首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Coronavirus Disease 2019 (COVID-19), caused by the novel Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), has affected over 30 million globally to date. Although high rates of venous thromboembolism and evidence of COVID-19-induced endothelial dysfunction have been reported, the precise aetiology of the increased thrombotic risk associated with COVID-19 infection remains to be fully elucidated. Therefore, we assessed clinical platelet parameters and circulating platelet activity in patients with severe and nonsevere COVID-19. An assessment of clinical blood parameters in patients with severe COVID-19 disease (requiring intensive care), patients with nonsevere disease (not requiring intensive care), general medical in-patients without COVID-19, and healthy donors was undertaken. Platelet function and activity were also assessed by secretion and specific marker analysis. We demonstrated that routine clinical blood parameters including increased mean platelet volume (MPV) and decreased platelet:neutrophil ratio are associated with disease severity in COVID-19 upon hospitalisation and intensive care unit (ICU) admission. Strikingly, agonist-induced ADP release was 30- to 90-fold higher in COVID-19 patients compared with hospitalised controls and circulating levels of platelet factor 4 (PF4), soluble P-selectin (sP-selectin), and thrombopoietin (TPO) were also significantly elevated in COVID-19. This study shows that distinct differences exist in routine full blood count and other clinical laboratory parameters between patients with severe and nonsevere COVID-19. Moreover, we have determined all COVID-19 patients possess hyperactive circulating platelets. These data suggest abnormal platelet reactivity may contribute to hypercoagulability in COVID-19 and confirms the role that platelets/clotting has in determining the severity of the disease and the complexity of the recovery path.

The reason for the increased thrombotic risk associated with SARS-CoV-2 infection remains unclear. This study reveals that disease severity is associated with increased mean platelet volume and decreased platelet:neutrophil ratio; moreover, all COVID-19 patients possess hyperactive circulating platelets, with agonist-induced ADP release 30-to-90 fold higher than controls.  相似文献   

2.
邵胜利  柳振清 《蛇志》1992,4(4):7-9
本文通过对我院101例住院精神分裂症患者做了血液流变学10项指标测定,结果表明:患者的全血粘度、血浆粘度、红细胞压积、血小板粘附、红细胞电泳、纤维蛋白原、还原粘度以及体外血栓三项指标中,除还原粘度一项与正常值无显著差异外,其余9项均明显高于正常值。证实精神分裂症存在着高粘滞血症.  相似文献   

3.
Microfabrication of polydimethylsiloxane (PDMS) devices has provided a new set of tools for studying fluid dynamics of blood at the scale of real microvessels. However, we are only starting to understand the power and limitations of this technology. To determine the applicability of PDMS microchannels for blood flow analysis, we studied white blood cell (WBC) margination in channels of various geometries and blood compositions. We found that WBCs prefer to marginate downstream of sudden expansions, and that red blood cell (RBC) aggregation facilitates the process. In contrast to tubes, WBC margination was restricted to the sidewalls in our low aspect ratio, pseudo-2D rectangular channels and consequently, margination efficiencies of more than 95% were achieved in a variety of channel geometries. In these pseudo-2D channels blood rheology and cell integrity were preserved over a range of flow rates, with the upper range limited by the shear in the vertical direction. We conclude that, with certain limitations, rectangular PDMS microfluidic channels are useful tools for quantitative studies of blood rheology.  相似文献   

4.
A high-fidelity computational model using a 3D immersed boundary method is used to study platelet dynamics in whole blood. We focus on the 3D effects of the platelet-red blood cell (RBC) interaction on platelet margination and near-wall dynamics in a shear flow. We find that the RBC distribution in whole blood becomes naturally anisotropic and creates local clusters and cavities. A platelet can enter a cavity and use it as an express lane for a fast margination toward the wall. Once near the wall, the 3D nature of the platelet-RBC interaction results in a significant platelet movement in the transverse (vorticity) direction and leads to anisotropic platelet diffusion within the RBC-depleted zone or cell-free layer (CFL). We find that the anisotropy in platelet motion further leads to the formation of platelet clusters, even in the absence of any platelet-platelet adhesion. The transverse motion, and the size and number of the platelet clusters are observed to increase with decreasing CFL thickness. The 3D nature of the platelet-RBC collision also induces fluctuations in off-shear plane orientation and, hence, a rotational diffusion of the platelets. Although most marginated platelets are observed to tumble just outside the RBC-rich zone, platelets further inside the CFL are observed to flow with an intermittent dynamics that alters between sliding and tumbling, as a result of the off-shear plane rotational diffusion, bringing them even closer to the wall. To our knowledge, these new findings are based on the fundamentally 3D nature of the platelet-RBC interaction, and they underscore the importance of using cellular-scale 3D models of whole blood to understand platelet margination and near-wall platelet dynamics.  相似文献   

5.
A high-fidelity computational model using a 3D immersed boundary method is used to study platelet dynamics in whole blood. We focus on the 3D effects of the platelet-red blood cell (RBC) interaction on platelet margination and near-wall dynamics in a shear flow. We find that the RBC distribution in whole blood becomes naturally anisotropic and creates local clusters and cavities. A platelet can enter a cavity and use it as an express lane for a fast margination toward the wall. Once near the wall, the 3D nature of the platelet-RBC interaction results in a significant platelet movement in the transverse (vorticity) direction and leads to anisotropic platelet diffusion within the RBC-depleted zone or cell-free layer (CFL). We find that the anisotropy in platelet motion further leads to the formation of platelet clusters, even in the absence of any platelet-platelet adhesion. The transverse motion, and the size and number of the platelet clusters are observed to increase with decreasing CFL thickness. The 3D nature of the platelet-RBC collision also induces fluctuations in off-shear plane orientation and, hence, a rotational diffusion of the platelets. Although most marginated platelets are observed to tumble just outside the RBC-rich zone, platelets further inside the CFL are observed to flow with an intermittent dynamics that alters between sliding and tumbling, as a result of the off-shear plane rotational diffusion, bringing them even closer to the wall. To our knowledge, these new findings are based on the fundamentally 3D nature of the platelet-RBC interaction, and they underscore the importance of using cellular-scale 3D models of whole blood to understand platelet margination and near-wall platelet dynamics.  相似文献   

6.
《Biophysical journal》2021,120(21):4663-4671
Because of their compromised deformability, heat denatured erythrocytes have been used as labeled probes to visualize spleen tissue or to assess the ability of the spleen to retain stiff red blood cells (RBCs) for over three decades, e.g., see Looareesuwan et al. N. Engl. J. Med. (1987). Despite their good accessibility, it is still an open question how heated RBCs compare to certain diseased RBCs in terms of their biomechanical and biorheological responses, which may undermine their effective usage and even lead to misleading experimental observations. To help answering this question, we perform a systematic computational study of the hemorheological properties of heated RBCs with several physiologically relevant static and hemodynamic settings, including optical-tweezers test, relaxation of prestretched RBCs, RBC traversal through a capillary-like channel and a spleen-like slit, and a viscometric rheology test. We show that our in silico RBC models agree well with existing experiments. Moreover, under static tests, heated RBCs exhibit deformability deterioration comparable to certain disease-impaired RBCs such as those in malaria. For RBC traversal under confinement (through microchannel or slit), heated RBCs show prolonged transit time or retention depending on the level of confinement and heating procedure, suggesting that carefully heat-treated RBCs may be useful for studying splenic- or vaso-occlusion in vascular pathologies. For the rheology test, we expand the existing bulk viscosity data of heated RBCs to a wider range of shear rates (1–1000 s−1) to represent most pathophysiological conditions in macro- or microcirculation. Although heated RBC suspension shows elevated viscosity comparable to certain diseased RBC suspensions under relatively high shear rates (100–1000 s−1), they underestimate the elevated viscosity (e.g., in sickle cell anemia) at low shear rates (<10 s−1). Our work provides mechanistic rationale for selective usage of heated RBC as a potentially useful model for studying the abnormal traversal dynamics and hemorheology in certain blood disorders.  相似文献   

7.
目的:观察丹参多酚酮酸盐对老年急性缺血性脑卒中患者血清超敏C反应蛋白(hs-CRP)、血液流变学及神经功能的影响。方法:将98例老年急性缺血性脑卒中患者随机分观察组(n=49例)和对照组(n=49例),对照组给以西医常规治疗,观察组在常规治疗的基础上加用丹参多酚酮酸盐治疗,两组均治疗2周;记录两组治疗前后的血液流变学相关指标、血清hs-CRP、分析NIHSS评分与Barthel指数评分的变化。结果:治疗2周后,观察组血浆黏度、全血黏度高切、全血黏度低切、红细胞比积均低于对照组(P0.05),其降低的幅度亦低于对照组(P0.05);观察组治疗后1周、2周血清hs-CRP水平、白细胞计数(WBC)、NIHSS评分明显低于对照组,而Barthel指数评分高于对照组(P0.05)。结论:丹参多酚酮酸盐能够有效降低急性缺血性脑卒中患者炎症水平、调节患者血液流变学指标、从而改善神经功能,有利于卒中患者的预后。  相似文献   

8.
Emerging clinical evidence suggests that thrombosis in the microvasculature of patients with Coronavirus disease 2019 (COVID-19) plays an essential role in dictating the disease progression. Because of the infectious nature of SARS-CoV-2, patients’ fresh blood samples are limited to access for in vitro experimental investigations. Herein, we employ a novel multiscale and multiphysics computational framework to perform predictive modeling of the pathological thrombus formation in the microvasculature using data from patients with COVID-19. This framework seamlessly integrates the key components in the process of blood clotting, including hemodynamics, transport of coagulation factors and coagulation kinetics, blood cell mechanics and adhesive dynamics, and thus allows us to quantify the contributions of many prothrombotic factors reported in the literature, such as stasis, the derangement in blood coagulation factor levels and activities, inflammatory responses of endothelial cells and leukocytes to the microthrombus formation in COVID-19. Our simulation results show that among the coagulation factors considered, antithrombin and factor V play more prominent roles in promoting thrombosis. Our simulations also suggest that recruitment of WBCs to the endothelial cells exacerbates thrombogenesis and contributes to the blockage of the blood flow. Additionally, we show that the recent identification of flowing blood cell clusters could be a result of detachment of WBCs from thrombogenic sites, which may serve as a nidus for new clot formation. These findings point to potential targets that should be further evaluated, and prioritized in the anti-thrombotic treatment of patients with COVID-19. Altogether, our computational framework provides a powerful tool for quantitative understanding of the mechanism of pathological thrombus formation and offers insights into new therapeutic approaches for treating COVID-19 associated thrombosis.  相似文献   

9.
本文对103例锰作业工人测定了血液流变学中的七项指标,结果表明:全血粘度(高切、低切)、血浆粘度、红细胞压积、纤维蛋白原、红细胞电泳、血小板粘附、血沉等项指标,均明显高于正常对照组(P<0.01),证实锰作业工人普遍存在高粘滞血症,为临床治疗锰中毒开辟新的途径提供了依据。对其中的52例锰中毒(包括症状较重的观察对象),用清栓酶治疗后,复查其七项指标与治疗前比较,均有明显下降(P<0.01),其症状与体征得以改善,进一步说明清栓酶是治疗锰中毒的理想药物之一。  相似文献   

10.
Alterations of blood rheology (hemorheology) are important for the early diagnosis, prognosis, and prevention of many diseases, including myocardial infarction, stroke, sickle cell anemia, thromboembolism, trauma, inflammation, and malignancy. However, real-time in vivo assessment of multiple hemorheological parameters over long periods of time has not been reported. Here, we review the capabilities of label-free photoacoustic (PA) and photothermal (PT) flow cytometry for dynamic monitoring of hemorhelogical parameters in vivo which we refer to as photoacoustic and photothermal blood rheology. Using phenomenological models, we analyze correlations between both PT and PA signal characteristics in the dynamic modes and following determinants of blood rheology: red blood cell (RBC) aggregation, deformability, shape (e.g., as in sickle cells), intracellular hemoglobin distribution, individual cell velocity, hematocrit, and likely shear rate. We present ex vivo and in vivo experimental verifications involving high-speed PT imaging of RBCs, identification of sickle cells in a mouse model of human sickle cell disease and in vivo monitoring of complex hemorheological changes (e.g., RBC deformability, hematocrit and RBC aggregation). The multi-parameter platform that integrates PT, PA, and conventional optical techniques has potential for translation to clinical applications using safe, portable, laser-based medical devices for point-of-care screening of disease progression and therapy efficiency.  相似文献   

11.
目的:研究微生态制剂益康口服液(由双歧杆菌、乳酸链球菌与中药人参、茯苓、黄芪等药物组成)对老年大鼠血液流变学的影响。方法:大鼠按鼠龄、体重随机分为7组,每组10只(除青年组外其余各组均采用鼠龄24个月大鼠):(1)青年组、(2)老年组、(3)抗老延年丸组、(4)复方丹参片组、(5)益康口服液I组、(6)益康口服液Ⅱ组、(7)益康口服液Ⅲ组。连续ig 14d,每日1次,在第14天ig 30min后,取颈动脉血进行血液流变学测试。资料结果采用student—t检验。结果:益康口服液能够降低老年大鼠全血与血浆粘度,增强红细胞的变形性,降低红细胞的聚集性。结论:益康口服液可以改善老年大鼠的血液流变性,通过活血化瘀改善循环延缓衰老。  相似文献   

12.
Sickle erythrocytes exhibit abnormal morphology and membrane mechanics under deoxygenated conditions due to the polymerization of hemoglobin S. We employed dissipative particle dynamics to extend a validated multiscale model of red blood cells (RBCs) to represent different sickle cell morphologies based on a simulated annealing procedure and experimental observations. We quantified cell distortion using asphericity and elliptical shape factors, and the results were consistent with a medical image analysis. We then studied the rheology and dynamics of sickle RBC suspensions under constant shear and in a tube. In shear flow, the transition from shear-thinning to shear-independent flow revealed a profound effect of cell membrane stiffening during deoxygenation, with granular RBC shapes leading to the greatest viscosity. In tube flow, the increase of flow resistance by granular RBCs was also greater than the resistance of blood flow with sickle-shape RBCs. However, no occlusion was observed in a straight tube under any conditions unless an adhesive dynamics model was explicitly incorporated into simulations that partially trapped sickle RBCs, which led to full occlusion in some cases.  相似文献   

13.
The relationship between hemorheology, erythrocyte ATP and 2,3-diphosphoglycerate (2,3-DPG) concentrations, and von Willebrand factor antigen was studied in athletes and peripheral arterial disease patients. Lower blood viscosity, mainly due to a higher erythrocyte deformability, was found in athletes compared to control subjects. Higher 2,3-DPG/Ht levels in athletes were correlated with blood viscosity, erythrocyte deformability, the rigidity index, and erythrocyte suspension viscosity at low shear stress. It is suggested that these relationships might be determined by the predominance of immature erythrocytes in the blood circulation of the athletes. In the group of patients, a decrease in ATP/Ht was related to increased erythrocyte aggregation and a higher erythrocyte suspension viscosity. Moreover, the concentration of von Willebrand factor was positively correlated with the erythrocyte aggregation index, erythrocyte suspension viscosity, and plasma viscosity. The results show that alterations in erythrocyte and plasma rheology may be involved in the modification of the functional state of the vascular endothelium and the development of atherosclerosis.  相似文献   

14.
摘要 目的:探究血脂及血液流变学指标与突发性聋(SSHL)患者听力曲线类型的关系,并分析临床疗效的影响因素。方法:选取2020年6月-2022年1月我院收治的103例SSHL患者设为SSHL组,另选取103例体检健康者设为健康组,分析两组血脂水平及血液流变学指标,比较不同听力曲线类型的SSHL患者血脂水平及血液流变学指标,Spearman相关分析血脂水平及血液流变学指标与SSHL患者听力曲线类型的关系,单因素和多因素Logistic回归模型分析SSHL患者临床疗效的影响因素。结果:与健康组比较,SSHL组总胆固醇(TC)、三酰甘油(TG)与全血高切、中切、低切粘度及血浆粘度明显增高(P<0.05),高密度脂蛋白-C(HDL-C)、低密度脂蛋白-C(LDL-C)差异比较无统计学意义(P>0.05)。不同听力曲线类型的SSHL患者各项血脂指标比较差异均无统计学意义(P>0.05),不同听力曲线类型的SSHL患者各项血液流变学指标比较差异均有统计学意义(P<0.05),其中全聋型患者各项血液流变学指标显著高于低频下降型患者(P<0.05)。血脂四项与SSHL听力曲线类型无显著相关性(P>0.05),而血液流变学指标与SSHL听力曲线类型显著相关(P<0.05)。治疗无效组患者双耳患病比例、听力曲线类型为全聋型比例、全血高切粘度、全血低切粘度、血浆粘度显著高于有效组患者(P<0.05),多因素Logistic分析结果显示:双耳患病、听力曲线类型为全聋型、血浆粘度增加为SSHL患者治疗无效的危险因素(P<0.05)。结论:SSHL患者存在血脂及血液流变学异常,血液流变学与SSHL患者听力曲线类型和临床疗效有一定关系,其中双耳患病、全聋型、血浆粘度增加为SSHL患者治疗无效的危险因素,检测血脂和血液流变学对于SSHL诊治具有一定临床指导意义。  相似文献   

15.
Protein solution rheology data in the biophysics literature have incompletely identified factors that govern hydrodynamics. Whereas spontaneous protein adsorption at the air/water (A/W) interface increases the apparent viscosity of surfactant-free globular protein solutions, it is demonstrated here that irreversible clusters also increase system viscosity in the zero shear limit. Solution rheology measured with double gap geometry in a stress-controlled rheometer on a surfactant-free Immunoglobulin solution demonstrated that both irreversible clusters and the A/W interface increased the apparent low shear rate viscosity. Interfacial shear rheology data showed that the A/W interface yields, i.e., shows solid-like behavior. The A/W interface contribution was smaller, yet nonnegligible, in double gap compared to cone-plate geometry. Apparent nonmonotonic composition dependence of viscosity at low shear rates due to irreversible (nonequilibrium) clusters was resolved by filtration to recover a monotonically increasing viscosity-concentration curve, as expected. Although smaller equilibrium clusters also existed, their size and effective volume fraction were unaffected by filtration, rendering their contribution to viscosity invariant. Surfactant-free antibody systems containing clusters have complex hydrodynamic response, reflecting distinct bulk and interface-adsorbed protein as well as irreversible cluster contributions. Literature models for solution viscosity lack the appropriate physics to describe the bulk shear viscosity of unstable surfactant-free antibody solutions.  相似文献   

16.
The passage of red blood cells (RBCs) through capillaries is essential for human blood microcirculation. This study used a moving mesh technology that incorporated leader-follower pairs to simulate the fluid-structure and structure-structure interactions between the RBC and a microvessel stenosis. The numerical model consisted of plasma, cytoplasm, the erythrocyte membrane, and the microvessel stenosis. Computational results showed that the rheology of the RBC is affected by the Reynolds number of the plasma flow as well as the surface-to-volume ratio of the erythrocyte. At a constant inlet flow rate, an increased plasma viscosity will improve the transit of the RBC through the microvessel stenosis. For the above reasons, we consider that the decreased hemorheology in microvessels in a pathological state may primarily be attributed to an increase in the number of white blood cells. This leads to the aggregation of RBCs and a change in the blood flow structure. The present fundamental study of hemorheology aimed at providing theoretical guidelines for clinical hemorheology.  相似文献   

17.
《Biophysical journal》2022,121(18):3393-3410
In this article, extensive three-dimensional simulations are conducted for tank-treading (TT) red blood cells (RBCs) in shear flow with different cell viscous properties and flow conditions. Apart from recent numerical studies on TT RBCs, this research considers the uncertainty in cytoplasm viscosity, covers a more complete range of shear flow situations of available experiments, and examines the TT behaviors in more details. Key TT characteristics, including the rotation frequency, deformation index, and inclination angle, are compared with available experimental results of similar shear flow conditions. Fairly good simulation-experiment agreements for these parameters can be obtained by adjusting the membrane viscosity values; however, different rheological relationships between the membrane viscosity and the flow shear rate are noted for these comparisons: shear thinning from the TT frequency, Newtonian from the inclination angle, and shear thickening from the cell deformation. Previous studies claimed a shear-thinning membrane viscosity model based on the TT frequency results; however, such a conclusion seems premature from our results and more carefully designed and better controlled investigations are required for the RBC membrane rheology. In addition, our simulation results reveal complicate RBC TT features and such information could be helpful for a better understanding of in vivo and in vitro RBC dynamics.  相似文献   

18.
A COBE blood cell centrifuge, model 2997 with a single stage channel, was modified to allow computer controlled sampling, and to allow recycle of red blood cells (RBCs) and plasma streams using bovine whole blood. The effects of recycle of the packed RBC and plasma product streams, and of the centrifuge RPM on platelet and white blood cell (WBC) separation efficiencies were quantified using a central composite factorial experimental design. These data were then fit using second order models. Both the model for the WBC separation efficiency and the model for the platelet separation efficiency predict that RPM has the greatest effect on separation efficiency and that RBC and plasma recycle have detrimental effects at moderate to low RPM, but have negligible impact on separation efficiency at high RPM.  相似文献   

19.
The bulk rheology of close-packed red blood cells in shear flow   总被引:1,自引:0,他引:1  
T W Secomb  S Chien  K M Jan  R Skalak 《Biorheology》1983,20(3):295-309
A theoretical analysis is made of the dynamical behavior and bulk rheology of close-packed red blood cell suspensions subjected to simple shear flow. The model for the polyhedral cell shapes and tank-treading membrane motion developed in the companion paper (1) is used. The flow in the thin lubricating plasma layers between cells is analyzed taking into account the mechanical properties of the membrane at the corner regions of sharp membrane curvature. This leads to predictions for the apparent viscosity as a function of hematocrit and shear rate. Good agreement with experimental results is obtained at moderate and high shear rates (above 20 s-1). At lower shear rates, a rapid rise in apparent viscosity has been found experimentally, and the mechanisms leading to this behavior are examined.  相似文献   

20.
Whole blood is a non-Newtonian fluid, which means that its viscosity depends on shear rate. At low shear, blood cells aggregate, which induces a sharp increase in viscosity, whereas at higher shear blood cells disaggregate, deform and align in the direction of flow. Other important determinants of blood viscosity are the haematocrit, the presence of macro-molecules in the medium, temperature and, especially at high shear, the deformability of red blood cells. At the sites of severe atherosclerotic obstructions or at vasospastic locations, when change of vessel diameter is limited, blood viscosity contributes to stenotic resistance thereby jeopardising tissue perfusion. However, blood viscosity plays its most important role in the microcirculation where it contributes significantly to peripheral resistance and may cause sludging in the postcapillary venules. Apart from the direct haemodynamic significance, an increase in blood viscosity at low shear by red blood cell aggregation is also associated with increased thrombotic risk, as has been demonstrated in atrial fibrillation. Furthermore, as increased red blood cell aggregation is a reflection of inflammation, hyperviscosity has been shown to be a marker of inflammatory activity. Thus, because of its potential role in haemodynamics, thrombosis and inflammation, determination of whole blood viscosity could provide useful information for diagnostics and therapy of (cardio)vascular disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号