz ultrasound system to study the depth-dependent strain of articular cartilage under the osmotic loading induced by the decrease of the bathing saline concentration. The swelling-induced strains under the osmotic loading were used to determine the layered material properties of articular cartilage based on a triphasic model of the free-swelling. Fourteen cylindrical cartilage-bone samples prepared from fresh normal bovine patellae were tested in situ in this study. A layered triphasic model was proposed to describe the depth distribution of the swelling strain for the cartilage and to determine its aggregate modulus H(a) at two different layers, within which H(a) was assumed to be linearly dependent on the depth. The results showed that H(a) was 3.0+/-3.2, 7.0+/-7.4, 24.5+/-11.1 MPa at the cartilage surface, layer interface, and deep region, respectively. They are significantly different (p<0.01). The layer interface located at 70%+/-20% of the overall thickness from the uncalcified-calcified cartilage interface. Parametric analysis demonstrated that the depth-dependent distribution of the water fraction had a significant effect on the modeling results but not the fixed charge density. This study showed that high-frequency ultrasound measurement together with triphasic modeling is practical for quantifying the layered mechanical properties of articular cartilage nondestructively and has the potential for providing useful information for the detection of the early signs of osteoarthritis.  相似文献   

20.
Despite the fact that type III collagen is the second most abundant collagen type in the body, its contribution to the physiologic maintenance and repair of skeletal tissues remains poorly understood. This study queried the role of type III collagen in the structure and biomechanical functions of two structurally distinctive tissues in the knee joint, type II collagen-rich articular cartilage and type I collagen-dominated meniscus. Integrating outcomes from atomic force microscopy-based nanomechanical tests, collagen fibril nanostructural analysis, collagen cross-link analysis and histology, we elucidated the impact of type III collagen haplodeficiency on the morphology, nanostructure and biomechanical properties of articular cartilage and meniscus in Col3a1+/− mice. Reduction of type III collagen leads to increased heterogeneity and mean thickness of collagen fibril diameter, as well as reduced modulus in both tissues, and these effects became more pronounced with skeletal maturation. These data suggest a crucial role of type III collagen in mediating fibril assembly and biomechanical functions of both articular cartilage and meniscus during post-natal growth. In articular cartilage, type III collagen has a marked contribution to the micromechanics of the pericellular matrix, indicating a potential role in mediating the early stage of type II collagen fibrillogenesis and chondrocyte mechanotransduction. In both tissues, reduction of type III collagen leads to decrease in tissue modulus despite the increase in collagen cross-linking. This suggests that the disruption of matrix structure due to type III collagen deficiency outweighs the stiffening of collagen fibrils by increased cross-linking, leading to a net negative impact on tissue modulus. Collectively, this study is the first to highlight the crucial structural role of type III collagen in both articular cartilage and meniscus extracellular matrices. We expect these results to expand our understanding of type III collagen across various tissue types, and to uncover critical molecular components of the microniche for regenerative strategies targeting articular cartilage and meniscus repair.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号