首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Bacterial biofilms are the most prevalent mode of bacterial growth in nature. Adhesive and viscoelastic properties of bacteria play important roles at different stages of biofilm development. Following irreversible attachment of bacterial cells onto a surface, a biofilm can grow in which its matrix viscoelasticity helps to maintain structural integrity, determine stress resistance, and control ease of dispersion. In this study, a novel application of force spectroscopy was developed to characterize the surface adhesion and viscoelasticity of bacterial cells in biofilms. By performing microbead force spectroscopy with a closed-loop atomic force microscope, we accurately quantified these properties over a defined contact area. Using the model gram-negative bacterium Pseudomonas aeruginosa, we observed that the adhesive and viscoelastic properties of an isogenic lipopolysaccharide mutant wapR biofilm were significantly different from those measured for the wild-type strain PAO1 biofilm. Moreover, biofilm maturation in either strain also led to prominent changes in adhesion and viscoelasticity. To minimize variability in force measurements resulting from experimental parameter changes, we developed standardized conditions for microbead force spectroscopy to enable meaningful comparison of data obtained in different experiments. Force plots measured under standard conditions showed that the adhesive pressures of PAO1 and wapR early biofilms were 34 ± 15 Pa and 332 ± 47 Pa, respectively, whereas those of PAO1 and wapR mature biofilms were 19 ± 7 Pa and 80 ± 22 Pa, respectively. Fitting of creep data to a Voigt Standard Linear Solid viscoelasticity model revealed that the instantaneous and delayed elastic moduli in P. aeruginosa were drastically reduced by lipopolysaccharide deficiency and biofilm maturation, whereas viscosity was decreased only for biofilm maturation. In conclusion, we have introduced a direct biophysical method for simultaneously quantifying adhesion and viscoelasticity in bacterial biofilms under native conditions. This method could prove valuable for elucidating the contribution of genetic backgrounds, growth conditions, and environmental stresses to microbial community physiology.  相似文献   

2.
Natural roles of biosurfactants   总被引:8,自引:0,他引:8  
Microorganisms produce a variety of surface-active agents (or surfactants). These can be divided into low-molecular-weight molecules that lower surface and interfacial tensions efficiently and high-molecular-weight polymers that bind tightly to surfaces. These surfactants, produced by a wide variety of microorganisms, have very different chemical structures and surface properties. It is therefore reasonable to assume that different groups of biosurfactants have different natural roles in the growth of the producing microorganisms. Moreover, as their chemical structures and surface properties are so different, each emulsifier probably provides advantages in a particular ecological niche. Several bioemulsifiers have antibacterial or antifungal activities. Other bioemulsifiers enhance the growth of bacteria on hydrophobic water-insoluble substrates by increasing their bioavailability, presumably by increasing their surface area, desorbing them from surfaces and increasing their apparent solubility. Bioemulsifiers also play an important role in regulating the attachment–detachment of microorganisms to and from surfaces. In addition, emulsifiers are involved in bacterial pathogenesis, quorum sensing and biofilm formation. Recent experiments indicate that a high-molecular-weight bioemulsifier that coats the bacterial surface can be transferred horizontally to other bacteria, thereby changing their surface properties and interactions with the environment.  相似文献   

3.
The ability of surfactants obtained from three Lactobacillus acidophilus strains to inhibit Staphylococcus aureus and S. epidermidis biofilms was evaluated. Their influence was determined on bacterial initial adhesion, biofilm formation and dispersal using MTT-reduction assay, confocal laser scanning microscopy and image PHLIP analysis. The number of adhering S. aureus and S. epidermidis cells after a 3-h co-incubation with biosurfactants was reduced by 5-56 % in a strain-and dose-dependent manner. S. epidermidis-and, to a lower extent, in S. aureus-biofilm formation was also inhibited in the presence of the tested surfactants. The addition of surfactants to preformed mature biofilms accelerated their dispersal, and changed the parameters of biofilm morphology. The L. acidophilus-derived surfactants inhibit bacterial deposition rate and biofilm development (and also its maturation) without affecting cell growth probably due to the influence on the cell-surface hydrophobicity of staphylococci.  相似文献   

4.
The processes involved in the development of complex multicellular communities, including the programmed elimination of individual cells during the formation of specialized structures, exhibit fundamental similarities between prokaryotic and eukaryotic organisms. Mechanistic similarities may also exist at the molecular level, as bacterial proteins hypothesized to be related to the apoptosis regulator Bax/Bcl-2 family have been identified, fueling speculation about the existence of bacterial PCD. Here we review the regulatory networks controlling cell death and lysis in Staphylococcus aureus and examine the environmental parameters that might influence them during the development of a biofilm. We hypothesize that the heterogeneous environmental conditions found within a developing biofilm generate distinct physiological signals that coordinate the differential expression of cell death and lysis effectors.  相似文献   

5.
6.
Bacterial biofilm formation on inert surfaces is a significant health and economic problem in a wide range of environmental, industrial, and medical areas. Bacterial adhesion is generally a prerequisite for this colonization process and, thus, represents an attractive target for the development of biofilm-preventive measures. We have previously found that the preconditioning of several different inert materials with an aqueous fish muscle extract, composed primarily of fish muscle alpha-tropomyosin, significantly discourages bacterial attachment and adhesion to these surfaces. Here, this proteinaceous coating is characterized with regards to its biofilm-reducing properties by using a range of urinary tract infectious isolates with various pathogenic and adhesive properties. The antiadhesive coating significantly reduced or delayed biofilm formation by all these isolates under every condition examined. The biofilm-reducing activity did, however, vary depending on the substratum physicochemical characteristics and the environmental conditions studied. These data illustrate the importance of protein conditioning layers with respect to bacterial biofilm formation and suggest that antiadhesive proteins may offer an attractive measure for reducing or delaying biofilm-associated infections.  相似文献   

7.
For a chronic infection to be established, bacteria must be able to cope with hostile conditions such as low iron levels, oxidative stress, and clearance by the host defense, as well as antibiotic treatment. It is generally accepted that biofilm formation facilitates tolerance to these adverse conditions. However, microscopic investigations of samples isolated from sites of chronic infections seem to suggest that some bacteria do not need to be attached to surfaces in order to establish chronic infections. In this study we employed scanning electron microscopy, confocal laser scanning microscopy, RT-PCR as well as traditional culturing techniques to study the properties of Pseudomonas aeruginosa aggregates. We found that non-attached aggregates from stationary-phase cultures have comparable growth rates to surface attached biofilms. The growth rate estimations indicated that, independently of age, both aggregates and flow-cell biofilm had the same slow growth rate as a stationary phase shaking cultures. Internal structures of the aggregates matrix components and their capacity to survive otherwise lethal treatments with antibiotics (referred to as tolerance) and resistance to phagocytes were also found to be strikingly similar to flow-cell biofilms. Our data indicate that the tolerance of both biofilms and non-attached aggregates towards antibiotics is reversible by physical disruption. We provide evidence that the antibiotic tolerance is likely to be dependent on both the physiological states of the aggregates and particular matrix components. Bacterial surface-attachment and subsequent biofilm formation are considered hallmarks of the capacity of microbes to cause persistent infections. We have observed non-attached aggregates in the lungs of cystic fibrosis patients; otitis media; soft tissue fillers and non-healing wounds, and we propose that aggregated cells exhibit enhanced survival in the hostile host environment, compared with non-aggregated bacterial populations.  相似文献   

8.
Biofilm formation and dispersal and the transmission of human pathogens   总被引:18,自引:0,他引:18  
Several pathogenic bacterial species that are found in the environment can form complex multicellular structures on surfaces known as biofilms. Pseudomonas aeruginosa, Vibrio cholerae and certain species of nontuberculous mycobacteria are examples of human pathogens that form biofilms in natural aquatic environments. We suggest that the dynamics of biofilm formation facilitates the transmission of pathogens by providing a stable protective environment and acting as a nidus for the dissemination of large numbers of microorganisms; both as detached biofilm clumps and by the fluid-driven dispersal of biofilm clusters along surfaces. We also suggest that emerging evidence indicates that biofilm formation conveys a selective advantage to certain pathogens by increasing their ability to persist under diverse environmental conditions.  相似文献   

9.
In this study, we explored Bacillus subtilis biofilm growth under various conditions such as the use of substrates with different stiffnesses and nutrient levels using a well-developed optical imaging technique to spatially and temporally track biofilm growth. We also developed a quantitative method to characterize B. subtilis biofilm morphologies under various growth conditions. To determine biofilm rim irregularities, we used the dimensionless P2A ratio, defined as P2/4πA, where P is the perimeter and A is the area of the biofilm. To estimate biofilm thickness from transmission images, we developed a calibration procedure based on Beer- Lambert’s law and cross sectioning. Furthermore, to determine the distributions of different B. subtilis cell phenotypes during biofilm growth, we used a triple-fluorescence-labeled B. subtilis strain that expressed motility, matrix production, and sporulation. Based on this work, we are able to tune biofilm growth by changing its growing environment.  相似文献   

10.
11.
Biofilm formation is a complex developmental process regulated by multiple environmental signals. In addition to other nutrients, the transition metal iron can also regulate biofilm formation. Iron-dependent regulation of biofilm formation varies by bacterial species, and the exact regulatory pathways that control iron-dependent biofilm formation are often unknown or only partially characterized. To address this gap in our knowledge, we examined the role of iron availability in regulating biofilm formation in Escherichia coli. The results indicate that biofilm formation is repressed under low-iron conditions in E. coli. Furthermore, a key iron regulator, IscR, controls biofilm formation in response to changes in cellular Fe-S homeostasis. IscR regulates the FimE recombinase to control expression of type I fimbriae in E. coli. We propose that iron-dependent regulation of FimE via IscR leads to decreased surface attachment and biofilm dispersal under iron-limiting conditions.  相似文献   

12.
13.
Conover MS  Mishra M  Deora R 《PloS one》2011,6(2):e16861
Bacteria form complex and highly elaborate surface adherent communities known as biofilms which are held together by a self-produced extracellular matrix. We have previously shown that by adopting a biofilm mode of existence in vivo, the gram negative bacterial pathogens Bordetella bronchiseptica and Bordetella pertussis are able to efficiently colonize and persist in the mammalian respiratory tract. In general, the bacterial biofilm matrix includes polysaccharides, proteins and extracellular DNA (eDNA). In this report, we investigated the function of DNA in Bordetella biofilm development. We show that DNA is a significant component of Bordetella biofilm matrix. Addition of DNase I at the initiation of biofilm growth inhibited biofilm formation. Treatment of pre-established mature biofilms formed under both static and flow conditions with DNase I led to a disruption of the biofilm biomass. We next investigated whether eDNA played a role in biofilms formed in the mouse respiratory tract. DNase I treatment of nasal biofilms caused considerable dissolution of the biofilm biomass. In conclusion, these results suggest that eDNA is a crucial structural matrix component of both in vitro and in vivo formed Bordetella biofilms. This is the first evidence for the ability of DNase I to disrupt bacterial biofilms formed on host organs.  相似文献   

14.
Our understanding of Escherichia coli biofilm formation in vitro is based on studies of laboratory K-12 strains grown in standard media. However, pathogenic E. coli isolates differ substantially in their genetic repertoire from E. coli K-12 and are subject to heterogeneous environmental conditions. In this study, in vitro biofilm formation of 331 nondomesticated E. coli strains isolated from healthy (n = 105) and diarrhea-afflicted children (n = 68), bacteremia patients (n = 90), and male patients with urinary tract infections (n = 68) was monitored using a variety of growth conditions and compared to in vitro biofilm formation of prototypic pathogenic and laboratory strains. Our results revealed remarkable variation among the capacities of diverse E. coli isolates to form biofilms in vitro. Notably, we could not identify an association of increased biofilm formation in vitro with a specific strain collection that represented pathogenic E. coli strains. Instead, analysis of biofilm data revealed a significant dependence on growth medium composition (P < 0.05). Poor correlation between biofilm formation in the various media suggests that diverse E. coli isolates respond very differently to changing environmental conditions. The data demonstrate that prevalence and expression of three factors known to strongly promote biofilm formation in E. coli K-12 (F-like conjugative pili, aggregative adherence fimbriae, and curli) cannot adequately account for the increased biofilm formation of nondomesticated E. coli isolates in vitro. This study highlights the complexity of genetic and environmental effectors of the biofilm phenotype within the species E. coli.  相似文献   

15.
Cells respond to the environment and alter gene expression. Recent studies have revealed the social aspects of bacterial life, such as biofilm formation. Biofilm formation is largely affected by the environment, and the mechanisms by which the gene expression of individual cells affects biofilm development have attracted interest. Environmental factors determine the cell’s decision to form or leave a biofilm. In addition, the biofilm structure largely depends on the environment, implying that biofilms are shaped to adapt to local conditions. Second messengers such as cAMP and c-di-GMP are key factors that link environmental factors with gene regulation. Cell-to-cell communication is also an important factor in shaping the biofilm. In this short review, we will introduce the basics of biofilm formation and further discuss environmental factors that shape biofilm formation. Finally, the state-of-the-art tools that allow us investigate biofilms under various conditions are discussed.  相似文献   

16.
Many bacteria can adopt organized, sessile, communal lifestyles. The gram-positive bacterium, Bacillus subtilis,forms biofilms on solid surfaces and at air-liquid interfaces, and biofilm development is dependent on environmental conditions. We demonstrate that biofilm formation by B. subtilis strain JH642 can be either activated or repressed by glucose, depending on the growth medium used, and that these glucose effects are at least in part mediated by the catabolite control protein, CcpA. Starting with a chromosomal Tn917-LTV3 insertional library, we isolated mutants that are defective for biofilm formation. The biofilm defects of these mutants were observable in both rich and minimal media, and both on polyvinylchloride abiotic surfaces and in borosilicate tubes. Two mutants were defective in flagellar synthesis. Chemotaxis was shown to be less important for biofilm formation than was flagellar-driven motility. Although motility is known to be required for biofilm formation in other bacteria, this had not previously been demonstrated for B. subtilis. In addition, our study suggests roles for glutamate synthase, GltAB, and an aminopeptidase, AmpS. The loss of these enzymes did not decrease growth or cellular motility but had dramatic effects on biofilm formation under all conditions assayed. The effect of the gltAB defect on biofilm formation could not be due to a decrease in poly-gamma-glutamate synthesis since this polymer proved to be nonessential for robust biofilm formation. High exogenous concentrations of glutamate, aspartate, glutamine or proline did not override the glutamate synthase requirement. This is the first report showing that glutamate synthase and a cytoplasmic aminopeptidase play roles in bacterial biofilm formation. Possible mechanistic implications and potential roles of biofilm formation in other developmental processes are discussed.  相似文献   

17.
18.
Health care-associated methicillin-resistant Staphylococcus aureus (HA-MRSA) forms biofilm in vitro that is dependent on the surface-located fibronectin binding proteins A and B (FnBPA, FnBPB). Here we provide new insights into the requirements for FnBP-dependent biofilm formation by MRSA. We show that expression of FnBPs is sustained at high levels throughout the growth cycle in the HA-MRSA strain BH1CC in contrast to laboratory strain SH1000, where expression could be detected only in exponential phase. We found that FnBP-mediated biofilm accumulation required Zn2+, while the removal of Zn2+ had no effect on the ability of FnBPA to mediate bacterial adherence to fibrinogen. We also investigated the role of FnBPA expressed on the surface of S. aureus in promoting biofilm formation and bacterial adhesion to fibrinogen. The minimum part of FnBPA required for ligand binding has so far been defined only with recombinant proteins. Here we found that the N1 subdomain was not required for biofilm formation or for FnBPA to promote bacterial adherence to fibrinogen. Residues at the C terminus of subdomain N3 required for FnBPA to bind to ligands using the “dock, lock, and latch” mechanism were necessary for FnBPA to promote bacterial adherence to fibrinogen. However, these residues were not necessary to form biofilm, allowing us to localize the region of FnBPA required for biofilm accumulation to residues 166 to 498. Thus, FnBPA mediates biofilm formation and bacterial adhesion to fibrinogen using two distinct mechanisms. Finally, we identified a hitherto-unrecognized thrombin cleavage site close to the boundary between subdomains N1 and N2 of FnBPA.  相似文献   

19.
Current antibiofilm solutions based on planktonic bacterial physiology have limited efficacy in clinical and occasionally environmental settings. This has prompted a search for suitable alternatives to conventional therapies. This study compares the inhibitory properties of two biological surfactants (rhamnolipids and a plant-derived surfactant) against a selection of broad-spectrum antibiotics (ampicillin, chloramphenicol and kanamycin). Testing was carried out on a range of bacterial physiologies from planktonic and mixed bacterial biofilms. Rhamnolipids (Rhs) have been extensively characterised for their role in the development of biofilms and inhibition of planktonic bacteria. However, there are limited direct comparisons with antimicrobial substances on established biofilms comprising single or mixed bacterial strains. Baseline measurements of inhibitory activity using planktonic bacterial assays established that broad-spectrum antibiotics were 500 times more effective at inhibiting bacterial growth than either Rhs or plant surfactants. Conversely, Rhs and plant biosurfactants reduced biofilm biomass of established single bacterial biofilms by 74–88 and 74–98 %, respectively. Only kanamycin showed activity against biofilms of Bacillus subtilis and Staphylococcus aureus. Broad-spectrum antibiotics were also ineffective against a complex biofilm of marine bacteria; however, Rhs and plant biosurfactants reduced biofilm biomass by 69 and 42 %, respectively. These data suggest that Rhs and plant-derived surfactants may have an important role in the inhibition of complex biofilms.  相似文献   

20.
In response to certain environmental signals, bacteria will differentiate from an independent free-living mode of growth and take up an interdependent surface-attached existence. These surface-attached microbial communities are known as biofilms. In flowing systems where nutrients are available, biofilms can develop into elaborate three-dimensional structures. The development of biofilm architecture, particularly the spatial arrangement of colonies within the matrix and the open areas surrounding the colonies, is thought to be fundamental to the function of these complex communities. Here we report a new role for rhamnolipid surfactants produced by the opportunistic pathogen Pseudomonas aeruginosa in the maintenance of biofilm architecture. Biofilms produced by mutants deficient in rhamnolipid synthesis do not maintain the noncolonized channels surrounding macrocolonies. We provide evidence that surfactants may be able to maintain open channels by affecting cell-cell interactions and the attachment of bacterial cells to surfaces. The induced synthesis of rhamnolipids during the later stages of biofilm development (when cell density is high) implies an active mechanism whereby the bacteria exploit intercellular interaction and communication to actively maintain these channels. We propose that the maintenance of biofilm architecture represents a previously unrecognized step in the development of these microbial communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号